ParallelWrapper.Builder |
ParallelWrapper.Builder.averageUpdaters(boolean reallyAverage) |
This method enables/disables updaters averaging.
|
ParallelWrapper.Builder |
ParallelWrapper.Builder.averagingFrequency(int freq) |
Model averaging frequency.
|
ParallelWrapper.Builder |
ParallelWrapper.Builder.gradientsAccumulator(@NonNull org.deeplearning4j.optimize.solvers.accumulation.GradientsAccumulator accumulator) |
This method allows you to specify GradientsAccumulator instance to be used in this ParallelWrapper instance
PLEASE NOTE: This method is applicable only to gradients sharing mechanics.
|
ParallelWrapper.Builder |
ParallelWrapper.Builder.modelParamsSupplier(org.nd4j.common.function.Supplier<org.nd4j.linalg.api.ndarray.INDArray> supplier) |
This method attaches supplier that'll probably provide model params update
PLEASE NOTE: This method is mostly used in Spark environment as part of fault tolerance logic
|
ParallelWrapper.Builder |
ParallelWrapper.Builder.prefetchBuffer(int size) |
Size of prefetch buffer that will be used for background data prefetching.
|
ParallelWrapper.Builder |
ParallelWrapper.Builder.reportScoreAfterAveraging(boolean reallyReport) |
This method enables/disables averaged model score reporting
|
ParallelWrapper.Builder |
ParallelWrapper.Builder.residualPostProcessor(org.deeplearning4j.optimize.solvers.accumulation.encoding.ResidualPostProcessor residualPostProcessor) |
Set the residual post processor algorithm.
|
ParallelWrapper.Builder |
ParallelWrapper.Builder.temporaryMemory(@NonNull Long numBytes) |
This method allows to define amount of temporary memory that will be used for gradients sharing.
|
ParallelWrapper.Builder |
ParallelWrapper.Builder.thresholdAlgorithm(org.deeplearning4j.optimize.solvers.accumulation.encoding.ThresholdAlgorithm thresholdAlgorithm) |
Set the threshold algorithm.
|
ParallelWrapper.Builder |
ParallelWrapper.Builder.trainerContextArgs(Object... trainerContextArgs) |
|
ParallelWrapper.Builder |
ParallelWrapper.Builder.trainerFactory(@NonNull TrainerContext trainerContext) |
|
ParallelWrapper.Builder |
ParallelWrapper.Builder.trainingMode(@NonNull ParallelWrapper.TrainingMode mode) |
This method allows you to specify training mode for this instance of PW.
1) AVERAGING - stands for parameters averaging.
|
ParallelWrapper.Builder |
ParallelWrapper.Builder.updaterParamsSupplier(org.nd4j.common.function.Supplier<org.nd4j.linalg.api.ndarray.INDArray> supplier) |
This method attaches supplier that'll probably provide updater params update
PLEASE NOTE: This method is mostly used in Spark environment as part of fault tolerance logic
|
ParallelWrapper.Builder |
ParallelWrapper.Builder.workers(int num) |
This method allows to configure number of workers that'll be used for parallel training
|
ParallelWrapper.Builder |
ParallelWrapper.Builder.workspaceMode(@NonNull org.deeplearning4j.nn.conf.WorkspaceMode mode) |
This method allows to override model's WorkspaceMode configuration option
|