Package org.graphstream.algorithm
Class Kruskal
java.lang.Object
org.graphstream.algorithm.AbstractSpanningTree
org.graphstream.algorithm.Kruskal
- All Implemented Interfaces:
Algorithm
,SpanningTree
- Direct Known Subclasses:
Prim
public class Kruskal extends AbstractSpanningTree
Compute a spanning tree using the Kruskal algorithm.
Kruskal's algorithm is a greedy algorithm which allows to find a minimal spanning tree in a weighted connected graph. More informations on Wikipedia.
Example
The following example generates a graph with the Dorogovtsev-Mendes generator and then computes a spanning-tree using the Kruskal algorithm. The generator creates random weights for edges that will be used by the Kruskal algorithm. If no weight is present, algorithm considers that all weights are set to 1. When an edge is in the spanning tree, the algorithm will set its "ui.class" attribute to "intree", else the attribute is set to "notintree". According to the css stylesheet that is defined, spanning will be displayed with thick black lines while edges not in the spanning tree will be displayed with thin gray lines.import org.graphstream.graph.Graph; import org.graphstream.graph.implementations.DefaultGraph; import org.graphstream.algorithm.Kruskal; import org.graphstream.algorithm.generator.DorogovtsevMendesGenerator; public class KruskalTest { public static void main(String .. args) { DorogovtsevMendesGenerator gen = new DorogovtsevMendesGenerator(); Graph graph = new DefaultGraph("Kruskal Test"); String css = "edge .notintree {size:1px;fill-color:gray;} " + "edge .intree {size:3px;fill-color:black;}"; graph.addAttribute("ui.stylesheet", css); graph.display(); gen.addEdgeAttribute("weight"); gen.setEdgeAttributesRange(1, 100); gen.addSink(graph); gen.begin(); for (int i = 0; i < 100 && gen.nextEvents(); i++) ; gen.end(); Kruskal kruskal = new Kruskal("ui.class", "intree", "notintree"); kruskal.init(g); kruskal.compute(); } }
- See Also:
AbstractSpanningTree
- Computational Complexity :
- O(m log n) where m is the number of edges and n is the number of nodes of the graph
- Scientific Reference :
- Joseph. B. Kruskal: On the Shortest Spanning Subtree of a Graph and the Traveling Salesman Problem. In: Proceedings of the American Mathematical Society, Vol 7, No. 1 (Feb, 1956), pp. 48–50
-
Field Summary
Fields Modifier and Type Field Description static String
DEFAULT_WEIGHT_ATTRIBUTE
Default weight attribute -
Constructor Summary
Constructors Constructor Description Kruskal()
Create a new Kruskal's algorithm.Kruskal(String flagAttribute, Object flagOn, Object flagOff)
Create a new Kruskal's algorithm.Kruskal(String weightAttribute, String flagAttribute)
Create a new Kruskal's algorithm.Kruskal(String weightAttribute, String flagAttribute, Object flagOn, Object flagOff)
Create a new Kruskal's algorithm. -
Method Summary
Modifier and Type Method Description void
clear()
Removes the tags of all edges.String
defaultResult()
Stream<org.graphstream.graph.Edge>
getTreeEdgesStream()
An iterator on the tree edges.double
getTreeWeight()
Returns the total weight of the minimum spanning treeString
getWeightAttribute()
Get weight attribute used to compare edges.void
setWeightAttribute(String newWeightAttribute)
Set the weight attribute.Methods inherited from class org.graphstream.algorithm.AbstractSpanningTree
compute, getFlagAttribute, getFlagOff, getFlagOn, getTreeEdges, init, setFlagAttribute, setFlagOff, setFlagOn
-
Field Details
-
DEFAULT_WEIGHT_ATTRIBUTE
Default weight attribute- See Also:
- Constant Field Values
-
-
Constructor Details
-
Kruskal
public Kruskal()Create a new Kruskal's algorithm. Uses the default weight attribute and does not tag the edges. -
Kruskal
Create a new Kruskal's algorithm. The value of the flag attribute istrue
for the tree edges and false for the non-tree edges.- Parameters:
weightAttribute
- attribute used to compare edgesflagAttribute
- attribute used to set if an edge is in the spanning tree
-
Kruskal
Create a new Kruskal's algorithm. Uses the default weight attribute.- Parameters:
flagAttribute
- attribute used to set if an edge is in the spanning treeflagOn
- value of the flagAttribute if edge is in the spanning treeflagOff
- value of the flagAttribute if edge is not in the spanning tree
-
Kruskal
Create a new Kruskal's algorithm.- Parameters:
weightAttribute
- attribute used to compare edgesflagAttribute
- attribute used to set if an edge is in the spanning treeflagOn
- value of the flagAttribute if edge is in the spanning treeflagOff
- value of the flagAttribute if edge is not in the spanning tree
-
-
Method Details
-
getWeightAttribute
Get weight attribute used to compare edges.- Returns:
- weight attribute
-
setWeightAttribute
Set the weight attribute.- Parameters:
newWeightAttribute
- new attribute used
-
getTreeEdgesStream
Description copied from interface:SpanningTree
An iterator on the tree edges.- Specified by:
getTreeEdgesStream
in interfaceSpanningTree
- Specified by:
getTreeEdgesStream
in classAbstractSpanningTree
- Returns:
- An iterator on the tree edges
-
clear
public void clear()Description copied from interface:SpanningTree
Removes the tags of all edges. Use this method to save memory if the spanning tree is used no more.- Specified by:
clear
in interfaceSpanningTree
- Overrides:
clear
in classAbstractSpanningTree
-
getTreeWeight
public double getTreeWeight()Returns the total weight of the minimum spanning tree- Returns:
- The sum of the weights of the edges in the spanning tree
-
defaultResult
-