Package org.nd4j.linalg.api.blas
Interface Level2
-
- All Known Implementing Classes:
BaseLevel2
public interface Level2
-
-
Method Summary
All Methods Instance Methods Abstract Methods Modifier and Type Method Description void
gbmv(char order, char TransA, int KL, int KU, double alpha, INDArray A, INDArray X, double beta, INDArray Y)
gbmv computes a matrix-vector product using a general band matrix and performs one of the following matrix-vector operations: y := alpha*a*x + beta*y for trans = 'N'or'n'; y := alpha*a'*x + beta*y for trans = 'T'or't'; y := alpha*conjg(a')*x + beta*y for trans = 'C'or'c'.void
gemv(char order, char transA, double alpha, INDArray A, INDArray X, double beta, INDArray Y)
gemv computes a matrix-vector product using a general matrix and performs one of the following matrix-vector operations: y := alpha*a*x + beta*y for trans = 'N'or'n'; y := alpha*a'*x + beta*y for trans = 'T'or't'; y := alpha*conjg(a')*x + beta*y for trans = 'C'or'c'.void
ger(char order, double alpha, INDArray X, INDArray Y, INDArray A)
performs a rank-1 update of a general m-by-n matrix a: a := alpha*x*y' + a.void
sbmv(char order, char Uplo, double alpha, INDArray A, INDArray X, double beta, INDArray Y)
sbmv computes a matrix-vector product using a symmetric band matrix: y := alpha*a*x + beta*y.void
spmv(char order, char Uplo, double alpha, INDArray Ap, INDArray X, double beta, INDArray Y)
void
spr(char order, char Uplo, double alpha, INDArray X, INDArray Ap)
spr performs a rank-1 update of an n-by-n packed symmetric matrix a: a := alpha*x*x' + a.void
spr2(char order, char Uplo, double alpha, INDArray X, INDArray Y, INDArray A)
?spr2 performs a rank-2 update of an n-by-n packed symmetric matrix a: a := alpha*x*y' + alpha*y*x' + a.void
symv(char order, char Uplo, double alpha, INDArray A, INDArray X, double beta, INDArray Y)
symv computes a matrix-vector product for a symmetric matrix: y := alpha*a*x + beta*y.void
syr(char order, char Uplo, int N, double alpha, INDArray X, INDArray A)
syr performs a rank-1 update of an n-by-n symmetric matrix a: a := alpha*x*x' + a.void
syr2(char order, char Uplo, double alpha, INDArray X, INDArray Y, INDArray A)
void
tbmv(char order, char Uplo, char TransA, char Diag, INDArray A, INDArray X)
syr2 performs a rank-2 update of an n-by-n symmetric matrix a: a := alpha*x*y' + alpha*y*x' + a.void
tbsv(char order, char Uplo, char TransA, char Diag, INDArray A, INDArray X)
?tbsv solves a system of linear equations whose coefficients are in a triangular band matrix.void
tpmv(char order, char Uplo, char TransA, char Diag, INDArray Ap, INDArray X)
tpmv computes a matrix-vector product using a triangular packed matrix.void
tpsv(char order, char Uplo, char TransA, char Diag, INDArray Ap, INDArray X)
tpsv solves a system of linear equations whose coefficients are in a triangular packed matrix.void
trmv(char order, char Uplo, char TransA, char Diag, INDArray A, INDArray X)
trmv computes a matrix-vector product using a triangular matrix.void
trsv(char order, char Uplo, char TransA, char Diag, INDArray A, INDArray X)
trsv solves a system of linear equations whose coefficients are in a triangular matrix.
-
-
-
Method Detail
-
gemv
void gemv(char order, char transA, double alpha, INDArray A, INDArray X, double beta, INDArray Y)
gemv computes a matrix-vector product using a general matrix and performs one of the following matrix-vector operations: y := alpha*a*x + beta*y for trans = 'N'or'n'; y := alpha*a'*x + beta*y for trans = 'T'or't'; y := alpha*conjg(a')*x + beta*y for trans = 'C'or'c'. Here a is an m-by-n band matrix, x and y are vectors, alpha and beta are scalars.- Parameters:
order
-transA
-alpha
-A
-X
-beta
-Y
-
-
gbmv
void gbmv(char order, char TransA, int KL, int KU, double alpha, INDArray A, INDArray X, double beta, INDArray Y)
gbmv computes a matrix-vector product using a general band matrix and performs one of the following matrix-vector operations: y := alpha*a*x + beta*y for trans = 'N'or'n'; y := alpha*a'*x + beta*y for trans = 'T'or't'; y := alpha*conjg(a')*x + beta*y for trans = 'C'or'c'. Here a is an m-by-n band matrix with ku superdiagonals and kl subdiagonals, x and y are vectors, alpha and beta are scalars.- Parameters:
order
-TransA
-KL
-KU
-alpha
-A
-X
-beta
-Y
-
-
ger
void ger(char order, double alpha, INDArray X, INDArray Y, INDArray A)
performs a rank-1 update of a general m-by-n matrix a: a := alpha*x*y' + a.- Parameters:
order
-alpha
-X
-Y
-A
-
-
sbmv
void sbmv(char order, char Uplo, double alpha, INDArray A, INDArray X, double beta, INDArray Y)
sbmv computes a matrix-vector product using a symmetric band matrix: y := alpha*a*x + beta*y. Here a is an n-by-n symmetric band matrix with k superdiagonals, x and y are n-element vectors, alpha and beta are scalars.- Parameters:
order
-Uplo
-alpha
-A
-X
-beta
-Y
-
-
spmv
void spmv(char order, char Uplo, double alpha, INDArray Ap, INDArray X, double beta, INDArray Y)
- Parameters:
order
-Uplo
-alpha
-Ap
-X
-beta
-Y
-
-
spr
void spr(char order, char Uplo, double alpha, INDArray X, INDArray Ap)
spr performs a rank-1 update of an n-by-n packed symmetric matrix a: a := alpha*x*x' + a.- Parameters:
order
-Uplo
-alpha
-X
-Ap
-
-
spr2
void spr2(char order, char Uplo, double alpha, INDArray X, INDArray Y, INDArray A)
?spr2 performs a rank-2 update of an n-by-n packed symmetric matrix a: a := alpha*x*y' + alpha*y*x' + a.- Parameters:
order
-Uplo
-alpha
-X
-Y
-A
-
-
symv
void symv(char order, char Uplo, double alpha, INDArray A, INDArray X, double beta, INDArray Y)
symv computes a matrix-vector product for a symmetric matrix: y := alpha*a*x + beta*y. Here a is an n-by-n symmetric matrix; x and y are n-element vectors, alpha and beta are scalars.- Parameters:
order
-Uplo
-alpha
-A
-X
-beta
-Y
-
-
syr
void syr(char order, char Uplo, int N, double alpha, INDArray X, INDArray A)
syr performs a rank-1 update of an n-by-n symmetric matrix a: a := alpha*x*x' + a.- Parameters:
order
-Uplo
-N
-alpha
-X
-A
-
-
syr2
void syr2(char order, char Uplo, double alpha, INDArray X, INDArray Y, INDArray A)
- Parameters:
order
-Uplo
-alpha
-X
-Y
-A
-
-
tbmv
void tbmv(char order, char Uplo, char TransA, char Diag, INDArray A, INDArray X)
syr2 performs a rank-2 update of an n-by-n symmetric matrix a: a := alpha*x*y' + alpha*y*x' + a.- Parameters:
order
-Uplo
-TransA
-Diag
-A
-X
-
-
tbsv
void tbsv(char order, char Uplo, char TransA, char Diag, INDArray A, INDArray X)
?tbsv solves a system of linear equations whose coefficients are in a triangular band matrix.- Parameters:
order
-Uplo
-TransA
-Diag
-A
-X
-
-
tpmv
void tpmv(char order, char Uplo, char TransA, char Diag, INDArray Ap, INDArray X)
tpmv computes a matrix-vector product using a triangular packed matrix.- Parameters:
order
-Uplo
-TransA
-Diag
-Ap
-X
-
-
tpsv
void tpsv(char order, char Uplo, char TransA, char Diag, INDArray Ap, INDArray X)
tpsv solves a system of linear equations whose coefficients are in a triangular packed matrix.- Parameters:
order
-Uplo
-TransA
-Diag
-Ap
-X
-
-
trmv
void trmv(char order, char Uplo, char TransA, char Diag, INDArray A, INDArray X)
trmv computes a matrix-vector product using a triangular matrix.- Parameters:
order
-Uplo
-TransA
-Diag
-A
-X
-
-
-