Uses of Interface
org.nd4j.linalg.api.ndarray.INDArray
-
-
Uses of INDArray in org.nd4j
Methods in org.nd4j that return types with arguments of type INDArray Modifier and Type Method Description Map<String,INDArray>
TFGraphRunnerService. run(Map<String,INDArray> inputs)
Method parameters in org.nd4j with type arguments of type INDArray Modifier and Type Method Description TFGraphRunnerService
TFGraphRunnerService. init(List<String> inputNames, List<String> outputNames, byte[] graphBytes, Map<String,INDArray> constants, Map<String,String> inputDataTypes)
Map<String,INDArray>
TFGraphRunnerService. run(Map<String,INDArray> inputs)
-
Uses of INDArray in org.nd4j.adapters
Methods in org.nd4j.adapters with parameters of type INDArray Modifier and Type Method Description T
OutputAdapter. apply(INDArray... outputs)
This method provides conversion from multiple INDArrays to T -
Uses of INDArray in org.nd4j.autodiff.execution.input
Methods in org.nd4j.autodiff.execution.input that return INDArray Modifier and Type Method Description INDArray[]
Operands. asArray()
This method return operands as array, in order of additionINDArray
Operands. getById(int id)
This method returns array identified its numeric idINDArray
Operands. getById(int id, int index)
This method returns array identified its numeric id and indexINDArray
Operands. getById(@NonNull String name)
This method returns array identified its nameMethods in org.nd4j.autodiff.execution.input that return types with arguments of type INDArray Modifier and Type Method Description Collection<Pair<Operands.NodeDescriptor,INDArray>>
Operands. asCollection()
This method returns contents of this entity as collection of key->value pairsMethods in org.nd4j.autodiff.execution.input with parameters of type INDArray Modifier and Type Method Description Operands
Operands. addArgument(int id, int index, @NonNull INDArray array)
This method allows to pass array to multi-output node in the graphOperands
Operands. addArgument(int id, @NonNull INDArray array)
This method allows to pass array to the node identified by numeric idOperands
Operands. addArgument(@NonNull String id, @NonNull INDArray array)
This method allows to pass array to the node identified by its nameOperands
Operands. addArgument(String name, int id, int index, @NonNull INDArray array)
This method allows to pass array to multi-output node in the graph -
Uses of INDArray in org.nd4j.autodiff.functions
Fields in org.nd4j.autodiff.functions declared as INDArray Modifier and Type Field Description protected INDArray
DifferentialFunction. scalarValue
Methods in org.nd4j.autodiff.functions that return INDArray Modifier and Type Method Description INDArray
DifferentialFunction. getInputArgument(int index)
-
Uses of INDArray in org.nd4j.autodiff.listeners
Methods in org.nd4j.autodiff.listeners with parameters of type INDArray Modifier and Type Method Description void
BaseEvaluationListener. activationAvailable(SameDiff sd, At at, MultiDataSet batch, SameDiffOp op, String varName, INDArray activation)
void
BaseListener. activationAvailable(SameDiff sd, At at, MultiDataSet batch, SameDiffOp op, String varName, INDArray activation)
void
Listener. activationAvailable(SameDiff sd, At at, MultiDataSet batch, SameDiffOp op, String varName, INDArray activation)
Called when any activation becomes available.void
BaseEvaluationListener. activationAvailableEvaluations(SameDiff sd, At at, MultiDataSet batch, SameDiffOp op, String varName, INDArray activation)
void
BaseListener. opExecution(SameDiff sd, At at, MultiDataSet batch, SameDiffOp op, OpContext opContext, INDArray[] outputs)
void
Listener. opExecution(SameDiff sd, At at, MultiDataSet batch, SameDiffOp op, OpContext opContext, INDArray[] outputs)
Called at the end of each operation executionvoid
BaseListener. preUpdate(SameDiff sd, At at, Variable v, INDArray update)
void
Listener. preUpdate(SameDiff sd, At at, Variable v, INDArray update)
Called just before each parameter is to be updated - i.e., just before each parameter is modified. -
Uses of INDArray in org.nd4j.autodiff.listeners.debugging
Methods in org.nd4j.autodiff.listeners.debugging with parameters of type INDArray Modifier and Type Method Description void
ArraySavingListener. opExecution(SameDiff sd, At at, MultiDataSet batch, SameDiffOp op, OpContext opContext, INDArray[] outputs)
void
ControlflowListener. opExecution(SameDiff sd, At at, MultiDataSet batch, SameDiffOp op, OpContext opContext, INDArray[] outputs)
void
OpBenchmarkListener. opExecution(SameDiff sd, At at, MultiDataSet batch, SameDiffOp op, OpContext opContext, INDArray[] outputs)
-
Uses of INDArray in org.nd4j.autodiff.listeners.impl
Methods in org.nd4j.autodiff.listeners.impl with parameters of type INDArray Modifier and Type Method Description void
UIListener. opExecution(SameDiff sd, At at, MultiDataSet batch, SameDiffOp op, OpContext opContext, INDArray[] outputs)
void
UIListener. preUpdate(SameDiff sd, At at, Variable v, INDArray update)
-
Uses of INDArray in org.nd4j.autodiff.listeners.profiler
Methods in org.nd4j.autodiff.listeners.profiler with parameters of type INDArray Modifier and Type Method Description void
ProfilingListener. opExecution(SameDiff sd, At at, MultiDataSet batch, SameDiffOp op, OpContext opContext, INDArray[] outputs)
-
Uses of INDArray in org.nd4j.autodiff.listeners.records
Constructors in org.nd4j.autodiff.listeners.records with parameters of type INDArray Constructor Description LossCurve(INDArray lossValues, List<String> lossNames)
-
Uses of INDArray in org.nd4j.autodiff.samediff
Methods in org.nd4j.autodiff.samediff that return INDArray Modifier and Type Method Description INDArray
SDVariable. eval()
Evaluate the result of this variableINDArray
SDVariable. eval(Map<String,INDArray> placeholders)
Evaluate the result of this variableINDArray
SDVariable. getArr()
A getter for the allocated ndarray with thisSDVariable
.INDArray
SDVariable. getArr(boolean enforceExistence)
A getter for the allocated ndarray with thisSDVariable
.INDArray
ArrayHolder. getArray(String name)
INDArray
SameDiff. getArrForVarName(@NonNull String varName)
Get anINDArray
for a given vertex id, or null if none existsINDArray
SameDiff. getEagerArrForVarName(@NonNull String varName)
Note this is a special getter for the eager holder.INDArray
SameDiff. itemForSequence(String varName, int atIndex)
Get theINDArray
at a particular sequence.INDArray
SameDiff. outputSingle(Map<String,INDArray> placeholders, String output)
Do inference for a single variable for a single batch.INDArray
ArrayHolder. removeArray(String name)
Remove the array from the ArrayHolder, returning it (if it exists)Methods in org.nd4j.autodiff.samediff that return types with arguments of type INDArray Modifier and Type Method Description Map<String,INDArray>
SameDiff. calculateGradients(Map<String,INDArray> placeholderVals, @NonNull String... variables)
Map<String,INDArray>
SameDiff. calculateGradients(Map<String,INDArray> placeholderVals, @NonNull Collection<String> variables)
Calculate and return the gradients for the specified variablesMap<String,INDArray>
SameDiff. output(@NonNull DataSetIterator dataSet, @NonNull String... outputs)
Map<String,INDArray>
SameDiff. output(@NonNull DataSetIterator iterator, @NonNull List<Listener> listeners, @NonNull String... outputs)
Do inference on a network with a single input.
For example, if the variable to infer was called "softmax" you would use:Map<String,INDArray>
SameDiff. output(@NonNull MultiDataSetIterator dataSet, @NonNull String... outputs)
Map<String,INDArray>
SameDiff. output(@NonNull MultiDataSetIterator iterator, @NonNull List<Listener> listeners, @NonNull String... outputs)
Perform inference.
Example: classifier inference
Predictions variable name: "softmaxOutput"
Evaluations to perform:Evaluation
Data: single output MultiDataSets
Code:Map<String,INDArray>
SameDiff. output(@NonNull MultiDataSet dataSet, @NonNull String... outputs)
Do a single batch inference on a network.
For example, if the variable to infer was called "softmax" you would use:Map<String,INDArray>
SameDiff. output(@NonNull DataSet dataSet, @NonNull String... outputs)
Do a single batch inference on a network with a single input.
For example, if the variable to infer was called "softmax" you would use:Map<String,INDArray>
SameDiff. output(Map<String,INDArray> placeholders, @NonNull List<String> outputs)
Do inference for the given variables for a single batch.Map<String,INDArray>
SameDiff. output(Map<String,INDArray> placeholders, String... outputs)
Do inference for the given variables for a single batch.Map<String,INDArray>
SameDiff. output(Map<String,INDArray> placeholders, List<Listener> listeners, String... outputs)
Do inference for the given variables for a single batch.Map<String,INDArray>
SameDiff. outputAll(Map<String,INDArray> placeholders)
Do inference for all variables for a single batch.List<Map<String,INDArray>>
SameDiff. outputBatches(DataSetIterator iterator, String... outputs)
SeeSameDiff.output(DataSetIterator, String...)
, but without the concatenation of batches.List<Map<String,INDArray>>
SameDiff. outputBatches(DataSetIterator iterator, List<Listener> listeners, String... outputs)
SeeSameDiff.output(DataSetIterator, List, String...)
, but without the concatenation of batches.List<Map<String,INDArray>>
SameDiff. outputBatches(MultiDataSetIterator iterator, String... outputs)
List<Map<String,INDArray>>
SameDiff. outputBatches(MultiDataSetIterator iterator, List<Listener> listeners, String... outputs)
Perform inference.
Example: classifier inference
Predictions variable name: "softmaxOutput"
Evaluations to perform:Evaluation
Data: single output MultiDataSets
Code:Methods in org.nd4j.autodiff.samediff with parameters of type INDArray Modifier and Type Method Description void
SameDiff. addItemToSequence(String varName, INDArray item, int atIndex)
Add an item to the sequencevoid
SameDiff. assignArray(@NonNull INDArray arr, @NonNull SDVariable variable)
Update the constant or variable type SDVariable with the values from the specified array.void
SameDiff. associateArrayWithVariable(INDArray arr, @NonNull String variable)
Associate the array with the given variable.void
SameDiff. associateArrayWithVariable(INDArray arr, SDVariable variable)
Associate the array with the given variable.SDVariable
SameDiff. constant(@NonNull INDArray constant)
Create an SDVariable with a fixed/constant value, with a generated name
Constants are not modified by training/backprop.SDVariable
SameDiff. constant(String name, @NonNull INDArray constant)
Create an SDVariable with a fixed/constant value
Constants are not modified by training/backprop.SDVariable
SameDiff. createSequence(String name, INDArray[] arrays)
Creates a sequence variable based on the input arrays.SDVariable
SameDiff. createSequence(INDArray[] arrays)
Create a new sequence variable usingSameDiff.createSequence(String, INDArray[])
void
ArrayHolder. setArray(String name, INDArray array)
Set the array for the specified name (new array, or replace if it already exists)SDVariable
SDVariable. setArray(INDArray array)
Associate the specified array with this variablevoid
SameDiff. setArrayForVariable(@NonNull String varName, @NonNull INDArray arr)
Set the storedINDArray
for a variable.void
SameDiff. setEagerArrForVarName(@NonNull String varName, INDArray arr)
Sets an array for the given variable name in the eager session.void
SameDiff. setItemForSequenceAtIndex(String varName, INDArray item, int index)
Sets the item at the particular index in the sequence to the passed in item.SDVariable
SameDiff. var(String name, @NonNull INDArray arr)
Create anSDVariable
with the specified name, and associate the specified array with it
This is a VARIABLE type SDVariable - i.e., must be floating point, and is a trainable parameter.SDVariable
SameDiff. var(INDArray arr)
Create anSDVariable
with a generated name, and assocate the specified array with it.
This is a VARIABLE type SDVariable - i.e., must be floating point, and is a trainable parameter.Method parameters in org.nd4j.autodiff.samediff with type arguments of type INDArray Modifier and Type Method Description protected ExecutionResult
SameDiff. batchOutputHelper(Map<String,INDArray> placeholders, List<Listener> listeners, Operation operation, String... outputs)
protected ExecutionResult
SameDiff. batchOutputHelper(Map<String,INDArray> placeholders, Map<String,SDValue> otherPlaceholders, List<Listener> listeners, Operation operation, String... outputs)
Map<String,INDArray>
SameDiff. calculateGradients(Map<String,INDArray> placeholderVals, @NonNull String... variables)
Map<String,INDArray>
SameDiff. calculateGradients(Map<String,INDArray> placeholderVals, @NonNull Collection<String> variables)
Calculate and return the gradients for the specified variablesOutAndGrad
SameDiff. calculateGradientsAndOutputs(Map<String,INDArray> placeholderVals, Collection<String> outputVars, Collection<String> gradientVars)
Calculate the activations and the gradients for the specified variables, in one execution call.SDVariable[]
SameDiffFunctionDefinition. define(SameDiff sameDiff, Map<String,INDArray> inputs, SDVariable[] variableInputs)
void
SameDiff. defineFunction(String function, SameDiffFunctionDefinition functionDefinition, Map<String,INDArray> inputs)
protected ExecutionResult
SameDiff. directExecHelper(Map<String,INDArray> placeholders, Map<String,SDValue> otherPlaceHolders, At at, MultiDataSet batch, Collection<String> requiredActivations, List<Listener> activeListeners, String... outputs)
Do inference for the given variables for a single batch, with training informationprotected ExecutionResult
SameDiff. directExecHelper(Map<String,INDArray> placeholders, At at, MultiDataSet batch, Collection<String> requiredActivations, List<Listener> activeListeners, String... outputs)
Do inference for the given variables for a single batch, with training informationINDArray
SDVariable. eval(Map<String,INDArray> placeholders)
Evaluate the result of this variableMap<String,INDArray>
SameDiff. output(Map<String,INDArray> placeholders, @NonNull List<String> outputs)
Do inference for the given variables for a single batch.Map<String,INDArray>
SameDiff. output(Map<String,INDArray> placeholders, String... outputs)
Do inference for the given variables for a single batch.Map<String,INDArray>
SameDiff. output(Map<String,INDArray> placeholders, List<Listener> listeners, String... outputs)
Do inference for the given variables for a single batch.ExecutionResult
SameDiff. output(Map<String,INDArray> placeholders, Map<String,SDValue> sequencePlaceHolders, List<Listener> listeners, String... outputs)
Do inference for the given variables for a single batch.Map<String,INDArray>
SameDiff. outputAll(Map<String,INDArray> placeholders)
Do inference for all variables for a single batch.INDArray
SameDiff. outputSingle(Map<String,INDArray> placeholders, String output)
Do inference for a single variable for a single batch. -
Uses of INDArray in org.nd4j.autodiff.samediff.array
Methods in org.nd4j.autodiff.samediff.array that return INDArray Modifier and Type Method Description INDArray
OptimizedGraphArrayHolder. getArray(String name)
INDArray
SingleThreadArrayHolder. getArray(@NonNull String name)
INDArray
ThreadSafeArrayHolder. getArray(@NonNull String name)
INDArray
OptimizedGraphArrayHolder. removeArray(String name)
INDArray
SingleThreadArrayHolder. removeArray(@NonNull String name)
INDArray
ThreadSafeArrayHolder. removeArray(@NonNull String name)
Methods in org.nd4j.autodiff.samediff.array with parameters of type INDArray Modifier and Type Method Description void
OptimizedGraphArrayHolder. setArray(String name, INDArray array)
void
SingleThreadArrayHolder. setArray(@NonNull String name, @NonNull INDArray array)
void
ThreadSafeArrayHolder. setArray(@NonNull String name, @NonNull INDArray array)
Method parameters in org.nd4j.autodiff.samediff.array with type arguments of type INDArray Modifier and Type Method Description void
OptimizedGraphArrayHolder. setFunction(String name, Supplier<INDArray> fn)
-
Uses of INDArray in org.nd4j.autodiff.samediff.config
Methods in org.nd4j.autodiff.samediff.config that return INDArray Modifier and Type Method Description INDArray
BatchOutputConfig. execSingle()
Deprecated.INDArray
OutputConfig. execSingle()
Do inference and return the results for the single output variable specified.INDArray
SDValue. getTensorValue()
Return anINDArray
if the value type isSDValueType.LIST
and the number of elements is 1 otherwise return theSDValue.tensorValue
INDArray
BatchOutputConfig. outputSingle()
Do inference and return the results for the single output Only works if exactly one output is specifiedINDArray[]
ExecutionResult. outputsToArray(List<String> inputs)
INDArray
ExecutionResult. resultAt(int index)
INDArray
ExecutionResult. resultOrValueAt(int index, boolean returnDummy)
Methods in org.nd4j.autodiff.samediff.config that return types with arguments of type INDArray Modifier and Type Method Description Map<String,INDArray>
BatchOutputConfig. exec()
Deprecated.Map<String,INDArray>
OutputConfig. exec()
Do inference and return the results.List<Map<String,INDArray>>
OutputConfig. execBatches()
Do inference and return the results in batches.List<INDArray>
OutputConfig. execSingleBatches()
Do inference and return the results (in batches) for the single output variable specified.Collection<INDArray>
SDValue. getCollection()
List<INDArray>
SDValue. getListValue()
Return anINDArray
if the value type isSDValueType.TENSOR
else return the list typeMap<String,INDArray>
BatchOutputConfig. output()
Do inference and return the resultsstatic Map<String,Optional<INDArray>>
ExecutionResult. pack(Map<String,INDArray> result)
static Map<String,INDArray>
ExecutionResult. unpack(Map<String,Optional<INDArray>> result)
Methods in org.nd4j.autodiff.samediff.config with parameters of type INDArray Modifier and Type Method Description static SDValue
SDValue. create(INDArray inputValue)
Wrap anINDArray
in a tensor with anSDValueType.TENSOR
typestatic ExecutionResult
ExecutionResult. createFrom(String name, INDArray input)
static ExecutionResult
ExecutionResult. createFrom(List<String> names, INDArray[] input)
BatchOutputConfig
BatchOutputConfig. input(@NonNull String variable, @NonNull INDArray placeholder)
Add a placeholder value for a specified variableBatchOutputConfig
BatchOutputConfig. input(@NonNull SDVariable variable, @NonNull INDArray placeholder)
Method parameters in org.nd4j.autodiff.samediff.config with type arguments of type INDArray Modifier and Type Method Description static SDValue
SDValue. create(Collection<INDArray> inputValue)
Wrap anINDArray
in a value with anSDValueType.LIST
typestatic SDValue
SDValue. create(List<INDArray> inputValue)
Wrap anINDArray
in a value with anSDValueType.LIST
typestatic SDValue
SDValue. create(Map<String,INDArray> inputValue)
Wrap an {@link Map} in a value with an SDValueType.DICT
typeBatchOutputConfig
BatchOutputConfig. inputs(Map<String,INDArray> placeholders)
CallsBatchOutputConfig.input(String, INDArray)
on each entry in the map.static Map<String,Optional<INDArray>>
ExecutionResult. pack(Map<String,INDArray> result)
static Map<String,INDArray>
ExecutionResult. unpack(Map<String,Optional<INDArray>> result)
-
Uses of INDArray in org.nd4j.autodiff.samediff.internal
Methods in org.nd4j.autodiff.samediff.internal that return INDArray Modifier and Type Method Description INDArray
SessionMemMgr. allocate(boolean detached, DataType dataType, long... shape)
Allocate an array with the specified datatype and shape.
NOTE: This array should be assumed to be uninitialized - i.e., contains random values.INDArray
SessionMemMgr. allocate(boolean detached, LongShapeDescriptor descriptor)
As perSessionMemMgr.allocate(boolean, DataType, long...)
but from a LongShapeDescriptor insteadINDArray
SessionMemMgr. dup(INDArray arr)
Duplicate the specified array, to an array that is managed/allocated by the session memory managerprotected INDArray
InferenceSession. getArray(SDVariable sdv, Collection<AbstractSession.VarId> opInputs, Collection<AbstractSession.VarId> allIterInputs)
INDArray
InferenceSession. getConstantOrVariable(String variableName)
protected INDArray
AbstractSession. getTensorFromOutputs(AbstractSession.VarId varId)
INDArray
SessionMemMgr. ulike(INDArray arr)
Allocate an uninitialized array with the same datatype and shape as the specified arrayMethods in org.nd4j.autodiff.samediff.internal that return types with arguments of type INDArray Modifier and Type Method Description List<INDArray>
AbstractSession. getTensorArraysInSession(String name)
Get theINDArray
associated with the given variable nameList<INDArray>
AbstractSession. getTensorArraysInSession(String name, String frame, int iteration, FrameIter parentFrame)
Get theINDArray
associated with the given variable nameprotected Map<String,INDArray>
InferenceSession. postProcessOutput(Map<String,INDArray> output)
protected Map<String,INDArray>
InferenceSession. preprocessPlaceholders(Map<String,INDArray> placeholders, At at)
Methods in org.nd4j.autodiff.samediff.internal with parameters of type INDArray Modifier and Type Method Description INDArray
SessionMemMgr. dup(INDArray arr)
Duplicate the specified array, to an array that is managed/allocated by the session memory managervoid
SessionMemMgr. release(INDArray array)
Release the array.protected void
AbstractSession. setArrayAtIndex(List<INDArray> l, int i, INDArray sub)
INDArray
SessionMemMgr. ulike(INDArray arr)
Allocate an uninitialized array with the same datatype and shape as the specified arrayMethod parameters in org.nd4j.autodiff.samediff.internal with type arguments of type INDArray Modifier and Type Method Description Pair<SameDiffOp,OpContext>
InferenceSession. getAndParameterizeOp(String opName, FrameIter frameIter, Set<AbstractSession.VarId> opInputs, Set<AbstractSession.VarId> allIterInputs, Set<String> constAndPhInputs, Map<String,INDArray> placeholderValues, Set<String> allReqVariables, Map<String,SDValue> otherPlaceholders)
protected Map<String,INDArray>
InferenceSession. postProcessOutput(Map<String,INDArray> output)
protected Map<String,INDArray>
InferenceSession. preprocessPlaceholders(Map<String,INDArray> placeholders, At at)
protected void
AbstractSession. setArrayAtIndex(List<INDArray> l, int i, INDArray sub)
Loss
TrainingSession. trainingIteration(TrainingConfig config, Map<String,INDArray> placeholders, Set<String> paramsToTrain, Map<String,GradientUpdater> updaters, MultiDataSet batch, List<String> lossVariables, List<Listener> listeners, At at)
Perform one iteration of training - i.e., do forward and backward passes, and update the parameters -
Uses of INDArray in org.nd4j.autodiff.samediff.internal.memory
Classes in org.nd4j.autodiff.samediff.internal.memory with type parameters of type INDArray Modifier and Type Class Description class
DependencyMap<K extends IDependeeGroup<INDArray>,V>
Methods in org.nd4j.autodiff.samediff.internal.memory that return INDArray Modifier and Type Method Description INDArray
ArrayCacheMemoryMgr. allocate(boolean detached, DataType dataType, long... shape)
INDArray
ArrayCacheMemoryMgr. allocate(boolean detached, LongShapeDescriptor descriptor)
INDArray
NoOpMemoryMgr. allocate(boolean detached, DataType dataType, long... shape)
INDArray
NoOpMemoryMgr. allocate(boolean detached, LongShapeDescriptor descriptor)
INDArray
AbstractMemoryMgr. dup(@NonNull INDArray arr)
INDArray
AbstractMemoryMgr. ulike(@NonNull INDArray arr)
Methods in org.nd4j.autodiff.samediff.internal.memory with parameters of type INDArray Modifier and Type Method Description INDArray
AbstractMemoryMgr. dup(@NonNull INDArray arr)
void
ArrayCacheMemoryMgr. release(@NonNull INDArray array)
void
NoOpMemoryMgr. release(@NonNull INDArray array)
INDArray
AbstractMemoryMgr. ulike(@NonNull INDArray arr)
-
Uses of INDArray in org.nd4j.autodiff.samediff.optimize
Method parameters in org.nd4j.autodiff.samediff.optimize with type arguments of type INDArray Modifier and Type Method Description OptimizationHelper
OptimizationHelper. arrayRecoveryFunction(String arrayName, Supplier<INDArray> fn)
-
Uses of INDArray in org.nd4j.autodiff.util
Methods in org.nd4j.autodiff.util that return types with arguments of type INDArray Modifier and Type Method Description static List<INDArray>
SameDiffUtils. getSingleOutput(List<Map<String,INDArray>> outputs, String output)
Get a list of batch outputs for a single variable from a list of batch outputs for all variablesstatic List<INDArray>
TrainingUtils. getSingleOutput(List<Map<String,INDArray>> outputs, String output)
Get a list of batch outputs for a single variable from a list of batch outputs for all variablesstatic Map<String,INDArray>
SameDiffUtils. stackOutputs(List<ExecutionResult> outputs)
Stack batch outputs, like an output fromSameDiff.output(MultiDataSetIterator, String...)
static Map<String,INDArray>
TrainingUtils. stackOutputs(List<Map<String,INDArray>> outputs)
Stack batch outputs, like an output fromSameDiff.output(MultiDataSetIterator, String...)
Method parameters in org.nd4j.autodiff.util with type arguments of type INDArray Modifier and Type Method Description static ExternalErrorsFunction
SameDiffUtils. externalErrors(SameDiff sameDiff, Map<String,INDArray> externalGradients, SDVariable... inputs)
static List<INDArray>
SameDiffUtils. getSingleOutput(List<Map<String,INDArray>> outputs, String output)
Get a list of batch outputs for a single variable from a list of batch outputs for all variablesstatic List<INDArray>
TrainingUtils. getSingleOutput(List<Map<String,INDArray>> outputs, String output)
Get a list of batch outputs for a single variable from a list of batch outputs for all variablesstatic Map<String,INDArray>
TrainingUtils. stackOutputs(List<Map<String,INDArray>> outputs)
Stack batch outputs, like an output fromSameDiff.output(MultiDataSetIterator, String...)
-
Uses of INDArray in org.nd4j.autodiff.validation
Methods in org.nd4j.autodiff.validation that return types with arguments of type INDArray Modifier and Type Method Description Map<String,INDArray>
TestCase. gradCheckMask()
Methods in org.nd4j.autodiff.validation with parameters of type INDArray Modifier and Type Method Description TestCase
TestCase. expected(@NonNull String name, @NonNull INDArray output)
Validate the output (forward pass) for a single variable using INDArray.equals(INDArray)TestCase
TestCase. expected(@NonNull SDVariable var, @NonNull INDArray output)
Validate the output (forward pass) for a single variable using INDArray.equals(INDArray)OpTestCase
OpTestCase. expectedOutput(int outputNum, INDArray expected)
Validate the op output using INDArray.equals(INDArray)OpTestCase
OpTestCase. expectedOutput(int outputNum, INDArray expected, double eps)
Validate the op output using INDArray.equals(INDArray)TestCase
TestCase. expectedOutput(@NonNull String name, @NonNull INDArray expected)
Validate the output (forward pass) for a single variable using INDArray.equals(INDArray)TestCase
TestCase. expectedOutput(@NonNull String name, @NonNull INDArray expected, double eps)
Validate the output (forward pass) for a single variable using INDArray.equals(INDArray)OpTestCase
OpTestCase. expectedOutputRelError(int outputNum, @NonNull INDArray expected, double maxRelError, double minAbsError)
Validate the output for a single variable using element-wise relative error: relError = abs(x-y)/(abs(x)+abs(y)), with x=y=0 case defined to be 0.0.TestCase
TestCase. expectedOutputRelError(@NonNull String name, @NonNull INDArray expected, double maxRelError, double minAbsError)
Validate the output (forward pass) for a single variable using element-wise relative error: relError = abs(x-y)/(abs(x)+abs(y)), with x=y=0 case defined to be 0.0.void
ActivationGradientCheckListener. opExecution(SameDiff sd, At at, MultiDataSet batch, SameDiffOp op, OpContext opContext, INDArray[] outputs)
TestCase
TestCase. placeholderValue(String variable, INDArray value)
Method parameters in org.nd4j.autodiff.validation with type arguments of type INDArray Modifier and Type Method Description static boolean
GradCheckUtil. checkGradients(SameDiff sd, Map<String,INDArray> placeholderValues, boolean print, boolean exitOnFirstFailure)
static boolean
GradCheckUtil. checkGradients(SameDiff sd, Map<String,INDArray> placeholderValues, double eps, double maxRelError, double minAbsError, boolean print, boolean exitOnFirstFailure)
static boolean
GradCheckUtil. checkGradients(SameDiff sd, Map<String,INDArray> placeholderValues, double eps, double maxRelError, double minAbsError, boolean print, boolean exitOnFirstFailure, boolean skipValidation, boolean debugMode, Set<String> skipVariables, Map<String,INDArray> gradCheckMask)
static boolean
GradCheckUtil. checkGradients(SameDiff sd, Map<String,INDArray> placeholderValues, double eps, double maxRelError, double minAbsError, boolean print, boolean exitOnFirstFailure, boolean skipValidation, boolean debugMode, Set<String> skipVariables, Map<String,INDArray> gradCheckMask, int maxPerParam, GradCheckUtil.Subset subset)
static boolean
GradCheckUtil. checkGradients(SameDiff sd, Map<String,INDArray> placeholderValues, String... skipVariables)
TestCase
TestCase. expected(String name, Function<INDArray,String> validationFn)
TestCase
TestCase. expected(SDVariable var, Function<INDArray,String> validationFn)
OpTestCase
OpTestCase. expectedOutput(int outputNum, @NonNull LongShapeDescriptor expShape, @NonNull Function<INDArray,String> validationFn)
TestCase
TestCase. placeholderValues(Map<String,INDArray> placeholderValues)
-
Uses of INDArray in org.nd4j.autodiff.validation.functions
Methods in org.nd4j.autodiff.validation.functions with parameters of type INDArray Modifier and Type Method Description String
EqualityFn. apply(INDArray actual)
String
RelErrorFn. apply(INDArray actual)
-
Uses of INDArray in org.nd4j.evaluation
Methods in org.nd4j.evaluation that return INDArray Modifier and Type Method Description static INDArray
EvaluationUtils. reshapeTimeSeriesMaskToVector(INDArray timeSeriesMask)
Reshape time series mask arrays.static INDArray
EvaluationUtils. reshapeTimeSeriesTo2d(INDArray labels)
Methods in org.nd4j.evaluation that return types with arguments of type INDArray Modifier and Type Method Description static Pair<INDArray,INDArray>
EvaluationUtils. extractNonMaskedTimeSteps(INDArray labels, INDArray predicted, INDArray outputMask)
static Pair<INDArray,INDArray>
EvaluationUtils. extractNonMaskedTimeSteps(INDArray labels, INDArray predicted, INDArray outputMask)
static Triple<INDArray,INDArray,INDArray>
BaseEvaluation. reshapeAndExtractNotMasked(INDArray labels, INDArray predictions, INDArray mask, int axis)
static Triple<INDArray,INDArray,INDArray>
BaseEvaluation. reshapeAndExtractNotMasked(INDArray labels, INDArray predictions, INDArray mask, int axis)
static Triple<INDArray,INDArray,INDArray>
BaseEvaluation. reshapeAndExtractNotMasked(INDArray labels, INDArray predictions, INDArray mask, int axis)
Methods in org.nd4j.evaluation with parameters of type INDArray Modifier and Type Method Description void
BaseEvaluation. eval(@NonNull INDArray labels, @NonNull INDArray predictions, List<? extends Serializable> recordMetaData)
void
BaseEvaluation. eval(INDArray labels, INDArray networkPredictions)
void
BaseEvaluation. eval(INDArray labels, INDArray networkPredictions, INDArray maskArray)
void
IEvaluation. eval(INDArray labels, INDArray networkPredictions)
void
IEvaluation. eval(INDArray labels, INDArray networkPredictions, List<? extends Serializable> recordMetaData)
void
IEvaluation. eval(INDArray labels, INDArray networkPredictions, INDArray maskArray)
void
IEvaluation. eval(INDArray labels, INDArray networkPredictions, INDArray maskArray, List<? extends Serializable> recordMetaData)
void
BaseEvaluation. evalTimeSeries(INDArray labels, INDArray predicted)
void
BaseEvaluation. evalTimeSeries(INDArray labels, INDArray predictions, INDArray labelsMask)
void
IEvaluation. evalTimeSeries(INDArray labels, INDArray predicted)
Deprecated.void
IEvaluation. evalTimeSeries(INDArray labels, INDArray predicted, INDArray labelsMaskArray)
Deprecated.static Pair<INDArray,INDArray>
EvaluationUtils. extractNonMaskedTimeSteps(INDArray labels, INDArray predicted, INDArray outputMask)
static Triple<INDArray,INDArray,INDArray>
BaseEvaluation. reshapeAndExtractNotMasked(INDArray labels, INDArray predictions, INDArray mask, int axis)
static INDArray
EvaluationUtils. reshapeTimeSeriesMaskToVector(INDArray timeSeriesMask)
Reshape time series mask arrays.static INDArray
EvaluationUtils. reshapeTimeSeriesTo2d(INDArray labels)
-
Uses of INDArray in org.nd4j.evaluation.classification
Fields in org.nd4j.evaluation.classification declared as INDArray Modifier and Type Field Description protected INDArray
Evaluation. costArray
Methods in org.nd4j.evaluation.classification that return INDArray Modifier and Type Method Description protected INDArray
ROC. getProbAndLabelUsed()
Methods in org.nd4j.evaluation.classification with parameters of type INDArray Modifier and Type Method Description void
Evaluation. eval(INDArray realOutcomes, INDArray guesses)
Collects statistics on the real outcomes vs the guesses.void
Evaluation. eval(INDArray labels, INDArray predictions, INDArray mask, List<? extends Serializable> recordMetaData)
Evaluate the network, with optional metadatavoid
EvaluationBinary. eval(INDArray labels, INDArray networkPredictions)
void
EvaluationBinary. eval(INDArray labelsArr, INDArray predictionsArr, INDArray maskArr)
void
EvaluationBinary. eval(INDArray labels, INDArray networkPredictions, INDArray maskArray, List<? extends Serializable> recordMetaData)
void
EvaluationCalibration. eval(INDArray labels, INDArray networkPredictions)
void
EvaluationCalibration. eval(INDArray labels, INDArray predictions, INDArray mask)
void
EvaluationCalibration. eval(INDArray labels, INDArray networkPredictions, INDArray maskArray, List<? extends Serializable> recordMetaData)
void
ROC. eval(INDArray labels, INDArray predictions, INDArray mask, List<? extends Serializable> recordMetaData)
Evaluate (collect statistics for) the given minibatch of data.void
ROCBinary. eval(INDArray labels, INDArray predictions, INDArray mask, List<? extends Serializable> recordMetaData)
void
ROCMultiClass. eval(INDArray labels, INDArray predictions, INDArray mask, List<? extends Serializable> recordMetaData)
Evaluate the network, with optional metadataConstructors in org.nd4j.evaluation.classification with parameters of type INDArray Constructor Description Evaluation(int axis, Integer binaryPositiveClass, int topN, List<String> labelsList, Double binaryDecisionThreshold, INDArray costArray, int maxWarningClassesToPrint)
Evaluation(List<String> labels, INDArray costArray)
Created evaluation instance with the specified cost array.Evaluation(INDArray costArray)
Created evaluation instance with the specified cost array.EvaluationBinary(int axis, ROCBinary rocBinary, List<String> labels, INDArray decisionThreshold)
EvaluationBinary(INDArray decisionThreshold)
Create an EvaulationBinary instance with an optional decision threshold array. -
Uses of INDArray in org.nd4j.evaluation.custom
Methods in org.nd4j.evaluation.custom with parameters of type INDArray Modifier and Type Method Description void
CustomEvaluation. eval(INDArray labels, INDArray networkPredictions, INDArray maskArray, List<? extends Serializable> recordMetaData)
T
EvaluationLambda. eval(INDArray labels, INDArray networkPredictions, INDArray maskArray, List<? extends Serializable> recordMetaData)
-
Uses of INDArray in org.nd4j.evaluation.regression
Methods in org.nd4j.evaluation.regression with parameters of type INDArray Modifier and Type Method Description void
RegressionEvaluation. eval(INDArray labels, INDArray predictions)
void
RegressionEvaluation. eval(INDArray labelsArr, INDArray predictionsArr, INDArray maskArr)
void
RegressionEvaluation. eval(INDArray labels, INDArray networkPredictions, INDArray maskArray, List<? extends Serializable> recordMetaData)
-
Uses of INDArray in org.nd4j.graph.ui
Methods in org.nd4j.graph.ui with parameters of type INDArray Modifier and Type Method Description long
LogFileWriter. writeHistogramEventCustomBins(String name, LogFileWriter.EventSubtype subtype, long time, int iteration, int epoch, INDArray bins, INDArray y)
long
LogFileWriter. writeHistogramEventDiscrete(@NonNull String name, LogFileWriter.EventSubtype subtype, long time, int iteration, int epoch, List<String> binLabels, @NonNull INDArray y)
long
LogFileWriter. writeHistogramEventEqualSpacing(String name, LogFileWriter.EventSubtype subtype, long time, int iteration, int epoch, double min, double max, INDArray y)
-
Uses of INDArray in org.nd4j.imports.graphmapper.tf
Methods in org.nd4j.imports.graphmapper.tf that return INDArray Modifier and Type Method Description static INDArray
TFGraphMapper. getArrayFrom(NodeDef nodeDef, GraphDef graph)
Deprecated.static INDArray
TFGraphMapper. getNDArrayFromTensor(NodeDef node)
Convert the tensor to an NDArray (if possible and if array is available)static INDArray
TFGraphMapper. mapTensorProto(TensorProto tfTensor)
Convert a TensorProto to an INDArray -
Uses of INDArray in org.nd4j.imports.graphmapper.tf.tensors
Methods in org.nd4j.imports.graphmapper.tf.tensors that return INDArray Modifier and Type Method Description INDArray
TFTensorMapper. arrayFor(long[] shape, J jArr)
INDArray
TFTensorMappers.BFloat16TensorMapper. arrayFor(long[] shape, float[] jArr)
INDArray
TFTensorMappers.BoolTensorMapper. arrayFor(long[] shape, boolean[] jArr)
INDArray
TFTensorMappers.Float16TensorMapper. arrayFor(long[] shape, float[] jArr)
INDArray
TFTensorMappers.Float32TensorMapper. arrayFor(long[] shape, float[] jArr)
INDArray
TFTensorMappers.Float64TensorMapper. arrayFor(long[] shape, double[] jArr)
INDArray
TFTensorMappers.Int16TensorMapper. arrayFor(long[] shape, int[] jArr)
INDArray
TFTensorMappers.Int32TensorMapper. arrayFor(long[] shape, int[] jArr)
INDArray
TFTensorMappers.Int64TensorMapper. arrayFor(long[] shape, long[] jArr)
INDArray
TFTensorMappers.Int8TensorMapper. arrayFor(long[] shape, int[] jArr)
INDArray
TFTensorMappers.StringTensorMapper. arrayFor(long[] shape, String[] jArr)
INDArray
TFTensorMappers.UInt16TensorMapper. arrayFor(long[] shape, int[] jArr)
INDArray
TFTensorMappers.UInt32TensorMapper. arrayFor(long[] shape, long[] jArr)
INDArray
TFTensorMappers.UInt64TensorMapper. arrayFor(long[] shape, long[] jArr)
INDArray
TFTensorMappers.UInt8TensorMapper. arrayFor(long[] shape, int[] jArr)
INDArray
TFTensorMapper. toNDArray()
INDArray
TFTensorMappers.BaseTensorMapper. toNDArray()
-
Uses of INDArray in org.nd4j.linalg.activations
Methods in org.nd4j.linalg.activations that return INDArray Modifier and Type Method Description INDArray
IActivation. getActivation(INDArray in, boolean training)
Carry out activation function on the input array (usually known as 'preOut' or 'z') Implementations must overwrite "in", transform in place and return "in" Can support separate behaviour during testMethods in org.nd4j.linalg.activations that return types with arguments of type INDArray Modifier and Type Method Description Pair<INDArray,INDArray>
IActivation. backprop(INDArray in, INDArray epsilon)
Backpropagate the errors through the activation function, given input z and epsilon dL/da.
Returns 2 INDArrays:
(a) The gradient dL/dz, calculated from dL/da, and
(b) The parameter gradients dL/dW, where w is the weights in the activation function.Pair<INDArray,INDArray>
IActivation. backprop(INDArray in, INDArray epsilon)
Backpropagate the errors through the activation function, given input z and epsilon dL/da.
Returns 2 INDArrays:
(a) The gradient dL/dz, calculated from dL/da, and
(b) The parameter gradients dL/dW, where w is the weights in the activation function.Methods in org.nd4j.linalg.activations with parameters of type INDArray Modifier and Type Method Description protected void
BaseActivationFunction. assertShape(INDArray in, INDArray epsilon)
Pair<INDArray,INDArray>
IActivation. backprop(INDArray in, INDArray epsilon)
Backpropagate the errors through the activation function, given input z and epsilon dL/da.
Returns 2 INDArrays:
(a) The gradient dL/dz, calculated from dL/da, and
(b) The parameter gradients dL/dW, where w is the weights in the activation function.INDArray
IActivation. getActivation(INDArray in, boolean training)
Carry out activation function on the input array (usually known as 'preOut' or 'z') Implementations must overwrite "in", transform in place and return "in" Can support separate behaviour during test -
Uses of INDArray in org.nd4j.linalg.activations.impl
Methods in org.nd4j.linalg.activations.impl that return INDArray Modifier and Type Method Description INDArray
ActivationCube. getActivation(INDArray in, boolean training)
INDArray
ActivationELU. getActivation(INDArray in, boolean training)
INDArray
ActivationGELU. getActivation(INDArray in, boolean training)
INDArray
ActivationHardSigmoid. getActivation(INDArray in, boolean training)
INDArray
ActivationHardTanH. getActivation(INDArray in, boolean training)
INDArray
ActivationIdentity. getActivation(INDArray in, boolean training)
INDArray
ActivationLReLU. getActivation(INDArray in, boolean training)
INDArray
ActivationMish. getActivation(INDArray in, boolean training)
INDArray
ActivationPReLU. getActivation(INDArray in, boolean training)
INDArray
ActivationRationalTanh. getActivation(INDArray in, boolean training)
INDArray
ActivationRectifiedTanh. getActivation(INDArray in, boolean training)
INDArray
ActivationReLU. getActivation(INDArray in, boolean training)
INDArray
ActivationReLU6. getActivation(INDArray in, boolean training)
INDArray
ActivationRReLU. getActivation(INDArray in, boolean training)
INDArray
ActivationSELU. getActivation(INDArray in, boolean training)
INDArray
ActivationSigmoid. getActivation(INDArray in, boolean training)
INDArray
ActivationSoftmax. getActivation(INDArray in, boolean training)
INDArray
ActivationSoftPlus. getActivation(INDArray in, boolean training)
INDArray
ActivationSoftSign. getActivation(INDArray in, boolean training)
INDArray
ActivationSwish. getActivation(INDArray in, boolean training)
INDArray
ActivationTanH. getActivation(INDArray in, boolean training)
INDArray
ActivationThresholdedReLU. getActivation(INDArray in, boolean training)
Methods in org.nd4j.linalg.activations.impl with parameters of type INDArray Modifier and Type Method Description Pair<INDArray,INDArray>
ActivationCube. backprop(@NonNull INDArray in, @NonNull INDArray epsilon)
Pair<INDArray,INDArray>
ActivationELU. backprop(INDArray in, INDArray epsilon)
Pair<INDArray,INDArray>
ActivationGELU. backprop(INDArray in, INDArray epsilon)
Pair<INDArray,INDArray>
ActivationHardSigmoid. backprop(INDArray in, INDArray epsilon)
Pair<INDArray,INDArray>
ActivationHardTanH. backprop(INDArray in, INDArray epsilon)
Pair<INDArray,INDArray>
ActivationIdentity. backprop(INDArray in, INDArray epsilon)
Pair<INDArray,INDArray>
ActivationLReLU. backprop(INDArray in, INDArray epsilon)
Pair<INDArray,INDArray>
ActivationMish. backprop(INDArray in, INDArray epsilon)
Pair<INDArray,INDArray>
ActivationPReLU. backprop(INDArray in, INDArray epsilon)
Pair<INDArray,INDArray>
ActivationRationalTanh. backprop(INDArray in, INDArray epsilon)
Pair<INDArray,INDArray>
ActivationRectifiedTanh. backprop(INDArray in, INDArray epsilon)
Pair<INDArray,INDArray>
ActivationReLU. backprop(INDArray in, INDArray epsilon)
Pair<INDArray,INDArray>
ActivationReLU6. backprop(INDArray in, INDArray epsilon)
Pair<INDArray,INDArray>
ActivationRReLU. backprop(INDArray in, INDArray epsilon)
Pair<INDArray,INDArray>
ActivationSELU. backprop(INDArray in, INDArray epsilon)
Pair<INDArray,INDArray>
ActivationSigmoid. backprop(INDArray in, INDArray epsilon)
Pair<INDArray,INDArray>
ActivationSoftmax. backprop(INDArray in, INDArray epsilon)
Pair<INDArray,INDArray>
ActivationSoftPlus. backprop(INDArray in, INDArray epsilon)
Pair<INDArray,INDArray>
ActivationSoftSign. backprop(INDArray in, INDArray epsilon)
Pair<INDArray,INDArray>
ActivationSwish. backprop(INDArray in, INDArray epsilon)
Pair<INDArray,INDArray>
ActivationTanH. backprop(INDArray in, INDArray epsilon)
Pair<INDArray,INDArray>
ActivationThresholdedReLU. backprop(INDArray in, INDArray epsilon)
INDArray
ActivationCube. getActivation(INDArray in, boolean training)
INDArray
ActivationELU. getActivation(INDArray in, boolean training)
INDArray
ActivationGELU. getActivation(INDArray in, boolean training)
INDArray
ActivationHardSigmoid. getActivation(INDArray in, boolean training)
INDArray
ActivationHardTanH. getActivation(INDArray in, boolean training)
INDArray
ActivationIdentity. getActivation(INDArray in, boolean training)
INDArray
ActivationLReLU. getActivation(INDArray in, boolean training)
INDArray
ActivationMish. getActivation(INDArray in, boolean training)
INDArray
ActivationPReLU. getActivation(INDArray in, boolean training)
INDArray
ActivationRationalTanh. getActivation(INDArray in, boolean training)
INDArray
ActivationRectifiedTanh. getActivation(INDArray in, boolean training)
INDArray
ActivationReLU. getActivation(INDArray in, boolean training)
INDArray
ActivationReLU6. getActivation(INDArray in, boolean training)
INDArray
ActivationRReLU. getActivation(INDArray in, boolean training)
INDArray
ActivationSELU. getActivation(INDArray in, boolean training)
INDArray
ActivationSigmoid. getActivation(INDArray in, boolean training)
INDArray
ActivationSoftmax. getActivation(INDArray in, boolean training)
INDArray
ActivationSoftPlus. getActivation(INDArray in, boolean training)
INDArray
ActivationSoftSign. getActivation(INDArray in, boolean training)
INDArray
ActivationSwish. getActivation(INDArray in, boolean training)
INDArray
ActivationTanH. getActivation(INDArray in, boolean training)
INDArray
ActivationThresholdedReLU. getActivation(INDArray in, boolean training)
Constructors in org.nd4j.linalg.activations.impl with parameters of type INDArray Constructor Description ActivationPReLU(INDArray alpha, long[] sharedAxes)
-
Uses of INDArray in org.nd4j.linalg.api.blas
Methods in org.nd4j.linalg.api.blas that return INDArray Modifier and Type Method Description INDArray
Lapack. getLFactor(INDArray A)
extracts the L (lower triangular) matrix from the LU factor result L will be the same dimensions as AINDArray
Lapack. getPFactor(int M, INDArray ipiv)
This method takes one of the ipiv returns from LAPACK and creates the permutation matrix.INDArray
Lapack. getrf(INDArray A)
LU decomposiiton of a matrix Factorize a matrix A The matrix A is overridden by the L & U combined.INDArray
Lapack. getUFactor(INDArray A)
extracts the U (upper triangular) matrix from the LU factor result U will be n x n matrix where n = num cols in AMethods in org.nd4j.linalg.api.blas with parameters of type INDArray Modifier and Type Method Description double
Level1. asum(INDArray arr)
computes the sum of magnitudes of all vector elements or, for a complex vector x, the sumvoid
Level1. axpy(long N, double alpha, INDArray x, INDArray y)
computes a vector-scalar product and adds the result to a vector.void
Level1. copy(INDArray x, INDArray y)
copy a vector to another vector.double
Level1. dot(long N, double alpha, INDArray X, INDArray Y)
computes a vector-vector dot product.void
Level2. gbmv(char order, char TransA, int KL, int KU, double alpha, INDArray A, INDArray X, double beta, INDArray Y)
gbmv computes a matrix-vector product using a general band matrix and performs one of the following matrix-vector operations: y := alpha*a*x + beta*y for trans = 'N'or'n'; y := alpha*a'*x + beta*y for trans = 'T'or't'; y := alpha*conjg(a')*x + beta*y for trans = 'C'or'c'.void
Level3. gemm(char Order, char TransA, char TransB, double alpha, INDArray A, INDArray B, double beta, INDArray C)
gemm performs a matrix-matrix operation c := alpha*op(a)*op(b) + beta*c, where c is an m-by-n matrix, op(a) is an m-by-k matrix, op(b) is a k-by-n matrix.void
Level3. gemm(INDArray A, INDArray B, INDArray C, boolean transposeA, boolean transposeB, double alpha, double beta)
A convenience method for matrix-matrix operations with transposes.void
Level2. gemv(char order, char transA, double alpha, INDArray A, INDArray X, double beta, INDArray Y)
gemv computes a matrix-vector product using a general matrix and performs one of the following matrix-vector operations: y := alpha*a*x + beta*y for trans = 'N'or'n'; y := alpha*a'*x + beta*y for trans = 'T'or't'; y := alpha*conjg(a')*x + beta*y for trans = 'C'or'c'.void
Lapack. geqrf(INDArray A, INDArray R)
QR decomposiiton of a matrix Factorize a matrix A such that A = QR The matrix A is overwritten by the Q component (i.e.void
Level2. ger(char order, double alpha, INDArray X, INDArray Y, INDArray A)
performs a rank-1 update of a general m-by-n matrix a: a := alpha*x*y' + a.void
Lapack. gesvd(INDArray A, INDArray S, INDArray U, INDArray VT)
SVD decomposiiton of a matrix Factorize a matrix into its singular vectors and eigenvalues The decomposition is such that: A = U x S x VT gesvd = singular value decomposition (SVD) of a general matrix (GE)static long
BlasBufferUtil. getBlasOffset(INDArray arr)
Get blas stride for the given arraystatic int
BlasBufferUtil. getBlasStride(INDArray arr)
Get blas stride for the given arraystatic char
BlasBufferUtil. getCharForTranspose(INDArray arr)
Returns the proper character for how to interpret a buffer (fortran being N C being T)static long
BlasBufferUtil. getDimension(INDArray arr, boolean defaultRows)
Get the dimension associated with the given ordering.static double[]
BlasBufferUtil. getDoubleData(INDArray buf)
Returns the double data for this ndarray.static float[]
BlasBufferUtil. getFloatData(INDArray buf)
Returns the float data for this ndarray.static int
BlasBufferUtil. getLd(INDArray arr)
Get the leading dimension for a blas invocation.INDArray
Lapack. getLFactor(INDArray A)
extracts the L (lower triangular) matrix from the LU factor result L will be the same dimensions as AINDArray
Lapack. getPFactor(int M, INDArray ipiv)
This method takes one of the ipiv returns from LAPACK and creates the permutation matrix.INDArray
Lapack. getrf(INDArray A)
LU decomposiiton of a matrix Factorize a matrix A The matrix A is overridden by the L & U combined.void
Lapack. getri(int N, INDArray A, int lda, int[] IPIV, INDArray WORK, int lwork, int INFO)
Generate inverse ggiven LU decompstatic int
BlasBufferUtil. getStrideForOrdering(INDArray arr)
Return the proper stride through a vector relative to the ordering of the array This is for incX/incY parameters in BLAS.INDArray
Lapack. getUFactor(INDArray A)
extracts the U (upper triangular) matrix from the LU factor result U will be n x n matrix where n = num cols in Aint
Level1. iamax(long N, INDArray arr, int stride)
finds the element of a vector that has the largest absolute value.int
Level1. iamax(INDArray arr)
finds the element of a vector that has the largest absolute value.int
Level1. iamin(INDArray arr)
finds the element of a vector that has the minimum absolute value.double
Level1. nrm2(INDArray arr)
computes the Euclidean norm of a vector.void
Lapack. potrf(INDArray A, boolean lower)
Triangular decomposiiton of a positive definite matrix ( cholesky ) Factorize a matrix A such that A = LL* (assuming lower==true) or A = U*U (a * represents conjugate i.e.void
Level1. rot(long N, INDArray X, INDArray Y, double c, double s)
performs rotation of points in the plane.void
Level1. rotg(INDArray a, INDArray b, INDArray c, INDArray s)
computes parameters for a Givens rotation.void
Level1. rotmg(INDArray d1, INDArray d2, INDArray b1, double b2, INDArray P)
computes the modified parameters for a Givens rotation.void
Level2. sbmv(char order, char Uplo, double alpha, INDArray A, INDArray X, double beta, INDArray Y)
sbmv computes a matrix-vector product using a symmetric band matrix: y := alpha*a*x + beta*y.void
Level1. scal(long N, double alpha, INDArray X)
computes a vector by a scalar product.static void
BlasBufferUtil. setData(double[] data, INDArray toSet)
Set the data for the underlying array.static void
BlasBufferUtil. setData(float[] data, INDArray toSet)
Set the data for the underlying array.void
Level2. spmv(char order, char Uplo, double alpha, INDArray Ap, INDArray X, double beta, INDArray Y)
void
Level2. spr(char order, char Uplo, double alpha, INDArray X, INDArray Ap)
spr performs a rank-1 update of an n-by-n packed symmetric matrix a: a := alpha*x*x' + a.void
Level2. spr2(char order, char Uplo, double alpha, INDArray X, INDArray Y, INDArray A)
?spr2 performs a rank-2 update of an n-by-n packed symmetric matrix a: a := alpha*x*y' + alpha*y*x' + a.void
Level1. swap(INDArray x, INDArray y)
swaps a vector with another vector.int
Lapack. syev(char jobz, char uplo, INDArray A, INDArray V)
Caclulate the eigenvalues and vectors of a symmetric matrix.void
Level3. symm(char Order, char Side, char Uplo, double alpha, INDArray A, INDArray B, double beta, INDArray C)
her2k performs a rank-2k update of an n-by-n Hermitian matrix c, that is, one of the following operations: c := alpha*a*conjg(b') + conjg(alpha)*b*conjg(a') + beta*c, for trans = 'N'or'n' c := alpha*conjg(b')*a + conjg(alpha)*conjg(a')*b + beta*c, for trans = 'C'or'c' where c is an n-by-n Hermitian matrix; a and b are n-by-k matrices if trans = 'N'or'n', a and b are k-by-n matrices if trans = 'C'or'c'.void
Level2. symv(char order, char Uplo, double alpha, INDArray A, INDArray X, double beta, INDArray Y)
symv computes a matrix-vector product for a symmetric matrix: y := alpha*a*x + beta*y.void
Level2. syr(char order, char Uplo, int N, double alpha, INDArray X, INDArray A)
syr performs a rank-1 update of an n-by-n symmetric matrix a: a := alpha*x*x' + a.void
Level2. syr2(char order, char Uplo, double alpha, INDArray X, INDArray Y, INDArray A)
void
Level3. syr2k(char Order, char Uplo, char Trans, double alpha, INDArray A, INDArray B, double beta, INDArray C)
yr2k performs a rank-2k update of an n-by-n symmetric matrix c, that is, one of the following operations: c := alpha*a*b' + alpha*b*a' + beta*c for trans = 'N'or'n' c := alpha*a'*b + alpha*b'*a + beta*c for trans = 'T'or't', where c is an n-by-n symmetric matrix; a and b are n-by-k matrices, if trans = 'N'or'n', a and b are k-by-n matrices, if trans = 'T'or't'.void
Level3. syrk(char Order, char Uplo, char Trans, double alpha, INDArray A, double beta, INDArray C)
syrk performs a rank-n update of an n-by-n symmetric matrix c, that is, one of the following operations: c := alpha*a*a' + beta*c for trans = 'N'or'n' c := alpha*a'*a + beta*c for trans = 'T'or't','C'or'c', where c is an n-by-n symmetric matrix; a is an n-by-k matrix, if trans = 'N'or'n', a is a k-by-n matrix, if trans = 'T'or't','C'or'c'.void
Level2. tbmv(char order, char Uplo, char TransA, char Diag, INDArray A, INDArray X)
syr2 performs a rank-2 update of an n-by-n symmetric matrix a: a := alpha*x*y' + alpha*y*x' + a.void
Level2. tbsv(char order, char Uplo, char TransA, char Diag, INDArray A, INDArray X)
?tbsv solves a system of linear equations whose coefficients are in a triangular band matrix.void
Level2. tpmv(char order, char Uplo, char TransA, char Diag, INDArray Ap, INDArray X)
tpmv computes a matrix-vector product using a triangular packed matrix.void
Level2. tpsv(char order, char Uplo, char TransA, char Diag, INDArray Ap, INDArray X)
tpsv solves a system of linear equations whose coefficients are in a triangular packed matrix.void
Level3. trmm(char Order, char Side, char Uplo, char TransA, char Diag, double alpha, INDArray A, INDArray B, INDArray C)
syr2k performs a rank-2k update of an n-by-n symmetric matrix c, that is, one of the following operations: c := alpha*a*b' + alpha*b*a' + beta*c for trans = 'N'or'n' c := alpha*a'*b + alpha*b'*a + beta*c for trans = 'T'or't', where c is an n-by-n symmetric matrix; a and b are n-by-k matrices, if trans = 'N'or'n', a and b are k-by-n matrices, if trans = 'T'or't'.void
Level2. trmv(char order, char Uplo, char TransA, char Diag, INDArray A, INDArray X)
trmv computes a matrix-vector product using a triangular matrix.void
Level3. trsm(char Order, char Side, char Uplo, char TransA, char Diag, double alpha, INDArray A, INDArray B)
?trsm solves one of the following matrix equations: op(a)*x = alpha*b or x*op(a) = alpha*b, where x and b are m-by-n general matrices, and a is triangular; op(a) must be an m-by-m matrix, if side = 'L'or'l' op(a) must be an n-by-n matrix, if side = 'R'or'r'.void
Level2. trsv(char order, char Uplo, char TransA, char Diag, INDArray A, INDArray X)
trsv solves a system of linear equations whose coefficients are in a triangular matrix. -
Uses of INDArray in org.nd4j.linalg.api.blas.impl
Methods in org.nd4j.linalg.api.blas.impl that return INDArray Modifier and Type Method Description INDArray
BaseLapack. getLFactor(INDArray A)
INDArray
BaseLapack. getPFactor(int M, INDArray ipiv)
INDArray
BaseLapack. getrf(INDArray A)
INDArray
BaseLapack. getUFactor(INDArray A)
Methods in org.nd4j.linalg.api.blas.impl with parameters of type INDArray Modifier and Type Method Description double
BaseLevel1. asum(INDArray arr)
computes the sum of magnitudes of all vector elements or, for a complex vector x, the sumvoid
BaseLevel1. axpy(long n, double alpha, INDArray x, INDArray y)
computes a vector-scalar product and adds the result to a vector.void
BaseLevel1. copy(INDArray x, INDArray y)
swaps a vector with another vector.protected abstract double
BaseLevel1. dasum(long N, INDArray X, int incX)
protected abstract void
BaseLevel1. daxpy(long N, double alpha, INDArray X, int incX, INDArray Y, int incY)
protected abstract void
BaseLevel1. dcopy(long N, INDArray X, int incX, INDArray Y, int incY)
protected abstract double
BaseLevel1. ddot(long N, INDArray X, int incX, INDArray Y, int incY)
protected abstract void
BaseLevel2. dgbmv(char order, char TransA, int M, int N, int KL, int KU, double alpha, INDArray A, int lda, INDArray X, int incX, double beta, INDArray Y, int incY)
protected abstract void
BaseLevel3. dgemm(char Order, char TransA, char TransB, int M, int N, int K, double alpha, INDArray A, int lda, INDArray B, int ldb, double beta, INDArray C, int ldc)
protected abstract void
BaseLevel2. dgemv(char order, char TransA, int M, int N, double alpha, INDArray A, int lda, INDArray X, int incX, double beta, INDArray Y, int incY)
abstract void
BaseLapack. dgeqrf(int M, int N, INDArray A, INDArray R, INDArray INFO)
protected abstract void
BaseLevel2. dger(char order, int M, int N, double alpha, INDArray X, int incX, INDArray Y, int incY, INDArray A, int lda)
abstract void
BaseLapack. dgesvd(byte jobu, byte jobvt, int M, int N, INDArray A, INDArray S, INDArray U, INDArray VT, INDArray INFO)
abstract void
BaseLapack. dgetrf(int M, int N, INDArray A, INDArray IPIV, INDArray INFO)
protected abstract double
BaseLevel1. dnrm2(long N, INDArray X, int incX)
double
BaseLevel1. dot(long n, double alpha, INDArray X, INDArray Y)
computes a vector-vector dot product.abstract void
BaseLapack. dpotrf(byte uplo, int N, INDArray A, INDArray INFO)
protected abstract void
BaseLevel1. drot(long N, INDArray X, int incX, INDArray Y, int incY, double c, double s)
protected abstract void
BaseLevel1. drotm(long N, INDArray X, int incX, INDArray Y, int incY, INDArray P)
protected abstract void
BaseLevel1. drotmg(double d1, double d2, double b1, double b2, INDArray P)
protected abstract void
BaseLevel2. dsbmv(char order, char Uplo, int N, int K, double alpha, INDArray A, int lda, INDArray X, int incX, double beta, INDArray Y, int incY)
protected abstract void
BaseLevel1. dscal(long N, double alpha, INDArray X, int incX)
protected abstract double
BaseLevel1. dsdot(long N, INDArray X, int incX, INDArray Y, int incY)
protected abstract void
BaseLevel2. dspmv(char order, char Uplo, int N, double alpha, INDArray Ap, INDArray X, int incX, double beta, INDArray Y, int incY)
protected abstract void
BaseLevel2. dspr(char order, char Uplo, int N, double alpha, INDArray X, int incX, INDArray Ap)
protected abstract void
BaseLevel2. dspr2(char order, char Uplo, int N, double alpha, INDArray X, int incX, INDArray Y, int incY, INDArray A)
protected abstract void
BaseLevel1. dswap(long N, INDArray X, int incX, INDArray Y, int incY)
abstract int
BaseLapack. dsyev(char jobz, char uplo, int N, INDArray A, INDArray R)
protected abstract void
BaseLevel3. dsymm(char Order, char Side, char Uplo, int M, int N, double alpha, INDArray A, int lda, INDArray B, int ldb, double beta, INDArray C, int ldc)
protected abstract void
BaseLevel2. dsymv(char order, char Uplo, int N, double alpha, INDArray A, int lda, INDArray X, int incX, double beta, INDArray Y, int incY)
protected abstract void
BaseLevel2. dsyr(char order, char Uplo, int N, double alpha, INDArray X, int incX, INDArray A, int lda)
protected abstract void
BaseLevel2. dsyr2(char order, char Uplo, int N, double alpha, INDArray X, int incX, INDArray Y, int incY, INDArray A, int lda)
protected abstract void
BaseLevel3. dsyr2k(char Order, char Uplo, char Trans, int N, int K, double alpha, INDArray A, int lda, INDArray B, int ldb, double beta, INDArray C, int ldc)
protected abstract void
BaseLevel3. dsyrk(char Order, char Uplo, char Trans, int N, int K, double alpha, INDArray A, int lda, double beta, INDArray C, int ldc)
protected abstract void
BaseLevel2. dtbmv(char order, char Uplo, char TransA, char Diag, int N, int K, INDArray A, int lda, INDArray X, int incX)
protected abstract void
BaseLevel2. dtbsv(char order, char Uplo, char TransA, char Diag, int N, int K, INDArray A, int lda, INDArray X, int incX)
protected abstract void
BaseLevel2. dtpmv(char order, char Uplo, char TransA, char Diag, int N, INDArray Ap, INDArray X, int incX)
protected abstract void
BaseLevel2. dtpsv(char order, char Uplo, char TransA, char Diag, int N, INDArray Ap, INDArray X, int incX)
protected abstract void
BaseLevel3. dtrmm(char Order, char Side, char Uplo, char TransA, char Diag, int M, int N, double alpha, INDArray A, int lda, INDArray B, int ldb)
protected abstract void
BaseLevel2. dtrmv(char order, char Uplo, char TransA, char Diag, int N, INDArray A, int lda, INDArray X, int incX)
protected abstract void
BaseLevel3. dtrsm(char Order, char Side, char Uplo, char TransA, char Diag, int M, int N, double alpha, INDArray A, int lda, INDArray B, int ldb)
protected abstract void
BaseLevel2. dtrsv(char order, char Uplo, char TransA, char Diag, int N, INDArray A, int lda, INDArray X, int incX)
void
BaseLevel2. gbmv(char order, char TransA, int KL, int KU, double alpha, INDArray A, INDArray X, double beta, INDArray Y)
gbmv computes a matrix-vector product using a general band matrix and performs one of the following matrix-vector operations: y := alpha*a*x + beta*y for trans = 'N'or'n'; y := alpha*a'*x + beta*y for trans = 'T'or't'; y := alpha*conjg(a')*x + beta*y for trans = 'C'or'c'.void
BaseLevel3. gemm(char Order, char TransA, char TransB, double alpha, INDArray A, INDArray B, double beta, INDArray C)
gemm performs a matrix-matrix operation c := alpha*op(a)*op(b) + beta*c, where c is an m-by-n matrix, op(a) is an m-by-k matrix, op(b) is a k-by-n matrix.void
BaseLevel3. gemm(INDArray A, INDArray B, INDArray C, boolean transposeA, boolean transposeB, double alpha, double beta)
A convenience method for matrix-matrix operations with transposes.void
BaseLevel2. gemv(char order, char transA, double alpha, INDArray A, INDArray X, double beta, INDArray Y)
gemv computes a matrix-vector product using a general matrix and performs one of the following matrix-vector operations: y := alpha*a*x + beta*y for trans = 'N'or'n'; y := alpha*a'*x + beta*y for trans = 'T'or't'; y := alpha*conjg(a')*x + beta*y for trans = 'C'or'c'.void
BaseLapack. geqrf(INDArray A, INDArray R)
void
BaseLevel2. ger(char order, double alpha, INDArray X, INDArray Y, INDArray A)
performs a rank-1 update of a general m-by-n matrix a: a := alpha*x*y' + a.void
BaseLapack. gesvd(INDArray A, INDArray S, INDArray U, INDArray VT)
INDArray
BaseLapack. getLFactor(INDArray A)
INDArray
BaseLapack. getPFactor(int M, INDArray ipiv)
INDArray
BaseLapack. getrf(INDArray A)
INDArray
BaseLapack. getUFactor(INDArray A)
protected abstract float
BaseLevel1. hasum(long N, INDArray X, int incX)
protected abstract void
BaseLevel1. haxpy(long N, float alpha, INDArray X, int incX, INDArray Y, int incY)
protected abstract float
BaseLevel1. hdot(long N, INDArray X, int incX, INDArray Y, int incY)
protected abstract void
BaseLevel3. hgemm(char Order, char TransA, char TransB, int M, int N, int K, float alpha, INDArray A, int lda, INDArray B, int ldb, float beta, INDArray C, int ldc)
int
BaseLevel1. iamax(long n, INDArray arr, int stride)
int
BaseLevel1. iamax(INDArray arr)
finds the element of a vector that has the largest absolute value.int
BaseLevel1. iamin(INDArray arr)
finds the element of a vector that has the minimum absolute value.protected abstract int
BaseLevel1. idamax(long N, INDArray X, int incX)
protected abstract int
BaseLevel1. isamax(long N, INDArray X, int incX)
double
BaseLevel1. nrm2(INDArray arr)
computes the Euclidean norm of a vector.void
BaseLapack. potrf(INDArray A, boolean lower)
void
BaseLevel1. rot(long N, INDArray X, INDArray Y, double c, double s)
performs rotation of points in the plane.void
BaseLevel1. rotg(INDArray a, INDArray b, INDArray c, INDArray s)
computes parameters for a Givens rotation.void
BaseLevel1. rotmg(INDArray d1, INDArray d2, INDArray b1, double b2, INDArray P)
computes the modified parameters for a Givens rotation.protected abstract float
BaseLevel1. sasum(long N, INDArray X, int incX)
protected abstract void
BaseLevel1. saxpy(long N, float alpha, INDArray X, int incX, INDArray Y, int incY)
void
BaseLevel2. sbmv(char order, char Uplo, double alpha, INDArray A, INDArray X, double beta, INDArray Y)
sbmv computes a matrix-vector product using a symmetric band matrix: y := alpha*a*x + beta*y.void
BaseLevel1. scal(long N, double alpha, INDArray X)
computes a vector by a scalar product.protected abstract void
BaseLevel1. scopy(long N, INDArray X, int incX, INDArray Y, int incY)
protected abstract float
BaseLevel1. sdot(long N, INDArray X, int incX, INDArray Y, int incY)
protected abstract float
BaseLevel1. sdsdot(long N, float alpha, INDArray X, int incX, INDArray Y, int incY)
protected abstract void
BaseLevel2. sgbmv(char order, char TransA, int M, int N, int KL, int KU, float alpha, INDArray A, int lda, INDArray X, int incX, float beta, INDArray Y, int incY)
protected abstract void
BaseLevel3. sgemm(char Order, char TransA, char TransB, int M, int N, int K, float alpha, INDArray A, int lda, INDArray B, int ldb, float beta, INDArray C, int ldc)
protected abstract void
BaseLevel2. sgemv(char order, char TransA, int M, int N, float alpha, INDArray A, int lda, INDArray X, int incX, float beta, INDArray Y, int incY)
abstract void
BaseLapack. sgeqrf(int M, int N, INDArray A, INDArray R, INDArray INFO)
Float/Double versions of QR decomp.protected abstract void
BaseLevel2. sger(char order, int M, int N, float alpha, INDArray X, int incX, INDArray Y, int incY, INDArray A, int lda)
abstract void
BaseLapack. sgesvd(byte jobu, byte jobvt, int M, int N, INDArray A, INDArray S, INDArray U, INDArray VT, INDArray INFO)
abstract void
BaseLapack. sgetrf(int M, int N, INDArray A, INDArray IPIV, INDArray INFO)
Float/Double versions of LU decomp.protected abstract float
BaseLevel1. snrm2(long N, INDArray X, int incX)
void
BaseLevel2. spmv(char order, char Uplo, double alpha, INDArray Ap, INDArray X, double beta, INDArray Y)
abstract void
BaseLapack. spotrf(byte uplo, int N, INDArray A, INDArray INFO)
Float/Double versions of cholesky decomp for positive definite matrices A = LL*void
BaseLevel2. spr(char order, char Uplo, double alpha, INDArray X, INDArray Ap)
spr performs a rank-1 update of an n-by-n packed symmetric matrix a: a := alpha*x*x' + a.void
BaseLevel2. spr2(char order, char Uplo, double alpha, INDArray X, INDArray Y, INDArray A)
?spr2 performs a rank-2 update of an n-by-n packed symmetric matrix a: a := alpha*x*y' + alpha*y*x' + a.protected abstract void
BaseLevel1. srot(long N, INDArray X, int incX, INDArray Y, int incY, float c, float s)
protected abstract void
BaseLevel1. srotm(long N, INDArray X, int incX, INDArray Y, int incY, INDArray P)
protected abstract void
BaseLevel1. srotmg(float d1, float d2, float b1, float b2, INDArray P)
protected abstract void
BaseLevel2. ssbmv(char order, char Uplo, int N, int K, float alpha, INDArray A, int lda, INDArray X, int incX, float beta, INDArray Y, int incY)
protected abstract void
BaseLevel1. sscal(long N, float alpha, INDArray X, int incX)
protected abstract void
BaseLevel2. sspmv(char order, char Uplo, int N, float alpha, INDArray Ap, INDArray X, int incX, float beta, INDArray Y, int incY)
protected abstract void
BaseLevel2. sspr(char order, char Uplo, int N, float alpha, INDArray X, int incX, INDArray Ap)
protected abstract void
BaseLevel2. sspr2(char order, char Uplo, int N, float alpha, INDArray X, int incX, INDArray Y, int incY, INDArray A)
protected abstract void
BaseLevel1. sswap(long N, INDArray X, int incX, INDArray Y, int incY)
abstract int
BaseLapack. ssyev(char jobz, char uplo, int N, INDArray A, INDArray R)
Float/Double versions of eigen value/vector calc.protected abstract void
BaseLevel3. ssymm(char Order, char Side, char Uplo, int M, int N, float alpha, INDArray A, int lda, INDArray B, int ldb, float beta, INDArray C, int ldc)
protected abstract void
BaseLevel2. ssymv(char order, char Uplo, int N, float alpha, INDArray A, int lda, INDArray X, int incX, float beta, INDArray Y, int incY)
protected abstract void
BaseLevel2. ssyr(char order, char Uplo, int N, float alpha, INDArray X, int incX, INDArray A, int lda)
protected abstract void
BaseLevel2. ssyr2(char order, char Uplo, int N, float alpha, INDArray X, int incX, INDArray Y, int incY, INDArray A, int lda)
protected abstract void
BaseLevel3. ssyr2k(char Order, char Uplo, char Trans, int N, int K, float alpha, INDArray A, int lda, INDArray B, int ldb, float beta, INDArray C, int ldc)
protected abstract void
BaseLevel3. ssyrk(char Order, char Uplo, char Trans, int N, int K, float alpha, INDArray A, int lda, float beta, INDArray C, int ldc)
protected abstract void
BaseLevel2. stbmv(char order, char Uplo, char TransA, char Diag, int N, int K, INDArray A, int lda, INDArray X, int incX)
protected abstract void
BaseLevel2. stbsv(char order, char Uplo, char TransA, char Diag, int N, int K, INDArray A, int lda, INDArray X, int incX)
protected abstract void
BaseLevel2. stpmv(char order, char Uplo, char TransA, char Diag, int N, INDArray Ap, INDArray X, int incX)
protected abstract void
BaseLevel2. stpsv(char order, char Uplo, char TransA, char Diag, int N, INDArray Ap, INDArray X, int incX)
protected abstract void
BaseLevel3. strmm(char Order, char Side, char Uplo, char TransA, char Diag, int M, int N, float alpha, INDArray A, int lda, INDArray B, int ldb)
protected abstract void
BaseLevel2. strmv(char order, char Uplo, char TransA, char Diag, int N, INDArray A, int lda, INDArray X, int incX)
protected abstract void
BaseLevel3. strsm(char Order, char Side, char Uplo, char TransA, char Diag, int M, int N, float alpha, INDArray A, int lda, INDArray B, int ldb)
protected abstract void
BaseLevel2. strsv(char order, char Uplo, char TransA, char Diag, int N, INDArray A, int lda, INDArray X, int incX)
void
BaseLevel1. swap(INDArray x, INDArray y)
swaps a vector with another vector.int
BaseLapack. syev(char jobz, char uplo, INDArray A, INDArray V)
void
BaseLevel3. symm(char Order, char Side, char Uplo, double alpha, INDArray A, INDArray B, double beta, INDArray C)
her2k performs a rank-2k update of an n-by-n Hermitian matrix c, that is, one of the following operations: c := alpha*a*conjg(b') + conjg(alpha)*b*conjg(a') + beta*c, for trans = 'N'or'n' c := alpha*conjg(b')*a + conjg(alpha)*conjg(a')*b + beta*c, for trans = 'C'or'c' where c is an n-by-n Hermitian matrix; a and b are n-by-k matrices if trans = 'N'or'n', a and b are k-by-n matrices if trans = 'C'or'c'.void
BaseLevel2. symv(char order, char Uplo, double alpha, INDArray A, INDArray X, double beta, INDArray Y)
symv computes a matrix-vector product for a symmetric matrix: y := alpha*a*x + beta*y.void
BaseLevel2. syr(char order, char Uplo, int N, double alpha, INDArray X, INDArray A)
syr performs a rank-1 update of an n-by-n symmetric matrix a: a := alpha*x*x' + a.void
BaseLevel2. syr2(char order, char Uplo, double alpha, INDArray X, INDArray Y, INDArray A)
void
BaseLevel3. syr2k(char Order, char Uplo, char Trans, double alpha, INDArray A, INDArray B, double beta, INDArray C)
yr2k performs a rank-2k update of an n-by-n symmetric matrix c, that is, one of the following operations: c := alpha*a*b' + alpha*b*a' + beta*c for trans = 'N'or'n' c := alpha*a'*b + alpha*b'*a + beta*c for trans = 'T'or't', where c is an n-by-n symmetric matrix; a and b are n-by-k matrices, if trans = 'N'or'n', a and b are k-by-n matrices, if trans = 'T'or't'.void
BaseLevel3. syrk(char Order, char Uplo, char Trans, double alpha, INDArray A, double beta, INDArray C)
syrk performs a rank-n update of an n-by-n symmetric matrix c, that is, one of the following operations: c := alpha*a*a' + beta*c for trans = 'N'or'n' c := alpha*a'*a + beta*c for trans = 'T'or't','C'or'c', where c is an n-by-n symmetric matrix; a is an n-by-k matrix, if trans = 'N'or'n', a is a k-by-n matrix, if trans = 'T'or't','C'or'c'.void
BaseLevel2. tbmv(char order, char Uplo, char TransA, char Diag, INDArray A, INDArray X)
syr2 performs a rank-2 update of an n-by-n symmetric matrix a: a := alpha*x*y' + alpha*y*x' + a.void
BaseLevel2. tbsv(char order, char Uplo, char TransA, char Diag, INDArray A, INDArray X)
?tbsv solves a system of linear equations whose coefficients are in a triangular band matrix.void
BaseLevel2. tpmv(char order, char Uplo, char TransA, char Diag, INDArray Ap, INDArray X)
tpmv computes a matrix-vector product using a triangular packed matrix.void
BaseLevel2. tpsv(char order, char Uplo, char TransA, char Diag, INDArray Ap, INDArray X)
tpsv solves a system of linear equations whose coefficients are in a triangular packed matrix.void
BaseLevel3. trmm(char Order, char Side, char Uplo, char TransA, char Diag, double alpha, INDArray A, INDArray B, INDArray C)
syr2k performs a rank-2k update of an n-by-n symmetric matrix c, that is, one of the following operations: c := alpha*a*b' + alpha*b*a' + beta*c for trans = 'N'or'n' c := alpha*a'*b + alpha*b'*a + beta*c for trans = 'T'or't', where c is an n-by-n symmetric matrix; a and b are n-by-k matrices, if trans = 'N'or'n', a and b are k-by-n matrices, if trans = 'T'or't'.void
BaseLevel2. trmv(char order, char Uplo, char TransA, char Diag, INDArray A, INDArray X)
trmv computes a matrix-vector product using a triangular matrix.void
BaseLevel3. trsm(char Order, char Side, char Uplo, char TransA, char Diag, double alpha, INDArray A, INDArray B)
?trsm solves one of the following matrix equations: op(a)*x = alpha*b or x*op(a) = alpha*b, where x and b are m-by-n general matrices, and a is triangular; op(a) must be an m-by-m matrix, if side = 'L'or'l' op(a) must be an n-by-n matrix, if side = 'R'or'r'.void
BaseLevel2. trsv(char order, char Uplo, char TransA, char Diag, INDArray A, INDArray X)
trsv solves a system of linear equations whose coefficients are in a triangular matrix. -
Uses of INDArray in org.nd4j.linalg.api.blas.params
Methods in org.nd4j.linalg.api.blas.params that return INDArray Modifier and Type Method Description INDArray
MMulTranspose. exec(INDArray a, INDArray b, INDArray result)
Execute the matrix multiplication: A x B Note that if a or b have transposeA/B == true, then this is done internally.Methods in org.nd4j.linalg.api.blas.params with parameters of type INDArray Modifier and Type Method Description INDArray
MMulTranspose. exec(INDArray a, INDArray b, INDArray result)
Execute the matrix multiplication: A x B Note that if a or b have transposeA/B == true, then this is done internally.Constructors in org.nd4j.linalg.api.blas.params with parameters of type INDArray Constructor Description GemmParams(INDArray a, INDArray b, INDArray c)
GemmParams(INDArray a, INDArray b, INDArray c, boolean transposeA, boolean transposeB)
GemvParameters(INDArray a, INDArray x, INDArray y)
-
Uses of INDArray in org.nd4j.linalg.api.concurrency
Methods in org.nd4j.linalg.api.concurrency that return INDArray Modifier and Type Method Description INDArray
DistributedINDArray. entry()
This method returns INDArray for the current device PLEASE NOTE: if you use more than one thread per device you'd better not use this method unless you're 100% sureINDArray
DistributedINDArray. entry(int entry)
This method returns INDArray for specific entry (i.e.INDArray
AffinityManager. replicateToDevice(Integer deviceId, INDArray array)
This method replicates given INDArray, and places it to target device.INDArray
BasicAffinityManager. replicateToDevice(Integer deviceId, INDArray array)
This method replicates given INDArray, and places it to target device.Methods in org.nd4j.linalg.api.concurrency with parameters of type INDArray Modifier and Type Method Description void
AffinityManager. ensureLocation(INDArray array, AffinityManager.Location location)
This method propagates given INDArray to specified locationvoid
BasicAffinityManager. ensureLocation(INDArray array, AffinityManager.Location location)
AffinityManager.Location
AffinityManager. getActiveLocation(INDArray array)
This method returns last-updated location for the given INDArrayAffinityManager.Location
BasicAffinityManager. getActiveLocation(INDArray array)
Integer
AffinityManager. getDeviceForArray(INDArray array)
This method returns id of current device for a given INDArrayInteger
BasicAffinityManager. getDeviceForArray(INDArray array)
void
DistributedINDArray. propagate(INDArray array)
This method propagates given INDArray to all entries as isINDArray
AffinityManager. replicateToDevice(Integer deviceId, INDArray array)
This method replicates given INDArray, and places it to target device.INDArray
BasicAffinityManager. replicateToDevice(Integer deviceId, INDArray array)
This method replicates given INDArray, and places it to target device.void
AffinityManager. tagLocation(INDArray array, AffinityManager.Location location)
This method tags specific INDArray as "recent" on specified locationvoid
BasicAffinityManager. tagLocation(INDArray array, AffinityManager.Location location)
void
AffinityManager. touch(INDArray array)
Utility method, to associate INDArray with specific device (backend-specific) -
Uses of INDArray in org.nd4j.linalg.api.iter
Constructors in org.nd4j.linalg.api.iter with parameters of type INDArray Constructor Description FirstAxisIterator(INDArray iterateOver)
INDArrayIterator(INDArray iterateOver)
-
Uses of INDArray in org.nd4j.linalg.api.memory
Methods in org.nd4j.linalg.api.memory with parameters of type INDArray Modifier and Type Method Description void
BasicMemoryManager. collect(INDArray... arrays)
This method detaches off-heap memory from passed INDArray instances, and optionally stores them in cache for future reuse PLEASE NOTE: Cache options depend on specific implementationsvoid
MemoryManager. collect(INDArray... arrays)
This method detaches off-heap memory from passed INDArray instances, and optionally stores them in cache for future reuse PLEASE NOTE: Cache options depend on specific implementationsvoid
MemoryManager. memset(INDArray array)
This method fills given INDArray with zeroes. -
Uses of INDArray in org.nd4j.linalg.api.memory.stash
Fields in org.nd4j.linalg.api.memory.stash with type parameters of type INDArray Modifier and Type Field Description protected Map<T,INDArray>
BasicStash. stash
Methods in org.nd4j.linalg.api.memory.stash that return INDArray Modifier and Type Method Description INDArray
BasicStash. get(T key)
INDArray
Stash. get(T key)
Methods in org.nd4j.linalg.api.memory.stash with parameters of type INDArray Modifier and Type Method Description void
BasicStash. put(T key, INDArray object)
void
Stash. put(T key, INDArray object)
-
Uses of INDArray in org.nd4j.linalg.api.ndarray
Classes in org.nd4j.linalg.api.ndarray that implement INDArray Modifier and Type Class Description class
BaseNDArray
Methods in org.nd4j.linalg.api.ndarray that return INDArray Modifier and Type Method Description INDArray
BaseNDArray. add(Number n)
INDArray
BaseNDArray. add(Number n, INDArray result)
INDArray
BaseNDArray. add(INDArray other)
INDArray
BaseNDArray. add(INDArray other, INDArray result)
INDArray
INDArray. add(Number n)
Scalar addition (cloning)INDArray
INDArray. add(Number n, INDArray result)
Addition of this ndarray.INDArray
INDArray. add(INDArray other)
Element-wise copy addition of two NDArraysINDArray
INDArray. add(INDArray other, INDArray result)
Element-wise copy addition of two NDArraysINDArray
BaseNDArray. addColumnVector(INDArray columnVector)
INDArray
INDArray. addColumnVector(INDArray columnVector)
Addition of a column vector (copy)INDArray
BaseNDArray. addi(Number n)
INDArray
BaseNDArray. addi(Number n, INDArray result)
INDArray
BaseNDArray. addi(INDArray other)
INDArray
BaseNDArray. addi(INDArray other, INDArray result)
INDArray
INDArray. addi(Number n)
In place scalar additionINDArray
INDArray. addi(Number n, INDArray result)
In place additionINDArray
INDArray. addi(INDArray other)
in place (element wise) addition of two NDArraysINDArray
INDArray. addi(INDArray other, INDArray result)
in place (element wise) addition of two NDArraysINDArray
BaseNDArray. addiColumnVector(INDArray columnVector)
INDArray
INDArray. addiColumnVector(INDArray columnVector)
In place addition of a column vectorINDArray
BaseNDArray. addiRowVector(INDArray rowVector)
INDArray
INDArray. addiRowVector(INDArray rowVector)
In place addition of a row vectorINDArray
BaseNDArray. addRowVector(INDArray rowVector)
INDArray
INDArray. addRowVector(INDArray rowVector)
Addition of a row vector (copy)INDArray
BaseNDArray. amax(int... dimension)
INDArray
INDArray. amax(int... dimension)
Returns the absolute overall max of this ndarray along given dimensionsINDArray
BaseNDArray. amean(int... dimension)
INDArray
INDArray. amean(int... dimension)
Returns the absolute overall mean of this ndarrayINDArray
BaseNDArray. amin(int... dimension)
INDArray
INDArray. amin(int... dimension)
Returns minimum (absolute) value in this INDArray, along the specified dimensionsINDArray
BaseNDArray. argMax(int... dimension)
INDArray
INDArray. argMax(int... dimension)
This method returns index of highest value along specified dimension(s)INDArray
BaseNDArray. assign(boolean value)
INDArray
BaseNDArray. assign(Number value)
INDArray
BaseNDArray. assign(INDArray arr)
INDArray
INDArray. assign(boolean value)
Set all entries of the ndarray to the specified valueINDArray
INDArray. assign(Number value)
Set all entries of the ndarray to the specified valueINDArray
INDArray. assign(INDArray arr)
Assign all of the elements in the given ndarray to this ndarrayINDArray
BaseNDArray. assignIf(INDArray arr, Condition condition)
INDArray
INDArray. assignIf(INDArray arr, Condition condition)
Assign all elements from given ndarray that are matching given condition, ndarray to this ndarrayINDArray
BaseNDArray. broadcast(long... shape)
INDArray
BaseNDArray. broadcast(INDArray result)
INDArray
INDArray. broadcast(long... shape)
Broadcasts this ndarray to be the specified shapeINDArray
INDArray. broadcast(INDArray result)
Broadcasts this ndarray to be the specified shapeINDArray
BaseNDArray. castTo(DataType dataType)
INDArray
INDArray. castTo(DataType dataType)
This method cast elements of this INDArray to new data typeINDArray
BaseNDArray. cond(Condition condition)
INDArray
INDArray. cond(Condition condition)
Returns a binary INDArray with value 'true' if the element matches the specified condition and 'false' otherwiseprotected INDArray
BaseNDArray. create(int[] shape)
protected INDArray
BaseNDArray. create(int[] shape, char ordering)
protected INDArray
BaseNDArray. create(int[] shape, int[] strides, long offset)
protected INDArray
BaseNDArray. create(int rows, int length)
protected INDArray
BaseNDArray. create(DataBuffer buffer)
protected INDArray
BaseNDArray. create(DataBuffer data, int[] shape, int[] strides)
protected INDArray
BaseNDArray. create(DataBuffer data, int[] newShape, int[] newStrides, long offset)
protected INDArray
BaseNDArray. create(DataBuffer data, int[] newShape, int[] newStrides, long offset, char ordering)
protected INDArray
BaseNDArray. create(DataBuffer data, int[] shape, long offset)
protected INDArray
BaseNDArray. create(DataBuffer data, long[] newShape, long[] newStrides, long offset, char ordering)
protected INDArray
BaseNDArray. createScalar(double d)
protected INDArray
BaseNDArray. createScalarForIndex(long i, boolean applyOffset)
INDArray
BaseNDArray. cumsum(int dimension)
INDArray
INDArray. cumsum(int dimension)
Returns the cumulative sum along a dimension.INDArray
BaseNDArray. cumsumi(int dimension)
INDArray
INDArray. cumsumi(int dimension)
Returns the cumulative sum along a dimension.INDArray
BaseNDArray. detach()
INDArray
INDArray. detach()
This method detaches INDArray from Workspace, returning copy.INDArray
BaseNDArray. dimShuffle(Object[] rearrange, int[] newOrder, boolean[] broadCastable)
Deprecated.INDArray
BaseNDArray. dimShuffle(Object[] rearrange, long[] newOrder, boolean[] broadCastable)
Dimshuffle: an extension of permute that adds the ability to broadcast various dimensions.INDArray
INDArray. dimShuffle(Object[] rearrange, int[] newOrder, boolean[] broadCastable)
Dimshuffle: an extension of permute that adds the ability to broadcast various dimensions.INDArray
INDArray. dimShuffle(Object[] rearrange, long[] newOrder, boolean[] broadCastable)
INDArray
BaseNDArray. div(Number n)
INDArray
BaseNDArray. div(Number n, INDArray result)
INDArray
BaseNDArray. div(INDArray other)
INDArray
BaseNDArray. div(INDArray other, INDArray result)
INDArray
INDArray. div(Number n)
Division by a numberINDArray
INDArray. div(Number n, INDArray result)
Division if ndarray by numberINDArray
INDArray. div(INDArray other)
Copy (element wise) division of two NDArraysINDArray
INDArray. div(INDArray other, INDArray result)
copy (element wise) division of two NDArraysINDArray
BaseNDArray. divColumnVector(INDArray columnVector)
INDArray
INDArray. divColumnVector(INDArray columnVector)
Division of a column vector (copy)INDArray
BaseNDArray. divi(Number n)
INDArray
BaseNDArray. divi(Number n, INDArray result)
INDArray
BaseNDArray. divi(INDArray other)
INDArray
BaseNDArray. divi(INDArray other, INDArray result)
INDArray
INDArray. divi(Number n)
In place scalar divisionINDArray
INDArray. divi(Number n, INDArray result)
In place division of this ndarrayINDArray
INDArray. divi(INDArray other)
in place (element wise) division of two NDArraysINDArray
INDArray. divi(INDArray other, INDArray result)
in place (element wise) division of two NDArraysINDArray
BaseNDArray. diviColumnVector(INDArray columnVector)
INDArray
INDArray. diviColumnVector(INDArray columnVector)
In place division of a column vectorINDArray
BaseNDArray. diviRowVector(INDArray rowVector)
INDArray
INDArray. diviRowVector(INDArray rowVector)
In place division of a row vectorINDArray
BaseNDArray. divRowVector(INDArray rowVector)
INDArray
INDArray. divRowVector(INDArray rowVector)
Division of a row vector (copy)protected INDArray
BaseNDArray. doColumnWise(INDArray columnVector, char operation)
Do a row wise op (a,s,m,d) a : add s : subtract m : multiply d : divide h : reverse subtraction t : reverse divisionprotected INDArray
BaseNDArray. doRowWise(INDArray rowVector, char operation)
Do a row wise op (a,s,m,d) a : add s : subtract m : multiply d : divide h : reverse subtraction t : reverse divisionINDArray
BaseNDArray. dup()
INDArray
BaseNDArray. dup(char order)
INDArray
INDArray. dup()
Returns a copy of this ndarrayINDArray
INDArray. dup(char order)
Returns a copy of this ndarray, where the returned ndarray has the specified orderINDArray
BaseNDArray. entropy(int... dimension)
INDArray
INDArray. entropy(int... dimension)
Returns entropy value for this INDArray along specified dimension(s)INDArray
BaseNDArray. eps(Number other)
INDArray
BaseNDArray. eps(INDArray other)
INDArray
INDArray. eps(Number other)
Returns the binary ndarray for "Epsilon equals" comparison.INDArray
INDArray. eps(INDArray other)
Returns the binary ndarray for "Epsilon equals" comparison.INDArray
BaseNDArray. eq(Number other)
INDArray
BaseNDArray. eq(INDArray other)
INDArray
INDArray. eq(Number other)
Returns the binary ndarray for "Equals" comparison.INDArray
INDArray. eq(INDArray other)
Returns the binary ndarray for "Equals" comparison.INDArray
BaseNDArray. fmod(Number denominator)
INDArray
BaseNDArray. fmod(Number denominator, INDArray result)
INDArray
BaseNDArray. fmod(INDArray denominator)
INDArray
BaseNDArray. fmod(INDArray denominator, INDArray result)
INDArray
INDArray. fmod(Number denominator)
remainder of division by scalar.INDArray
INDArray. fmod(Number denominator, INDArray result)
remainder of division by scalar.INDArray
INDArray. fmod(INDArray denominator)
remainder of divisionINDArray
INDArray. fmod(INDArray denominator, INDArray result)
remainder of divisionINDArray
BaseNDArray. fmodi(Number denominator)
INDArray
BaseNDArray. fmodi(INDArray denominator)
INDArray
INDArray. fmodi(Number denominator)
In place fmodINDArray
INDArray. fmodi(INDArray denominator)
In place fmodINDArray
BaseNDArray. get(INDArray indices)
INDArray
BaseNDArray. get(INDArrayIndex... indexes)
INDArray
INDArray. get(INDArray indices)
Get the elements from this ndarray based on the specified indicesINDArray
INDArray. get(INDArrayIndex... indexes)
Returns a subset of this array based on the specified indexesINDArray
BaseNDArray. getColumn(long c)
INDArray
BaseNDArray. getColumn(long c, boolean keepDim)
INDArray
INDArray. getColumn(long i)
Returns the specified column.INDArray
INDArray. getColumn(long i, boolean keepDim)
Returns the specified column.INDArray
BaseNDArray. getColumns(int... cindices)
INDArray
INDArray. getColumns(int... columns)
Get an INDArray comprised of the specified columns only.INDArray
BaseNDArray. getRow(long r)
INDArray
BaseNDArray. getRow(long r, boolean keepDim)
INDArray
INDArray. getRow(long i)
Returns the specified row as a 1D vector.INDArray
INDArray. getRow(long i, boolean keepDim)
Returns the specified row.INDArray
BaseNDArray. getRows(int[] rindices)
INDArray
INDArray. getRows(int... rows)
Get an INDArray comprised of the specified rows only.INDArray
BaseNDArray. getScalar(int[] indexes)
INDArray
BaseNDArray. getScalar(long i)
INDArray
BaseNDArray. getScalar(long... indexes)
INDArray
BaseNDArray. getScalar(long row, long column)
INDArray
INDArray. getScalar(int... indices)
Returns the elements at the specified indicesINDArray
INDArray. getScalar(long i)
Returns the element at the specified indexINDArray
INDArray. getScalar(long... indices)
SeegetScalar(int[])
INDArray
INDArray. getScalar(long row, long column)
Returns the element at the specified row/columnINDArray
BaseNDArray. getWhere(Number comp, Condition condition)
INDArray
BaseNDArray. getWhere(INDArray comp, Condition condition)
INDArray
INDArray. getWhere(Number comp, Condition condition)
Boolean indexing: Return the element if it fulfills the condition in result arrayINDArray
INDArray. getWhere(INDArray comp, Condition condition)
Boolean indexing: Return the element if it fulfills the condition in result arrayINDArray
BaseNDArray. gt(Number other)
INDArray
BaseNDArray. gt(INDArray other)
INDArray
INDArray. gt(Number other)
Returns the binary ndarray for "Greater" comparison.INDArray
INDArray. gt(INDArray other)
Returns the binary ndarray for "Greater Than" comparison.INDArray
BaseNDArray. gte(Number other)
INDArray
INDArray. gte(Number other)
Returns binary ndarray for "Greter or equals" comparison.INDArray
BaseNDArray. isInfinite()
INDArray
INDArray. isInfinite()
Returns the binary NDArray with value true where this array's entries are infinite, or false where they are not infiniteINDArray
BaseNDArray. isNaN()
INDArray
INDArray. isNaN()
Returns the binary NDArray with value true where this array's entries are NaN, or false where they are not infiniteINDArray
BaseNDArray. leverage()
INDArray
INDArray. leverage()
This method detaches INDArray from current Workspace, and attaches it to Workspace above, if any.INDArray
BaseNDArray. leverageOrDetach(String id)
INDArray
INDArray. leverageOrDetach(String id)
This method detaches INDArray from current Workspace, and attaches it to Workspace with a given Id, if a workspace with the given ID is open and active.INDArray
BaseNDArray. leverageTo(String id)
INDArray
BaseNDArray. leverageTo(String id, boolean enforceExistence)
INDArray
INDArray. leverageTo(String id)
This method detaches INDArray from current Workspace, and attaches it to Workspace with a given Id - if a workspace with that ID exists.INDArray
INDArray. leverageTo(String id, boolean enforceExistence)
This method detaches INDArray from current Workspace, and attaches it to Workspace with a given Id.INDArray
BaseNDArray. like()
INDArray
INDArray. like()
This method returns empty array with the same dtype/order/shape as this oneINDArray
BaseNDArray. logEntropy(int... dimension)
INDArray
INDArray. logEntropy(int... dimension)
Returns log entropy value for this INDArray along specified dimension(s)INDArray
BaseNDArray. lt(Number other)
INDArray
BaseNDArray. lt(INDArray other)
INDArray
INDArray. lt(Number other)
Returns the binary ndarray for "Less" comparison.INDArray
INDArray. lt(INDArray other)
Returns the binary ndarray for "Less" comparison.INDArray
BaseNDArray. lte(Number other)
INDArray
INDArray. lte(Number other)
Returns the binary ndarray for "Less or equals" comparison.INDArray
BaseNDArray. match(Number comp, Condition condition)
INDArray
BaseNDArray. match(INDArray comp, Condition condition)
INDArray
INDArray. match(Number comp, Condition condition)
Returns a maskINDArray
INDArray. match(INDArray comp, Condition condition)
Return a mask on whether each element matches the given conditionINDArray
BaseNDArray. max(boolean keepDims, int... dimension)
INDArray
BaseNDArray. max(int... dimension)
INDArray
INDArray. max(boolean keepDims, int... dimension)
Returns the overall max of this ndarray along given dimensionsINDArray
INDArray. max(int... dimension)
Returns the overall max of this ndarray along given dimensionsINDArray
BaseNDArray. mean(boolean keepDims, int... dimension)
INDArray
BaseNDArray. mean(int... dimension)
INDArray
BaseNDArray. mean(@NonNull INDArray result, boolean keepDims, int... dimension)
INDArray
BaseNDArray. mean(@NonNull INDArray result, int... dimension)
INDArray
INDArray. mean(boolean keepDims, int... dimension)
Returns the overall mean of this ndarrayINDArray
INDArray. mean(int... dimension)
Returns the overall mean of this ndarrayINDArray
INDArray. mean(INDArray result, boolean keepDims, int... dimension)
Returns the overall mean of this ndarrayINDArray
INDArray. mean(INDArray result, int... dimension)
Returns the overall mean of this ndarrayINDArray
BaseNDArray. median(int... dimension)
INDArray
INDArray. median(int... dimension)
This method returns median along given dimension(s)INDArray
BaseNDArray. migrate()
INDArray
BaseNDArray. migrate(boolean detachOnNoWs)
INDArray
INDArray. migrate()
This method pulls this INDArray into current Workspace.INDArray
INDArray. migrate(boolean detachOnNoWs)
This method pulls this INDArray into current Workspace, or optionally detaches if no workspace is present.
That is:
If current workspace is present/active, INDArray is migrated to it.
If no current workspace is present/active, one of two things occur: 1.INDArray
BaseNDArray. min(boolean keepDims, int... dimension)
INDArray
BaseNDArray. min(int... dimension)
INDArray
INDArray. min(boolean keepDims, int... dimension)
Returns the overall min of this ndarrayINDArray
INDArray. min(int... dimension)
Returns the overall min of this ndarrayINDArray
BaseNDArray. mmul(INDArray other)
INDArray
BaseNDArray. mmul(INDArray other, char resultOrder)
INDArray
BaseNDArray. mmul(INDArray other, MMulTranspose mMulTranspose)
INDArray
BaseNDArray. mmul(INDArray other, INDArray result)
Perform an copy matrix multiplicationINDArray
BaseNDArray. mmul(INDArray other, INDArray result, MMulTranspose mMulTranspose)
INDArray
INDArray. mmul(INDArray other)
Perform a copy matrix multiplicationINDArray
INDArray. mmul(INDArray other, char resultOrder)
Perform a copy matrix multiplicationINDArray
INDArray. mmul(INDArray other, MMulTranspose mMulTranspose)
Perform a copy matrix multiplicationINDArray
INDArray. mmul(INDArray other, INDArray result)
Perform an copy matrix multiplicationINDArray
INDArray. mmul(INDArray other, INDArray result, MMulTranspose mMulTranspose)
Perform an copy matrix multiplicationINDArray
BaseNDArray. mmuli(INDArray other)
INDArray
BaseNDArray. mmuli(INDArray other, MMulTranspose transpose)
INDArray
BaseNDArray. mmuli(INDArray other, INDArray result)
INDArray
BaseNDArray. mmuli(INDArray other, INDArray result, MMulTranspose transpose)
INDArray
INDArray. mmuli(INDArray other)
Perform an inplace matrix multiplicationINDArray
INDArray. mmuli(INDArray other, MMulTranspose transpose)
Perform an copy matrix multiplicationINDArray
INDArray. mmuli(INDArray other, INDArray result)
Perform an inplace matrix multiplicationINDArray
INDArray. mmuli(INDArray other, INDArray result, MMulTranspose transpose)
Perform an in place matrix multiplicationINDArray
BaseNDArray. mul(Number n)
INDArray
BaseNDArray. mul(Number n, INDArray result)
INDArray
BaseNDArray. mul(INDArray other)
INDArray
BaseNDArray. mul(INDArray other, INDArray result)
INDArray
INDArray. mul(Number n)
Scalar multiplication (copy)INDArray
INDArray. mul(Number n, INDArray result)
Multiplication of ndarray.INDArray
INDArray. mul(INDArray other)
copy (element wise) multiplication of two NDArraysINDArray
INDArray. mul(INDArray other, INDArray result)
copy (element wise) multiplication of two NDArraysINDArray
BaseNDArray. mulColumnVector(INDArray columnVector)
INDArray
INDArray. mulColumnVector(INDArray columnVector)
Multiplication of a column vector (copy)INDArray
BaseNDArray. muli(Number n)
INDArray
BaseNDArray. muli(Number n, INDArray result)
INDArray
BaseNDArray. muli(INDArray other)
INDArray
BaseNDArray. muli(INDArray other, INDArray result)
INDArray
INDArray. muli(Number n)
In place scalar multiplicationINDArray
INDArray. muli(Number n, INDArray result)
In place multiplication of this ndarrayINDArray
INDArray. muli(INDArray other)
in place (element wise) multiplication of two NDArraysINDArray
INDArray. muli(INDArray other, INDArray result)
in place (element wise) multiplication of two NDArraysINDArray
BaseNDArray. muliColumnVector(INDArray columnVector)
INDArray
INDArray. muliColumnVector(INDArray columnVector)
In place multiplication of a column vectorINDArray
BaseNDArray. muliRowVector(INDArray rowVector)
INDArray
INDArray. muliRowVector(INDArray rowVector)
In place multiplication of a row vectorINDArray
BaseNDArray. mulRowVector(INDArray rowVector)
INDArray
INDArray. mulRowVector(INDArray rowVector)
Multiplication of a row vector (copy)INDArray
BaseNDArray. neg()
INDArray
INDArray. neg()
Returns the ndarray negative (cloned)INDArray
BaseNDArray. negi()
INDArray
INDArray. negi()
In place setting of the negative version of this ndarrayINDArray
BaseNDArray. neq(Number other)
INDArray
BaseNDArray. neq(INDArray other)
INDArray
INDArray. neq(Number other)
Returns the binary ndarray for "Not equals" comparison.INDArray
INDArray. neq(INDArray other)
Returns the binary ndarray for "Not equals" comparison.protected INDArray
BaseNDArray. newShape(long[] newShape, char ordering)
INDArray
BaseNDArray. norm1(boolean keepDims, int... dimension)
INDArray
BaseNDArray. norm1(int... dimension)
INDArray
INDArray. norm1(boolean keepDims, int... dimension)
Returns the norm1 (L1 norm, i.e., sum of absolute values; also known as Taxicab or Manhattan norm) along the specified dimensionINDArray
INDArray. norm1(int... dimension)
Returns the norm1 (L1 norm, i.e., sum of absolute values; also known as Taxicab or Manhattan norm) along the specified dimensionINDArray
BaseNDArray. norm2(boolean keepDims, int... dimension)
INDArray
BaseNDArray. norm2(int... dimension)
INDArray
INDArray. norm2(boolean keepDims, int... dimension)
Returns the norm2 (L2 norm, sqrt(sum(x_i^2), also known as Euclidean norm) along the specified dimension(s)INDArray
INDArray. norm2(int... dimension)
Returns the norm2 (L2 norm, sqrt(sum(x_i^2), also known as Euclidean norm) along the specified dimension(s)INDArray
BaseNDArray. normmax(boolean keepDims, int... dimension)
INDArray
BaseNDArray. normmax(int... dimension)
INDArray
INDArray. normmax(boolean keepDims, int... dimension)
Returns the max norm (aka infinity norm, equal to the maximum absolute value) along the specified dimension(s)INDArray
INDArray. normmax(int... dimension)
Returns the max norm (aka infinity norm, equal to the maximum absolute value) along the specified dimension(s)INDArray
BaseNDArray. percentile(Number quantile, int... dimension)
INDArray
INDArray. percentile(Number percentile, int... dimension)
This method returns percentile along given dimension(s)INDArray
BaseNDArray. permute(int... rearrange)
INDArray
INDArray. permute(int... rearrange)
See: http://www.mathworks.com/help/matlab/ref/permute.htmlINDArray
BaseNDArray. permutei(int... rearrange)
INDArray
INDArray. permutei(int... rearrange)
An in-place version of permute.INDArray
BaseNDArray. prod(boolean keepDims, int... dimension)
INDArray
BaseNDArray. prod(int... dimension)
INDArray
INDArray. prod(boolean keepDims, int... dimension)
Returns the product along a given dimensionINDArray
INDArray. prod(int... dimension)
Returns the product along a given dimensionINDArray
BaseNDArray. put(int[] indices, INDArray element)
INDArray
BaseNDArray. put(int i, int j, Number element)
INDArray
BaseNDArray. put(int i, int j, INDArray element)
INDArray
BaseNDArray. put(int i, INDArray element)
INDArray
BaseNDArray. put(INDArray indices, INDArray element)
INDArray
BaseNDArray. put(INDArrayIndex[] indices, Number element)
INDArray
BaseNDArray. put(INDArrayIndex[] indices, INDArray element)
INDArray
INDArray. put(int[] indices, INDArray element)
Inserts the element at the specified indexINDArray
INDArray. put(int i, int j, Number element)
Inserts the element at the specified indexINDArray
INDArray. put(int i, int j, INDArray element)
Inserts the element at the specified indexINDArray
INDArray. put(int i, INDArray element)
Inserts the element at the specified indexINDArray
INDArray. put(INDArray indices, INDArray element)
Put element in to the indices denoted by the indices ndarray.INDArray
INDArray. put(INDArrayIndex[] indices, Number element)
Put the elements of the ndarray in to the specified indicesINDArray
INDArray. put(INDArrayIndex[] indices, INDArray element)
Put the elements of the ndarray in to the specified indicesINDArray
BaseNDArray. putColumn(int column, INDArray toPut)
INDArray
INDArray. putColumn(int column, INDArray toPut)
Insert a column in to this array Will throw an exception if this ndarray is not a matrixINDArray
BaseNDArray. putiColumnVector(INDArray columnVector)
INDArray
INDArray. putiColumnVector(INDArray columnVector)
In place assignment of a column vectorINDArray
BaseNDArray. putiRowVector(INDArray rowVector)
INDArray
INDArray. putiRowVector(INDArray rowVector)
in place assignment of row vector, to each row of this arrayINDArray
BaseNDArray. putRow(long row, INDArray toPut)
INDArray
INDArray. putRow(long row, INDArray toPut)
Insert a row in to this array Will throw an exception if this ndarray is not a matrixINDArray
BaseNDArray. putScalar(int[] indexes, double value)
INDArray
BaseNDArray. putScalar(int[] indexes, float value)
INDArray
BaseNDArray. putScalar(int[] indexes, int value)
INDArray
BaseNDArray. putScalar(long[] indexes, double value)
INDArray
BaseNDArray. putScalar(long[] indexes, float value)
INDArray
BaseNDArray. putScalar(long[] indexes, int value)
INDArray
BaseNDArray. putScalar(long i, double value)
INDArray
BaseNDArray. putScalar(long i, float value)
INDArray
BaseNDArray. putScalar(long i, int value)
INDArray
BaseNDArray. putScalar(long row, long col, double value)
INDArray
BaseNDArray. putScalar(long dim0, long dim1, long dim2, double value)
INDArray
BaseNDArray. putScalar(long dim0, long dim1, long dim2, long dim3, double value)
INDArray
INDArray. putScalar(int[] i, double value)
Insert the item at the specified indicesINDArray
INDArray. putScalar(int[] indexes, float value)
Put the specified float value at the specified indices in this arrayINDArray
INDArray. putScalar(int[] indexes, int value)
Put the specified integer value at the specified indices in this arrayINDArray
INDArray. putScalar(long[] i, double value)
INDArray
INDArray. putScalar(long[] i, float value)
INDArray
INDArray. putScalar(long[] i, int value)
INDArray
INDArray. putScalar(long i, double value)
Insert the number linearly in to the ndarrayINDArray
INDArray. putScalar(long i, float value)
Insert a scalar float at the specified indexINDArray
INDArray. putScalar(long i, int value)
Insert a scalar int at the specified indexINDArray
INDArray. putScalar(long row, long col, double value)
Insert the value at the specified indices, in a 2d (rank 2) NDArray
Equivalent toputScalar(int[], double)
but avoids int[] creationINDArray
INDArray. putScalar(long dim0, long dim1, long dim2, double value)
Insert the value at the specified indices, in a 3d (rank 3) NDArray
Equivalent toputScalar(int[], double)
but avoids int[] creationINDArray
INDArray. putScalar(long dim0, long dim1, long dim2, long dim3, double value)
Insert the value at the specified indices, in a 4d (rank 4) NDArray
Equivalent toputScalar(int[], double)
but avoids int[] creationINDArray
BaseNDArray. putScalarUnsafe(long offset, double value)
INDArray
INDArray. putScalarUnsafe(long offset, double value)
Insert a scalar at the given linear offsetINDArray
BaseNDArray. putSlice(int slice, INDArray put)
INDArray
INDArray. putSlice(int slice, INDArray put)
Assigns the given matrix (put) to the specified sliceINDArray
BaseNDArray. putWhere(Number comp, Number put, Condition condition)
INDArray
BaseNDArray. putWhere(Number comp, INDArray put, Condition condition)
INDArray
BaseNDArray. putWhere(INDArray comp, INDArray put, Condition condition)
INDArray
INDArray. putWhere(Number comp, Number put, Condition condition)
Assign the element according to the comparison arrayINDArray
INDArray. putWhere(Number comp, INDArray put, Condition condition)
Assign the element according to the comparison arrayINDArray
INDArray. putWhere(INDArray comp, INDArray put, Condition condition)
Assign the element according to the comparison arrayINDArray
BaseNDArray. putWhereWithMask(INDArray mask, Number put)
INDArray
BaseNDArray. putWhereWithMask(INDArray mask, INDArray put)
INDArray
INDArray. putWhereWithMask(INDArray mask, Number put)
Use a pre computed mask for assigning arraysINDArray
INDArray. putWhereWithMask(INDArray mask, INDArray put)
Use a pre computed mask for assigning arraysINDArray
BaseNDArray. ravel()
INDArray
BaseNDArray. ravel(char ordering)
INDArray
INDArray. ravel()
Returns a flattened version (row vector) of this ndarrayINDArray
INDArray. ravel(char order)
Returns a flattened version (row vector) of this ndarrayINDArray
BaseNDArray. rdiv(Number n)
INDArray
BaseNDArray. rdiv(Number n, INDArray result)
INDArray
BaseNDArray. rdiv(INDArray other)
INDArray
BaseNDArray. rdiv(INDArray other, INDArray result)
INDArray
INDArray. rdiv(Number n)
Reverse division with a scalar - i.e., (n / thisArrayValues)INDArray
INDArray. rdiv(Number n, INDArray result)
Reverse division (number / ndarray)INDArray
INDArray. rdiv(INDArray other)
Reverse division, elements wise.INDArray
INDArray. rdiv(INDArray other, INDArray result)
Reverse divisionINDArray
BaseNDArray. rdivColumnVector(INDArray columnVector)
INDArray
INDArray. rdivColumnVector(INDArray columnVector)
Reverse division of a column vector (copy)INDArray
BaseNDArray. rdivi(Number n)
INDArray
BaseNDArray. rdivi(Number n, INDArray result)
INDArray
BaseNDArray. rdivi(INDArray other)
INDArray
BaseNDArray. rdivi(INDArray other, INDArray result)
INDArray
INDArray. rdivi(Number n)
In place reverse division - i.e., (n / thisArrayValues)INDArray
INDArray. rdivi(Number n, INDArray result)
Reverse in place divisionINDArray
INDArray. rdivi(INDArray other)
Reverse divsion (in place).INDArray
INDArray. rdivi(INDArray other, INDArray result)
Reverse division (in-place)INDArray
BaseNDArray. rdiviColumnVector(INDArray columnVector)
INDArray
INDArray. rdiviColumnVector(INDArray columnVector)
In place reverse divison of a column vectorINDArray
BaseNDArray. rdiviRowVector(INDArray rowVector)
INDArray
INDArray. rdiviRowVector(INDArray rowVector)
In place reverse division of a column vectorINDArray
BaseNDArray. rdivRowVector(INDArray rowVector)
INDArray
INDArray. rdivRowVector(INDArray rowVector)
Reverse division of a column vector (copy)INDArray
BaseNDArray. remainder(Number denominator)
INDArray
BaseNDArray. remainder(Number denominator, INDArray result)
INDArray
BaseNDArray. remainder(INDArray denominator)
INDArray
BaseNDArray. remainder(INDArray denominator, INDArray result)
INDArray
INDArray. remainder(Number denominator)
The scalar remainderINDArray
INDArray. remainder(Number denominator, INDArray result)
The scalar remainderINDArray
INDArray. remainder(INDArray denominator)
Remainder operatorINDArray
INDArray. remainder(INDArray denominator, INDArray result)
Remainder operatorINDArray
BaseNDArray. remainderi(Number denominator)
INDArray
BaseNDArray. remainderi(INDArray denominator)
INDArray
INDArray. remainderi(Number denominator)
In place remainderINDArray
INDArray. remainderi(INDArray denominator)
In place remainderINDArray
BaseNDArray. repeat(int dimension, long... repeats)
INDArray
INDArray. repeat(int dimension, long... repeats)
Repeat elements along a specified dimension.INDArray
BaseNDArray. replaceWhere(INDArray arr, Condition condition)
INDArray
INDArray. replaceWhere(INDArray arr, Condition condition)
Replaces all elements in this ndarray that are matching give condition, with corresponding elements from given arrayINDArray
BaseNDArray. repmat(int[] shape)
Deprecated.INDArray
BaseNDArray. repmat(long[] shape)
INDArray
INDArray. repmat(int... shape)
Deprecated.INDArray
INDArray. repmat(long... shape)
Replicate and tile array to fill out to the given shape See: https://github.com/numpy/numpy/blob/master/numpy/matlib.py#L310-L358INDArray
BaseNDArray. reshape(char order, boolean enforceView, long... newShape)
INDArray
BaseNDArray. reshape(char order, int... newShape)
Deprecated.INDArray
BaseNDArray. reshape(char order, int rows, int columns)
INDArray
BaseNDArray. reshape(char order, long... newShape)
INDArray
BaseNDArray. reshape(int[] shape)
Reshape the ndarray in to the specified dimensions, possible errors being thrown for invalid shapes Note here that one dimension can be -1.INDArray
BaseNDArray. reshape(long... shape)
INDArray
BaseNDArray. reshape(long newRows, long newColumns)
INDArray
INDArray. reshape(char order, boolean enforceView, long... newShape)
Reshapes the ndarray (note: it's not possible to change the length of the ndarray).INDArray
INDArray. reshape(char order, int... newShape)
Reshapes the ndarray (can't change the length of the ndarray).INDArray
INDArray. reshape(char order, int rows, int columns)
Reshapes the ndarray (can't change the length of the ndarray).INDArray
INDArray. reshape(char order, long... newShape)
Reshapes the ndarray (can't change the length of the ndarray).INDArray
INDArray. reshape(int[] shape)
Seereshape(long[])
INDArray
INDArray. reshape(long... newShape)
Reshapes the ndarray (can't change the length of the ndarray).INDArray
INDArray. reshape(long rows, long columns)
Reshapes the ndarray (can't change the length of the ndarray).INDArray
BaseNDArray. rsub(Number n)
INDArray
BaseNDArray. rsub(Number n, INDArray result)
INDArray
BaseNDArray. rsub(INDArray other)
INDArray
BaseNDArray. rsub(INDArray other, INDArray result)
INDArray
INDArray. rsub(Number n)
Reverse subtraction with duplicates - i.e., (n - thisArrayValues)INDArray
INDArray. rsub(Number n, INDArray result)
Reverse subtractionINDArray
INDArray. rsub(INDArray other)
Element-wise reverse subtraction (copy op).INDArray
INDArray. rsub(INDArray other, INDArray result)
Reverse subtractionINDArray
BaseNDArray. rsubColumnVector(INDArray columnVector)
INDArray
INDArray. rsubColumnVector(INDArray columnVector)
Reverse subtraction of a column vector (copy)INDArray
BaseNDArray. rsubi(Number n)
INDArray
BaseNDArray. rsubi(Number n, INDArray result)
INDArray
BaseNDArray. rsubi(INDArray other)
INDArray
BaseNDArray. rsubi(INDArray other, INDArray result)
INDArray
INDArray. rsubi(Number n)
Reverse subtraction in place - i.e., (n - thisArrayValues)INDArray
INDArray. rsubi(Number n, INDArray result)
Reverse in place subtractionINDArray
INDArray. rsubi(INDArray other)
Element-wise reverse subtraction (in the place op) - i.e., other - thisINDArray
INDArray. rsubi(INDArray other, INDArray result)
Reverse subtraction (in-place)INDArray
BaseNDArray. rsubiColumnVector(INDArray columnVector)
INDArray
INDArray. rsubiColumnVector(INDArray columnVector)
In place reverse subtraction of a column vectorINDArray
BaseNDArray. rsubiRowVector(INDArray rowVector)
INDArray
INDArray. rsubiRowVector(INDArray rowVector)
In place reverse subtraction of a row vectorINDArray
BaseNDArray. rsubRowVector(INDArray rowVector)
INDArray
INDArray. rsubRowVector(INDArray rowVector)
Reverse subtraction of a row vector (copy)INDArray
BaseNDArray. shannonEntropy(int... dimension)
INDArray
INDArray. shannonEntropy(int... dimension)
Returns Shannon entropy value for this INDArray along specified dimension(s)INDArray
BaseNDArray. slice(long slice)
INDArray
BaseNDArray. slice(long slice, int dimension)
INDArray
INDArray. slice(long i)
Returns the specified slice of this ndarrayINDArray
INDArray. slice(long i, int dimension)
Returns the slice of this from the specified dimensionINDArray
BaseNDArray. std(boolean biasCorrected, boolean keepDims, int... dimension)
INDArray
BaseNDArray. std(boolean biasCorrected, int... dimension)
INDArray
BaseNDArray. std(int... dimension)
INDArray
INDArray. std(boolean biasCorrected, boolean keepDims, int... dimension)
Standard deviation of an ndarray along a dimensionINDArray
INDArray. std(boolean biasCorrected, int... dimension)
Standard deviation of an ndarray along a dimensionINDArray
INDArray. std(int... dimension)
Standard deviation of an INDArray along one or more dimensionsINDArray
BaseNDArray. sub(Number n)
INDArray
BaseNDArray. sub(Number n, INDArray result)
INDArray
BaseNDArray. sub(INDArray other)
INDArray
BaseNDArray. sub(INDArray other, INDArray result)
INDArray
INDArray. sub(Number n)
Scalar subtraction (copied)INDArray
INDArray. sub(Number n, INDArray result)
Subtraction of this ndarrayINDArray
INDArray. sub(INDArray other)
copy subtraction of two NDArraysINDArray
INDArray. sub(INDArray other, INDArray result)
copy subtraction of two NDArraysINDArray
BaseNDArray. subColumnVector(INDArray columnVector)
INDArray
INDArray. subColumnVector(INDArray columnVector)
Subtraction of a column vector (copy)INDArray
BaseNDArray. subi(Number n)
INDArray
BaseNDArray. subi(Number n, INDArray result)
INDArray
BaseNDArray. subi(INDArray other)
INDArray
BaseNDArray. subi(INDArray other, INDArray result)
in place subtraction of two matricesINDArray
INDArray. subi(Number n)
In place scalar subtractionINDArray
INDArray. subi(Number n, INDArray result)
In place subtraction of this ndarrayINDArray
INDArray. subi(INDArray other)
in place (element wise) subtraction of two NDArraysINDArray
INDArray. subi(INDArray other, INDArray result)
in place (element wise) subtraction of two NDArraysINDArray
BaseNDArray. subiColumnVector(INDArray columnVector)
INDArray
INDArray. subiColumnVector(INDArray columnVector)
In place subtraction of a column vectorINDArray
BaseNDArray. subiRowVector(INDArray rowVector)
INDArray
INDArray. subiRowVector(INDArray rowVector)
In place subtraction of a row vectorINDArray
BaseNDArray. subRowVector(INDArray rowVector)
INDArray
INDArray. subRowVector(INDArray rowVector)
Subtraction of a row vector (copy)INDArray
BaseNDArray. sum(boolean keepDim, int... dimension)
INDArray
BaseNDArray. sum(int... dimension)
INDArray
BaseNDArray. sum(@NonNull INDArray result, boolean keepDims, int... dimension)
INDArray
BaseNDArray. sum(@NonNull INDArray result, int... dimension)
INDArray
INDArray. sum(boolean keepDims, int... dimension)
Returns the sum along the last dimension of this ndarrayINDArray
INDArray. sum(int... dimension)
Returns the sum along the last dimension of this ndarrayINDArray
INDArray. sum(INDArray result, boolean keepDims, int... dimension)
Returns the sum along the last dimension of this ndarrayINDArray
INDArray. sum(INDArray result, int... dimension)
Returns the sum along the last dimension of this ndarrayINDArray
BaseNDArray. swapAxes(int dimension, int with)
INDArray
INDArray. swapAxes(int dimension, int with)
Mainly here for people coming from numpy.INDArray
BaseNDArray. tensorAlongDimension(long index, int... dimension)
INDArray
INDArray. tensorAlongDimension(long index, int... dimension)
Get the vector along a particular dimensionINDArray
BaseNDArray. transpose()
INDArray
INDArray. transpose()
Flip the rows and columns of a matrixINDArray
BaseNDArray. transposei()
Return transposed version of this matrix.INDArray
INDArray. transposei()
Flip the rows and columns of a matrix, in-placeINDArray
BaseNDArray. ulike()
INDArray
INDArray. ulike()
This method returns uninitialized array with the same dtype/order/shape as this oneINDArray
INDArray. unsafeDuplication()
Perform efficient (but unsafe) duplication.INDArray
INDArray. unsafeDuplication(boolean blocking)
Perform efficient (but unsafe) duplication.INDArray
BaseNDArray. var(boolean biasCorrected, int... dimension)
INDArray
BaseNDArray. var(int... dimension)
INDArray
INDArray. var(boolean biasCorrected, int... dimension)
Returns the overall variance of this ndarrayINDArray
INDArray. var(int... dimension)
Returns the overall variance of this ndarrayINDArray
BaseNDArray. vectorAlongDimension(int index, int dimension)
INDArray
INDArray. vectorAlongDimension(int index, int dimension)
Get the vector along a particular dimensionMethods in org.nd4j.linalg.api.ndarray with parameters of type INDArray Modifier and Type Method Description INDArray
BaseNDArray. add(Number n, INDArray result)
INDArray
BaseNDArray. add(INDArray other)
INDArray
BaseNDArray. add(INDArray other, INDArray result)
INDArray
INDArray. add(Number n, INDArray result)
Addition of this ndarray.INDArray
INDArray. add(INDArray other)
Element-wise copy addition of two NDArraysINDArray
INDArray. add(INDArray other, INDArray result)
Element-wise copy addition of two NDArraysINDArray
BaseNDArray. addColumnVector(INDArray columnVector)
INDArray
INDArray. addColumnVector(INDArray columnVector)
Addition of a column vector (copy)INDArray
BaseNDArray. addi(Number n, INDArray result)
INDArray
BaseNDArray. addi(INDArray other)
INDArray
BaseNDArray. addi(INDArray other, INDArray result)
INDArray
INDArray. addi(Number n, INDArray result)
In place additionINDArray
INDArray. addi(INDArray other)
in place (element wise) addition of two NDArraysINDArray
INDArray. addi(INDArray other, INDArray result)
in place (element wise) addition of two NDArraysINDArray
BaseNDArray. addiColumnVector(INDArray columnVector)
INDArray
INDArray. addiColumnVector(INDArray columnVector)
In place addition of a column vectorINDArray
BaseNDArray. addiRowVector(INDArray rowVector)
INDArray
INDArray. addiRowVector(INDArray rowVector)
In place addition of a row vectorINDArray
BaseNDArray. addRowVector(INDArray rowVector)
INDArray
INDArray. addRowVector(INDArray rowVector)
Addition of a row vector (copy)protected void
BaseNDArray. assertSlice(INDArray put, long slice)
INDArray
BaseNDArray. assign(INDArray arr)
INDArray
INDArray. assign(INDArray arr)
Assign all of the elements in the given ndarray to this ndarrayINDArray
BaseNDArray. assignIf(INDArray arr, Condition condition)
INDArray
INDArray. assignIf(INDArray arr, Condition condition)
Assign all elements from given ndarray that are matching given condition, ndarray to this ndarrayINDArray
BaseNDArray. broadcast(INDArray result)
INDArray
INDArray. broadcast(INDArray result)
Broadcasts this ndarray to be the specified shapedouble
BaseNDArray. distance1(INDArray other)
double
INDArray. distance1(INDArray other)
Returns the (1-norm) distance.double
BaseNDArray. distance2(INDArray other)
double
INDArray. distance2(INDArray other)
Returns the (euclidean) distance.INDArray
BaseNDArray. div(Number n, INDArray result)
INDArray
BaseNDArray. div(INDArray other)
INDArray
BaseNDArray. div(INDArray other, INDArray result)
INDArray
INDArray. div(Number n, INDArray result)
Division if ndarray by numberINDArray
INDArray. div(INDArray other)
Copy (element wise) division of two NDArraysINDArray
INDArray. div(INDArray other, INDArray result)
copy (element wise) division of two NDArraysINDArray
BaseNDArray. divColumnVector(INDArray columnVector)
INDArray
INDArray. divColumnVector(INDArray columnVector)
Division of a column vector (copy)INDArray
BaseNDArray. divi(Number n, INDArray result)
INDArray
BaseNDArray. divi(INDArray other)
INDArray
BaseNDArray. divi(INDArray other, INDArray result)
INDArray
INDArray. divi(Number n, INDArray result)
In place division of this ndarrayINDArray
INDArray. divi(INDArray other)
in place (element wise) division of two NDArraysINDArray
INDArray. divi(INDArray other, INDArray result)
in place (element wise) division of two NDArraysINDArray
BaseNDArray. diviColumnVector(INDArray columnVector)
INDArray
INDArray. diviColumnVector(INDArray columnVector)
In place division of a column vectorINDArray
BaseNDArray. diviRowVector(INDArray rowVector)
INDArray
INDArray. diviRowVector(INDArray rowVector)
In place division of a row vectorINDArray
BaseNDArray. divRowVector(INDArray rowVector)
INDArray
INDArray. divRowVector(INDArray rowVector)
Division of a row vector (copy)protected INDArray
BaseNDArray. doColumnWise(INDArray columnVector, char operation)
Do a row wise op (a,s,m,d) a : add s : subtract m : multiply d : divide h : reverse subtraction t : reverse divisionprotected INDArray
BaseNDArray. doRowWise(INDArray rowVector, char operation)
Do a row wise op (a,s,m,d) a : add s : subtract m : multiply d : divide h : reverse subtraction t : reverse divisionINDArray
BaseNDArray. eps(INDArray other)
INDArray
INDArray. eps(INDArray other)
Returns the binary ndarray for "Epsilon equals" comparison.INDArray
BaseNDArray. eq(INDArray other)
INDArray
INDArray. eq(INDArray other)
Returns the binary ndarray for "Equals" comparison.boolean
BaseNDArray. equalShapes(@NonNull INDArray other)
boolean
INDArray. equalShapes(INDArray other)
This method checks 2 INDArrays for equal shapes.
Shapes are considered equal if:
(a) Both arrays have equal rank, and
(b) size(0)...size(rank()-1) are equal for both arraysINDArray
BaseNDArray. fmod(Number denominator, INDArray result)
INDArray
BaseNDArray. fmod(INDArray denominator)
INDArray
BaseNDArray. fmod(INDArray denominator, INDArray result)
INDArray
INDArray. fmod(Number denominator, INDArray result)
remainder of division by scalar.INDArray
INDArray. fmod(INDArray denominator)
remainder of divisionINDArray
INDArray. fmod(INDArray denominator, INDArray result)
remainder of divisionINDArray
BaseNDArray. fmodi(INDArray denominator)
INDArray
INDArray. fmodi(INDArray denominator)
In place fmodINDArray
BaseNDArray. get(INDArray indices)
INDArray
INDArray. get(INDArray indices)
Get the elements from this ndarray based on the specified indicesprotected double
BaseNDArray. getPercentile(Number quantile, INDArray sorted)
INDArray
BaseNDArray. getWhere(INDArray comp, Condition condition)
INDArray
INDArray. getWhere(INDArray comp, Condition condition)
Boolean indexing: Return the element if it fulfills the condition in result arrayINDArray
BaseNDArray. gt(INDArray other)
INDArray
INDArray. gt(INDArray other)
Returns the binary ndarray for "Greater Than" comparison.INDArray
BaseNDArray. lt(INDArray other)
INDArray
INDArray. lt(INDArray other)
Returns the binary ndarray for "Less" comparison.INDArray
BaseNDArray. match(INDArray comp, Condition condition)
INDArray
INDArray. match(INDArray comp, Condition condition)
Return a mask on whether each element matches the given conditionINDArray
BaseNDArray. mean(@NonNull INDArray result, boolean keepDims, int... dimension)
INDArray
BaseNDArray. mean(@NonNull INDArray result, int... dimension)
INDArray
INDArray. mean(INDArray result, boolean keepDims, int... dimension)
Returns the overall mean of this ndarrayINDArray
INDArray. mean(INDArray result, int... dimension)
Returns the overall mean of this ndarrayINDArray
BaseNDArray. mmul(INDArray other)
INDArray
BaseNDArray. mmul(INDArray other, char resultOrder)
INDArray
BaseNDArray. mmul(INDArray other, MMulTranspose mMulTranspose)
INDArray
BaseNDArray. mmul(INDArray other, INDArray result)
Perform an copy matrix multiplicationINDArray
BaseNDArray. mmul(INDArray other, INDArray result, MMulTranspose mMulTranspose)
INDArray
INDArray. mmul(INDArray other)
Perform a copy matrix multiplicationINDArray
INDArray. mmul(INDArray other, char resultOrder)
Perform a copy matrix multiplicationINDArray
INDArray. mmul(INDArray other, MMulTranspose mMulTranspose)
Perform a copy matrix multiplicationINDArray
INDArray. mmul(INDArray other, INDArray result)
Perform an copy matrix multiplicationINDArray
INDArray. mmul(INDArray other, INDArray result, MMulTranspose mMulTranspose)
Perform an copy matrix multiplicationINDArray
BaseNDArray. mmuli(INDArray other)
INDArray
BaseNDArray. mmuli(INDArray other, MMulTranspose transpose)
INDArray
BaseNDArray. mmuli(INDArray other, INDArray result)
INDArray
BaseNDArray. mmuli(INDArray other, INDArray result, MMulTranspose transpose)
INDArray
INDArray. mmuli(INDArray other)
Perform an inplace matrix multiplicationINDArray
INDArray. mmuli(INDArray other, MMulTranspose transpose)
Perform an copy matrix multiplicationINDArray
INDArray. mmuli(INDArray other, INDArray result)
Perform an inplace matrix multiplicationINDArray
INDArray. mmuli(INDArray other, INDArray result, MMulTranspose transpose)
Perform an in place matrix multiplicationINDArray
BaseNDArray. mul(Number n, INDArray result)
INDArray
BaseNDArray. mul(INDArray other)
INDArray
BaseNDArray. mul(INDArray other, INDArray result)
INDArray
INDArray. mul(Number n, INDArray result)
Multiplication of ndarray.INDArray
INDArray. mul(INDArray other)
copy (element wise) multiplication of two NDArraysINDArray
INDArray. mul(INDArray other, INDArray result)
copy (element wise) multiplication of two NDArraysINDArray
BaseNDArray. mulColumnVector(INDArray columnVector)
INDArray
INDArray. mulColumnVector(INDArray columnVector)
Multiplication of a column vector (copy)INDArray
BaseNDArray. muli(Number n, INDArray result)
INDArray
BaseNDArray. muli(INDArray other)
INDArray
BaseNDArray. muli(INDArray other, INDArray result)
INDArray
INDArray. muli(Number n, INDArray result)
In place multiplication of this ndarrayINDArray
INDArray. muli(INDArray other)
in place (element wise) multiplication of two NDArraysINDArray
INDArray. muli(INDArray other, INDArray result)
in place (element wise) multiplication of two NDArraysINDArray
BaseNDArray. muliColumnVector(INDArray columnVector)
INDArray
INDArray. muliColumnVector(INDArray columnVector)
In place multiplication of a column vectorINDArray
BaseNDArray. muliRowVector(INDArray rowVector)
INDArray
INDArray. muliRowVector(INDArray rowVector)
In place multiplication of a row vectorINDArray
BaseNDArray. mulRowVector(INDArray rowVector)
INDArray
INDArray. mulRowVector(INDArray rowVector)
Multiplication of a row vector (copy)INDArray
BaseNDArray. neq(INDArray other)
INDArray
INDArray. neq(INDArray other)
Returns the binary ndarray for "Not equals" comparison.INDArray
BaseNDArray. put(int[] indices, INDArray element)
INDArray
BaseNDArray. put(int i, int j, INDArray element)
INDArray
BaseNDArray. put(int i, INDArray element)
INDArray
BaseNDArray. put(INDArray indices, INDArray element)
INDArray
BaseNDArray. put(INDArrayIndex[] indices, INDArray element)
INDArray
INDArray. put(int[] indices, INDArray element)
Inserts the element at the specified indexINDArray
INDArray. put(int i, int j, INDArray element)
Inserts the element at the specified indexINDArray
INDArray. put(int i, INDArray element)
Inserts the element at the specified indexINDArray
INDArray. put(INDArray indices, INDArray element)
Put element in to the indices denoted by the indices ndarray.INDArray
INDArray. put(INDArrayIndex[] indices, INDArray element)
Put the elements of the ndarray in to the specified indicesINDArray
BaseNDArray. putColumn(int column, INDArray toPut)
INDArray
INDArray. putColumn(int column, INDArray toPut)
Insert a column in to this array Will throw an exception if this ndarray is not a matrixINDArray
BaseNDArray. putiColumnVector(INDArray columnVector)
INDArray
INDArray. putiColumnVector(INDArray columnVector)
In place assignment of a column vectorINDArray
BaseNDArray. putiRowVector(INDArray rowVector)
INDArray
INDArray. putiRowVector(INDArray rowVector)
in place assignment of row vector, to each row of this arrayINDArray
BaseNDArray. putRow(long row, INDArray toPut)
INDArray
INDArray. putRow(long row, INDArray toPut)
Insert a row in to this array Will throw an exception if this ndarray is not a matrixINDArray
BaseNDArray. putSlice(int slice, INDArray put)
INDArray
INDArray. putSlice(int slice, INDArray put)
Assigns the given matrix (put) to the specified sliceINDArray
BaseNDArray. putWhere(Number comp, INDArray put, Condition condition)
INDArray
BaseNDArray. putWhere(INDArray comp, INDArray put, Condition condition)
INDArray
INDArray. putWhere(Number comp, INDArray put, Condition condition)
Assign the element according to the comparison arrayINDArray
INDArray. putWhere(INDArray comp, INDArray put, Condition condition)
Assign the element according to the comparison arrayINDArray
BaseNDArray. putWhereWithMask(INDArray mask, Number put)
INDArray
BaseNDArray. putWhereWithMask(INDArray mask, INDArray put)
INDArray
INDArray. putWhereWithMask(INDArray mask, Number put)
Use a pre computed mask for assigning arraysINDArray
INDArray. putWhereWithMask(INDArray mask, INDArray put)
Use a pre computed mask for assigning arraysINDArray
BaseNDArray. rdiv(Number n, INDArray result)
INDArray
BaseNDArray. rdiv(INDArray other)
INDArray
BaseNDArray. rdiv(INDArray other, INDArray result)
INDArray
INDArray. rdiv(Number n, INDArray result)
Reverse division (number / ndarray)INDArray
INDArray. rdiv(INDArray other)
Reverse division, elements wise.INDArray
INDArray. rdiv(INDArray other, INDArray result)
Reverse divisionINDArray
BaseNDArray. rdivColumnVector(INDArray columnVector)
INDArray
INDArray. rdivColumnVector(INDArray columnVector)
Reverse division of a column vector (copy)INDArray
BaseNDArray. rdivi(Number n, INDArray result)
INDArray
BaseNDArray. rdivi(INDArray other)
INDArray
BaseNDArray. rdivi(INDArray other, INDArray result)
INDArray
INDArray. rdivi(Number n, INDArray result)
Reverse in place divisionINDArray
INDArray. rdivi(INDArray other)
Reverse divsion (in place).INDArray
INDArray. rdivi(INDArray other, INDArray result)
Reverse division (in-place)INDArray
BaseNDArray. rdiviColumnVector(INDArray columnVector)
INDArray
INDArray. rdiviColumnVector(INDArray columnVector)
In place reverse divison of a column vectorINDArray
BaseNDArray. rdiviRowVector(INDArray rowVector)
INDArray
INDArray. rdiviRowVector(INDArray rowVector)
In place reverse division of a column vectorINDArray
BaseNDArray. rdivRowVector(INDArray rowVector)
INDArray
INDArray. rdivRowVector(INDArray rowVector)
Reverse division of a column vector (copy)INDArray
BaseNDArray. remainder(Number denominator, INDArray result)
INDArray
BaseNDArray. remainder(INDArray denominator)
INDArray
BaseNDArray. remainder(INDArray denominator, INDArray result)
INDArray
INDArray. remainder(Number denominator, INDArray result)
The scalar remainderINDArray
INDArray. remainder(INDArray denominator)
Remainder operatorINDArray
INDArray. remainder(INDArray denominator, INDArray result)
Remainder operatorINDArray
BaseNDArray. remainderi(INDArray denominator)
INDArray
INDArray. remainderi(INDArray denominator)
In place remainderINDArray
BaseNDArray. replaceWhere(INDArray arr, Condition condition)
INDArray
INDArray. replaceWhere(INDArray arr, Condition condition)
Replaces all elements in this ndarray that are matching give condition, with corresponding elements from given arrayINDArray
BaseNDArray. rsub(Number n, INDArray result)
INDArray
BaseNDArray. rsub(INDArray other)
INDArray
BaseNDArray. rsub(INDArray other, INDArray result)
INDArray
INDArray. rsub(Number n, INDArray result)
Reverse subtractionINDArray
INDArray. rsub(INDArray other)
Element-wise reverse subtraction (copy op).INDArray
INDArray. rsub(INDArray other, INDArray result)
Reverse subtractionINDArray
BaseNDArray. rsubColumnVector(INDArray columnVector)
INDArray
INDArray. rsubColumnVector(INDArray columnVector)
Reverse subtraction of a column vector (copy)INDArray
BaseNDArray. rsubi(Number n, INDArray result)
INDArray
BaseNDArray. rsubi(INDArray other)
INDArray
BaseNDArray. rsubi(INDArray other, INDArray result)
INDArray
INDArray. rsubi(Number n, INDArray result)
Reverse in place subtractionINDArray
INDArray. rsubi(INDArray other)
Element-wise reverse subtraction (in the place op) - i.e., other - thisINDArray
INDArray. rsubi(INDArray other, INDArray result)
Reverse subtraction (in-place)INDArray
BaseNDArray. rsubiColumnVector(INDArray columnVector)
INDArray
INDArray. rsubiColumnVector(INDArray columnVector)
In place reverse subtraction of a column vectorINDArray
BaseNDArray. rsubiRowVector(INDArray rowVector)
INDArray
INDArray. rsubiRowVector(INDArray rowVector)
In place reverse subtraction of a row vectorINDArray
BaseNDArray. rsubRowVector(INDArray rowVector)
INDArray
INDArray. rsubRowVector(INDArray rowVector)
Reverse subtraction of a row vector (copy)double
BaseNDArray. squaredDistance(INDArray other)
double
INDArray. squaredDistance(INDArray other)
Returns the square of the Euclidean distance.INDArray
BaseNDArray. sub(Number n, INDArray result)
INDArray
BaseNDArray. sub(INDArray other)
INDArray
BaseNDArray. sub(INDArray other, INDArray result)
INDArray
INDArray. sub(Number n, INDArray result)
Subtraction of this ndarrayINDArray
INDArray. sub(INDArray other)
copy subtraction of two NDArraysINDArray
INDArray. sub(INDArray other, INDArray result)
copy subtraction of two NDArraysINDArray
BaseNDArray. subColumnVector(INDArray columnVector)
INDArray
INDArray. subColumnVector(INDArray columnVector)
Subtraction of a column vector (copy)INDArray
BaseNDArray. subi(Number n, INDArray result)
INDArray
BaseNDArray. subi(INDArray other)
INDArray
BaseNDArray. subi(INDArray other, INDArray result)
in place subtraction of two matricesINDArray
INDArray. subi(Number n, INDArray result)
In place subtraction of this ndarrayINDArray
INDArray. subi(INDArray other)
in place (element wise) subtraction of two NDArraysINDArray
INDArray. subi(INDArray other, INDArray result)
in place (element wise) subtraction of two NDArraysINDArray
BaseNDArray. subiColumnVector(INDArray columnVector)
INDArray
INDArray. subiColumnVector(INDArray columnVector)
In place subtraction of a column vectorINDArray
BaseNDArray. subiRowVector(INDArray rowVector)
INDArray
INDArray. subiRowVector(INDArray rowVector)
In place subtraction of a row vectorINDArray
BaseNDArray. subRowVector(INDArray rowVector)
INDArray
INDArray. subRowVector(INDArray rowVector)
Subtraction of a row vector (copy)INDArray
BaseNDArray. sum(@NonNull INDArray result, boolean keepDims, int... dimension)
INDArray
BaseNDArray. sum(@NonNull INDArray result, int... dimension)
INDArray
INDArray. sum(INDArray result, boolean keepDims, int... dimension)
Returns the sum along the last dimension of this ndarrayINDArray
INDArray. sum(INDArray result, int... dimension)
Returns the sum along the last dimension of this ndarrayMethod parameters in org.nd4j.linalg.api.ndarray with type arguments of type INDArray Modifier and Type Method Description void
BaseNDArray. sliceVectors(List<INDArray> list)
void
INDArray. sliceVectors(List<INDArray> list)
Flattens the array for linear indexing in list.Constructors in org.nd4j.linalg.api.ndarray with parameters of type INDArray Constructor Description BaseNDArrayProxy(INDArray anInstance)
Constructor parameters in org.nd4j.linalg.api.ndarray with type arguments of type INDArray Constructor Description BaseNDArray(List<INDArray> slices, int[] shape)
Create an ndarray from the specified slices.BaseNDArray(List<INDArray> slices, int[] shape, char ordering)
Create an ndarray from the specified slices.BaseNDArray(List<INDArray> slices, int[] shape, int[] stride)
Create an ndarray from the specified slices.BaseNDArray(List<INDArray> slices, int[] shape, int[] stride, char ordering)
Create an ndarray from the specified slices.BaseNDArray(List<INDArray> slices, long[] shape)
BaseNDArray(List<INDArray> slices, long[] shape, char ordering)
BaseNDArray(List<INDArray> slices, long[] shape, long[] stride)
BaseNDArray(List<INDArray> slices, long[] shape, long[] stride, char ordering)
-
Uses of INDArray in org.nd4j.linalg.api.ops
Fields in org.nd4j.linalg.api.ops declared as INDArray Modifier and Type Field Description protected INDArray
BaseOp. dimensionz
protected INDArray
BaseOp. x
protected INDArray
BaseOp. y
protected INDArray
BaseOp. z
Fields in org.nd4j.linalg.api.ops with type parameters of type INDArray Modifier and Type Field Description protected Map<Integer,INDArray>
BaseOpContext. fastpath_in
protected Map<Integer,INDArray>
BaseOpContext. fastpath_out
protected List<INDArray>
DynamicCustomOp. inputArguments
protected List<INDArray>
DynamicCustomOp. outputArguments
Methods in org.nd4j.linalg.api.ops that return INDArray Modifier and Type Method Description INDArray
BaseOp. dimensions()
INDArray
BaseReduceSameOp. dimensions()
INDArray
BroadcastOp. dimensions()
INDArray
IndexAccumulation. dimensions()
This method returns dimensions for this opINDArray
ReduceOp. dimensions()
This method returns dimensions for this opINDArray
ScalarOp. dimensions()
This method returns target dimensions for this opINDArray
DynamicCustomOp. generateFake(long... shape)
Generate fake data forDynamicCustomOp.computeArrays()
of the given shape with the data typeNd4j.defaultFloatingPointType()
INDArray
DynamicCustomOp. generateFake(DataType dataType, long... shape)
Generate fake data forDynamicCustomOp.computeArrays()
of the the given shape with the given data typeINDArray
BaseOp. getInputArgument(int index)
INDArray
CustomOp. getInputArgument(int index)
INDArray
DynamicCustomOp. getInputArgument(int index)
INDArray
BaseOpContext. getInputArray(int idx)
INDArray
OpContext. getInputArray(int idx)
INDArray
CustomOp. getOutputArgument(int index)
INDArray
DynamicCustomOp. getOutputArgument(int index)
INDArray
BaseOpContext. getOutputArray(int i)
INDArray
OpContext. getOutputArray(int i)
INDArray
LossFunction. input()
The trueINDArray
BaseReduceOp. noOp()
INDArray
ReduceOp. noOp()
Returns the no op version of the input Basically when a reduce can't happen (eg: sum(0) on a row vector) you have a no op state for a given reduction.INDArray
LossFunction. output()
The guessINDArray
BaseScalarBoolOp. scalar()
INDArray
BaseScalarOp. scalar()
INDArray
ScalarOp. scalar()
The normal scalarprotected static INDArray[]
DynamicCustomOp. wrapOrNull(INDArray in)
INDArray
BaseOp. x()
INDArray
Op. x()
The origin ndarrayINDArray
BaseOp. y()
INDArray
Op. y()
The pairwise op ndarrayINDArray
BaseOp. z()
INDArray
BaseScalarBoolOp. z()
INDArray
BaseScalarOp. z()
INDArray
BaseTransformOp. z()
INDArray
Op. z()
The resulting ndarrayMethods in org.nd4j.linalg.api.ops that return types with arguments of type INDArray Modifier and Type Method Description List<INDArray>
BaseOpContext. getInputArrays()
List<INDArray>
OpContext. getInputArrays()
This method returns List of input arrays defined within this contextList<INDArray>
BaseOpContext. getOutputArrays()
List<INDArray>
OpContext. getOutputArrays()
This method returns List of output arrays defined within this contextList<INDArray>
CustomOp. inputArguments()
List<INDArray>
DynamicCustomOp. inputArguments()
List<INDArray>
CustomOp. outputArguments()
List<INDArray>
DynamicCustomOp. outputArguments()
Methods in org.nd4j.linalg.api.ops with parameters of type INDArray Modifier and Type Method Description void
CustomOp. addInputArgument(INDArray... arg)
void
DynamicCustomOp. addInputArgument(INDArray... arg)
DynamicCustomOp.DynamicCustomOpsBuilder
DynamicCustomOp.DynamicCustomOpsBuilder. addInputs(INDArray... inputs)
This method takes arbitrary number of input INDArrays in, as Op input Note that this ACCUMULATES arguments.void
CustomOp. addOutputArgument(INDArray... arg)
void
DynamicCustomOp. addOutputArgument(INDArray... arg)
DynamicCustomOp.DynamicCustomOpsBuilder
DynamicCustomOp.DynamicCustomOpsBuilder. addOutputs(INDArray... outputs)
This method takes arbitrary number of output INDArrays in, to store operation result Note that this ACCUMULATES arguments.void
CustomOp. removeInputArgument(INDArray arg)
void
DynamicCustomOp. removeInputArgument(INDArray arg)
void
CustomOp. removeOutputArgument(INDArray arg)
void
DynamicCustomOp. removeOutputArgument(INDArray arg)
void
BaseOpContext. setArgs(INDArray[] inputArrs, long[] iArgs, DataType[] dArgs, double[] tArgs, boolean[] bArgs)
void
OpContext. setArgs(INDArray[] inputArrs, long[] iArgs, DataType[] dArgs, double[] tArgs, boolean[] bArgs)
set context argumentsvoid
DynamicCustomOp. setInputArgument(int index, INDArray input)
void
DynamicCustomOp. setInputArguments(INDArray... inputs)
void
BaseOpContext. setInputArray(int index, @NonNull INDArray array)
void
OpContext. setInputArray(int index, INDArray array)
This method adds INDArray as input argument for future op callvoid
BaseOpContext. setInputArrays(INDArray... arrays)
void
OpContext. setInputArrays(INDArray... arrays)
This method sets provided arrays as input arraysvoid
DynamicCustomOp. setOutputArgument(int index, INDArray output)
void
BaseOpContext. setOutputArray(int index, @NonNull INDArray array)
void
OpContext. setOutputArray(int index, INDArray array)
This method adds INDArray as output for future op callvoid
BaseOpContext. setOutputArrays(INDArray... arrays)
void
OpContext. setOutputArrays(INDArray... arrays)
This method sets provided arrays as output arraysvoid
BaseScalarBoolOp. setScalar(INDArray scalar)
void
BaseScalarOp. setScalar(INDArray scalar)
void
ScalarOp. setScalar(INDArray scalar)
void
BaseOp. setX(INDArray x)
void
Op. setX(INDArray x)
set x (the input ndarray)void
BaseOp. setY(INDArray y)
void
Op. setY(INDArray y)
set y(the pairwise ndarray)void
BaseOp. setZ(INDArray z)
void
Op. setZ(INDArray z)
set z (the solution ndarray)protected static INDArray[]
DynamicCustomOp. wrapOrNull(INDArray in)
Method parameters in org.nd4j.linalg.api.ops with type arguments of type INDArray Modifier and Type Method Description void
BaseOpContext. setInputArrays(@NonNull List<INDArray> arrays)
void
OpContext. setInputArrays(List<INDArray> arrays)
This method sets provided arrays as input arraysvoid
BaseOpContext. setOutputArrays(@NonNull List<INDArray> arrays)
void
OpContext. setOutputArrays(List<INDArray> arrays)
This method sets provided arrays as output arrays -
Uses of INDArray in org.nd4j.linalg.api.ops.aggregates
Fields in org.nd4j.linalg.api.ops.aggregates with type parameters of type INDArray Modifier and Type Field Description protected List<INDArray>
BaseAggregate. arguments
Methods in org.nd4j.linalg.api.ops.aggregates that return types with arguments of type INDArray Modifier and Type Method Description List<INDArray>
Aggregate. getArguments()
List<INDArray>
BaseAggregate. getArguments()
-
Uses of INDArray in org.nd4j.linalg.api.ops.aggregates.impl
Constructors in org.nd4j.linalg.api.ops.aggregates.impl with parameters of type INDArray Constructor Description AggregateAxpy(@NonNull INDArray x, @NonNull INDArray y, double alpha)
Deprecated.AggregateGEMM(int Order, int TransA, int TransB, int M, int N, int K, double alpha, @NonNull INDArray A, int lda, @NonNull INDArray B, int ldb, double beta, @NonNull INDArray C, int ldc)
-
Uses of INDArray in org.nd4j.linalg.api.ops.compat
Constructors in org.nd4j.linalg.api.ops.compat with parameters of type INDArray Constructor Description CompatSparseToDense(INDArray indices, INDArray shape, INDArray values)
CompatSparseToDense(INDArray indices, INDArray shape, INDArray values, INDArray defaultValue)
CompatStringSplit(INDArray strings, INDArray delimiter)
CompatStringSplit(INDArray strings, INDArray delimiter, INDArray indices, INDArray values)
-
Uses of INDArray in org.nd4j.linalg.api.ops.compression
Constructors in org.nd4j.linalg.api.ops.compression with parameters of type INDArray Constructor Description DecodeBitmap(@NonNull INDArray encoded, @NonNull INDArray updates)
DecodeThreshold(@NonNull INDArray encoded, @NonNull INDArray updates)
EncodeBitmap(@NonNull INDArray updates, float threshold)
EncodeBitmap(@NonNull INDArray updates, @NonNull INDArray encoded, @NonNull INDArray counter, float threshold)
EncodeThreshold(@NonNull INDArray updates, float threshold)
EncodeThreshold(@NonNull INDArray updates, float threshold, @NonNull Integer boundary)
EncodeThreshold(@NonNull INDArray updates, @NonNull INDArray encoded, float threshold, @NonNull Integer boundary)
-
Uses of INDArray in org.nd4j.linalg.api.ops.custom
Methods in org.nd4j.linalg.api.ops.custom that return INDArray Modifier and Type Method Description INDArray
BarnesHutSymmetrize. getSymmetrizedCols()
INDArray
BarnesHutSymmetrize. getSymmetrizedValues()
Method parameters in org.nd4j.linalg.api.ops.custom with type arguments of type INDArray Modifier and Type Method Description static ExecutionResult
Invoke. doInvoke(DifferentialFunction op, Map<String,INDArray> placeHolders, Map<String,SDValue> valuePlaceHolders)
Perform the invoke method.Constructors in org.nd4j.linalg.api.ops.custom with parameters of type INDArray Constructor Description AdjustContrast(@NonNull INDArray in, double factor)
AdjustContrast(@NonNull INDArray in, double factor, INDArray out)
AdjustHue(@NonNull INDArray in, double delta)
AdjustHue(@NonNull INDArray in, double delta, INDArray out)
AdjustSaturation(@NonNull INDArray in, double factor)
AdjustSaturation(@NonNull INDArray in, double factor, INDArray out)
BarnesEdgeForces(INDArray rowP, INDArray colP, INDArray valP, INDArray dataP, long N, INDArray output)
BarnesHutGains(INDArray output, INDArray input, INDArray gradx, INDArray epsilon)
BarnesHutSymmetrize(INDArray rowP, INDArray colP, INDArray valP, long N, INDArray outRows)
BetaInc(@NonNull INDArray a_input, @NonNull INDArray b_input, @NonNull INDArray x_input)
BetaInc(@NonNull INDArray a_input, @NonNull INDArray b_input, @NonNull INDArray x_input, INDArray output)
BitCast(INDArray in, int dataType)
BitCast(INDArray in, int dataType, INDArray out)
BitCast(INDArray in, DataType dataType)
BitCast(INDArray in, DataType dataType, INDArray out)
CompareAndBitpack(INDArray in, double threshold)
CompareAndBitpack(INDArray in, double threshold, INDArray out)
Digamma(@NonNull INDArray x)
DivideNoNan(INDArray in1, INDArray in2)
DivideNoNan(INDArray in1, INDArray in2, INDArray out)
DrawBoundingBoxes(INDArray images, INDArray boxes, INDArray colors)
DrawBoundingBoxes(INDArray images, INDArray boxes, INDArray colors, INDArray output)
Eig(INDArray input)
Eig(INDArray[] inputs, INDArray[] outputs)
Eig(INDArray[] inputs, INDArray[] outputs, List<Double> tArguments, int[] iArguments)
Eig(INDArray[] inputs, INDArray[] outputs, List<Double> tArguments, List<Integer> iArguments)
FakeQuantWithMinMaxVarsPerChannel(INDArray x, INDArray min, INDArray max)
FakeQuantWithMinMaxVarsPerChannel(INDArray x, INDArray min, INDArray max, boolean narrow)
FakeQuantWithMinMaxVarsPerChannel(INDArray x, INDArray min, INDArray max, int num_bits)
FakeQuantWithMinMaxVarsPerChannel(INDArray x, INDArray min, INDArray max, int num_bits, boolean narrow)
Flatten(char order, INDArray... inputs)
Flatten(INDArray[] inputs, String order)
Flatten(INDArray input, String order)
Flatten(INDArray output, INDArray... inputs)
FusedBatchNorm(@NonNull INDArray x, @NonNull INDArray scale, @NonNull INDArray offset, int dataFormat, int isTraining, INDArray yOut, INDArray batchMeanOut, INDArray batchMeanVar)
HsvToRgb(INDArray input)
Igamma(@NonNull INDArray n, @NonNull INDArray x)
Igamma(@NonNull INDArray n, @NonNull INDArray x, INDArray output)
Igammac(@NonNull INDArray n, @NonNull INDArray x)
Igammac(@NonNull INDArray n, @NonNull INDArray x, INDArray output)
KnnMinDistance(INDArray point, INDArray lowest, INDArray highest, INDArray distance)
Lgamma(@NonNull INDArray x)
Lgamma(@NonNull INDArray x, INDArray output)
LinearSolve(INDArray a, INDArray b)
LinearSolve(INDArray a, INDArray b, boolean adjoint)
Logdet(INDArray input)
Lstsq(@NonNull INDArray matrix, @NonNull INDArray rhs)
Lstsq(@NonNull INDArray matrix, @NonNull INDArray rhs, double l2_regularizer, boolean fast)
Lu(INDArray input)
MatrixBandPart(@NonNull INDArray input, int minLower, int maxUpper)
Polygamma(@NonNull INDArray n, @NonNull INDArray x)
Polygamma(@NonNull INDArray n, @NonNull INDArray x, INDArray output)
RandomCrop(@NonNull INDArray input, @NonNull INDArray shape)
RgbToGrayscale(INDArray image)
RgbToHsv(INDArray input)
RgbToYiq(INDArray input)
RgbToYuv(INDArray input)
Roll(@NonNull INDArray input, int shift)
Roll(@NonNull INDArray input, @NonNull INDArray shifts, @NonNull INDArray axes)
SpTreeCell(INDArray corner, INDArray width, INDArray point, long N, boolean contains)
ToggleBits(@NonNull INDArray input)
ToggleBits(@NonNull INDArray input, INDArray output)
TriangularSolve(INDArray matrix, INDArray rhs, boolean lower, boolean adjoint)
Triu(INDArray input, int diag)
YiqToRgb(INDArray input)
YuvToRgb(INDArray input)
-
Uses of INDArray in org.nd4j.linalg.api.ops.executioner
Methods in org.nd4j.linalg.api.ops.executioner that return INDArray Modifier and Type Method Description INDArray[]
DefaultOpExecutioner. allocateOutputArrays(CustomOp op)
INDArray[]
OpExecutioner. allocateOutputArrays(CustomOp op)
Equivalent to calliINDArray
DefaultOpExecutioner. bitmapDecode(INDArray encoded, INDArray target)
INDArray
OpExecutioner. bitmapDecode(INDArray encoded, INDArray target)
INDArray
DefaultOpExecutioner. bitmapEncode(INDArray indArray, double threshold)
INDArray
OpExecutioner. bitmapEncode(INDArray indArray, double threshold)
abstract INDArray
DefaultOpExecutioner. exec(BroadcastOp broadcast)
INDArray[]
DefaultOpExecutioner. exec(CustomOp op)
INDArray[]
DefaultOpExecutioner. exec(CustomOp op, OpContext context)
abstract INDArray
DefaultOpExecutioner. exec(Variance accumulation)
abstract INDArray
DefaultOpExecutioner. exec(IndexAccumulation op)
abstract INDArray
DefaultOpExecutioner. exec(Op op)
abstract INDArray
DefaultOpExecutioner. exec(Op op, OpContext opContext)
INDArray
DefaultOpExecutioner. exec(RandomOp op)
This method executes specified RandomOp using default RNG available via Nd4j.getRandom()abstract INDArray
DefaultOpExecutioner. exec(RandomOp op, Random rng)
This method executes specific RandomOp against specified RNGabstract INDArray
DefaultOpExecutioner. exec(ReduceOp op)
abstract INDArray
DefaultOpExecutioner. exec(ScalarOp op)
INDArray
OpExecutioner. exec(BroadcastOp broadcast)
Execute a broadcast op, possibly along one or more dimensionsINDArray[]
OpExecutioner. exec(CustomOp op)
INDArray[]
OpExecutioner. exec(CustomOp op, OpContext context)
This method executes op with given contextINDArray
OpExecutioner. exec(Variance accumulation)
Execute an variance accumulation op, possibly along one or more dimensionsINDArray
OpExecutioner. exec(IndexAccumulation indexAccum)
Execute an index accumulation along one or more dimensionsINDArray
OpExecutioner. exec(Op op)
Execute the operationINDArray
OpExecutioner. exec(Op op, OpContext opContext)
Execute the operationINDArray
OpExecutioner. exec(RandomOp op)
This method executes specified RandomOp using default RNG available via Nd4j.getRandom()INDArray
OpExecutioner. exec(RandomOp op, Random rng)
This method executes specific RandomOp against specified RNGINDArray
OpExecutioner. exec(ReduceOp reduceOp)
Execute a reduceOp, possibly along one or more dimensionsINDArray
OpExecutioner. exec(ScalarOp broadcast)
Execute ScalarOpINDArray
DefaultOpExecutioner. getX(Op op, OpContext oc)
INDArray
DefaultOpExecutioner. getY(Op op, OpContext oc)
INDArray
DefaultOpExecutioner. getZ(Op op, OpContext oc)
INDArray
DefaultOpExecutioner. thresholdDecode(INDArray encoded, INDArray target)
INDArray
OpExecutioner. thresholdDecode(INDArray encoded, INDArray target)
This method decodes thresholds array, and puts it into target arrayINDArray
DefaultOpExecutioner. thresholdEncode(INDArray input, double threshold)
INDArray
DefaultOpExecutioner. thresholdEncode(INDArray input, double threshold, Integer boundary)
INDArray
OpExecutioner. thresholdEncode(INDArray input, double threshold)
This method encodes array as thresholds, updating input array at the same timeINDArray
OpExecutioner. thresholdEncode(INDArray input, double threshold, Integer boundary)
This method encodes array as thresholds, updating input array at the same timeMethods in org.nd4j.linalg.api.ops.executioner that return types with arguments of type INDArray Modifier and Type Method Description Map<String,INDArray>
DefaultOpExecutioner. executeGraph(long id, Map<String,INDArray> map, Map<String,Integer> reverseMap)
Map<String,INDArray>
OpExecutioner. executeGraph(long id, Map<String,INDArray> map, Map<String,Integer> reverseMap)
Methods in org.nd4j.linalg.api.ops.executioner with parameters of type INDArray Modifier and Type Method Description String
DefaultOpExecutioner. arrayInfo(INDArray arr)
INDArray
DefaultOpExecutioner. bitmapDecode(INDArray encoded, INDArray target)
INDArray
OpExecutioner. bitmapDecode(INDArray encoded, INDArray target)
INDArray
DefaultOpExecutioner. bitmapEncode(INDArray indArray, double threshold)
long
DefaultOpExecutioner. bitmapEncode(INDArray indArray, INDArray target, double threshold)
INDArray
OpExecutioner. bitmapEncode(INDArray indArray, double threshold)
long
OpExecutioner. bitmapEncode(INDArray indArray, INDArray target, double threshold)
This method returns number of elements affected by encoderstatic void
OpExecutionerUtil. checkForAny(INDArray z)
static void
OpExecutionerUtil. checkForInf(INDArray z)
static void
OpExecutionerUtil. checkForNaN(INDArray z)
protected void
DefaultOpExecutioner. checkWorkspace(String opName, INDArray array)
protected static String
DefaultOpExecutioner. firstX(INDArray array, int x)
INDArrayStatistics
DefaultOpExecutioner. inspectArray(INDArray array)
INDArrayStatistics
OpExecutioner. inspectArray(INDArray array)
void
DefaultOpExecutioner. scatterUpdate(ScatterUpdate.UpdateOp op, INDArray array, INDArray indices, INDArray updates, int[] axis)
void
OpExecutioner. scatterUpdate(ScatterUpdate.UpdateOp op, @NonNull INDArray array, @NonNull INDArray indices, @NonNull INDArray updates, int[] axis)
Deprecated.void
DefaultOpExecutioner. setX(INDArray x, Op op, OpContext oc)
void
DefaultOpExecutioner. setY(INDArray y, Op op, OpContext oc)
void
DefaultOpExecutioner. setZ(INDArray z, Op op, OpContext oc)
TadPack
DefaultOpExecutioner. tadShapeInfoAndOffsets(INDArray array, int[] dimension)
TadPack
OpExecutioner. tadShapeInfoAndOffsets(INDArray array, int[] dimension)
This method returns host/device tad buffersINDArray
DefaultOpExecutioner. thresholdDecode(INDArray encoded, INDArray target)
INDArray
OpExecutioner. thresholdDecode(INDArray encoded, INDArray target)
This method decodes thresholds array, and puts it into target arrayINDArray
DefaultOpExecutioner. thresholdEncode(INDArray input, double threshold)
INDArray
DefaultOpExecutioner. thresholdEncode(INDArray input, double threshold, Integer boundary)
INDArray
OpExecutioner. thresholdEncode(INDArray input, double threshold)
This method encodes array as thresholds, updating input array at the same timeINDArray
OpExecutioner. thresholdEncode(INDArray input, double threshold, Integer boundary)
This method encodes array as thresholds, updating input array at the same timestatic void
DefaultOpExecutioner. validateDataType(DataType expectedType, Object op, INDArray... operands)
Method parameters in org.nd4j.linalg.api.ops.executioner with type arguments of type INDArray Modifier and Type Method Description Map<String,INDArray>
DefaultOpExecutioner. executeGraph(long id, Map<String,INDArray> map, Map<String,Integer> reverseMap)
Map<String,INDArray>
OpExecutioner. executeGraph(long id, Map<String,INDArray> map, Map<String,Integer> reverseMap)
-
Uses of INDArray in org.nd4j.linalg.api.ops.impl.broadcast
Constructors in org.nd4j.linalg.api.ops.impl.broadcast with parameters of type INDArray Constructor Description BiasAdd(@NonNull INDArray input, @NonNull INDArray bias, boolean nchw)
BiasAdd(@NonNull INDArray input, @NonNull INDArray bias, INDArray output, boolean nchw)
BiasAddGrad(@NonNull INDArray input, @NonNull INDArray bias, @NonNull INDArray gradient)
BiasAddGrad(@NonNull INDArray input, @NonNull INDArray bias, @NonNull INDArray gradient, boolean nchw)
BiasAddGrad(@NonNull INDArray input, @NonNull INDArray bias, @NonNull INDArray gradient, INDArray output)
BroadcastAddOp(INDArray x, INDArray y, INDArray z, int... dimension)
BroadcastAMax(INDArray x, INDArray y, INDArray z, int... dimension)
BroadcastAMin(INDArray x, INDArray y, INDArray z, int... dimension)
BroadcastCopyOp(INDArray x, INDArray y, INDArray z, int... dimension)
BroadcastDivOp(INDArray x, INDArray y, INDArray z, int... dimension)
BroadcastGradientArgs(INDArray x, INDArray y, INDArray z, int... dimension)
BroadcastMax(INDArray x, INDArray y, INDArray z, int... dimension)
BroadcastMin(INDArray x, INDArray y, INDArray z, int... dimension)
BroadcastMulOp(INDArray x, INDArray y, INDArray z, int... dimension)
BroadcastRDivOp(INDArray x, INDArray y, INDArray z, int... dimension)
BroadcastRSubOp(INDArray x, INDArray y, INDArray z, int... dimension)
BroadcastSubOp(INDArray x, INDArray y, INDArray z, int... dimension)
BroadcastTo(@NonNull INDArray input, @lombok.NonNull long[] shape, @NonNull INDArray output)
BroadcastTo(@NonNull INDArray input, @NonNull INDArray shape, @NonNull INDArray output)
-
Uses of INDArray in org.nd4j.linalg.api.ops.impl.broadcast.bool
Constructors in org.nd4j.linalg.api.ops.impl.broadcast.bool with parameters of type INDArray Constructor Description BroadcastEqualTo(INDArray x, INDArray y, INDArray z, int... dimension)
BroadcastGreaterThan(INDArray x, INDArray y, INDArray z, int... dimension)
BroadcastGreaterThanOrEqual(INDArray x, INDArray y, INDArray z, int... dimension)
BroadcastLessThan(INDArray x, INDArray y, INDArray z, int... dimension)
BroadcastLessThanOrEqual(INDArray x, INDArray y, INDArray z, int... dimension)
BroadcastNotEqual(INDArray x, INDArray y, INDArray z, int... dimension)
-
Uses of INDArray in org.nd4j.linalg.api.ops.impl.controlflow
Constructors in org.nd4j.linalg.api.ops.impl.controlflow with parameters of type INDArray Constructor Description Select(INDArray[] inputs, INDArray[] outputs)
Select(INDArray[] inputs, INDArray[] outputs, List<Double> tArguments, List<Integer> iArguments)
Where(String opName, INDArray[] inputs, INDArray[] outputs, List<Double> tArguments, List<Integer> iArguments)
Where(INDArray condition)
Where(INDArray[] inputs, INDArray[] outputs)
Where(INDArray x, INDArray condition)
Where(INDArray x, INDArray y, INDArray condition)
WhereNumpy(String opName, INDArray[] inputs, INDArray[] outputs, List<Double> tArguments, List<Integer> iArguments)
WhereNumpy(INDArray[] inputs, INDArray[] outputs)
WhereNumpy(INDArray x, INDArray y, INDArray condition)
-
Uses of INDArray in org.nd4j.linalg.api.ops.impl.controlflow.compat
Constructors in org.nd4j.linalg.api.ops.impl.controlflow.compat with parameters of type INDArray Constructor Description BaseCompatOp(INDArray... inputs)
Merge(INDArray... inputs)
Switch(INDArray input, INDArray predicate)
-
Uses of INDArray in org.nd4j.linalg.api.ops.impl.grid
Constructors in org.nd4j.linalg.api.ops.impl.grid with parameters of type INDArray Constructor Description BaseGridOp(INDArray x, INDArray y)
FreeGridOp(INDArray x, INDArray y)
-
Uses of INDArray in org.nd4j.linalg.api.ops.impl.image
Constructors in org.nd4j.linalg.api.ops.impl.image with parameters of type INDArray Constructor Description CropAndResize(@NonNull INDArray image, @NonNull INDArray cropBoxes, @NonNull INDArray boxIndices, @NonNull INDArray cropOutSize, @NonNull CropAndResize.Method method, double extrapolationValue, INDArray output)
CropAndResize(INDArray image, INDArray cropBoxes, INDArray boxIndices, INDArray cropOutSize, double extrapolationValue)
ExtractImagePatches(@NonNull INDArray input, @lombok.NonNull int[] kSizes, @lombok.NonNull int[] strides, @lombok.NonNull int[] rates, boolean sameMode)
ExtractImagePatches(INDArray input, int kH, int kW, int sH, int sW, int rH, int rW, boolean sameMode)
ImageResize(@NonNull INDArray in, @NonNull INDArray size, boolean preserveAspectRatio, boolean antialias, ImageResizeMethod method)
ImageResize(@NonNull INDArray in, @NonNull INDArray size, double bicubicCoefficient, boolean exclude_outside, boolean preserveAspectRatio)
ImageResize(@NonNull INDArray in, @NonNull INDArray size, double bicubicCoefficient, CoordinateTransformationMode coorMode, boolean exclude_outside, boolean preserveAspectRatio)
ImageResize(@NonNull INDArray in, @NonNull INDArray size, CoordinateTransformationMode coorMode, NearestMode nearestMode, boolean preserveAspectRatio, boolean antialias)
ImageResize(@NonNull INDArray in, @NonNull INDArray size, NearestMode nearestMode, boolean preserveAspectRatio, boolean antialias)
NonMaxSuppression(INDArray boxes, INDArray scores, int maxOutSize, double iouThreshold, double scoreThreshold)
NonMaxSuppressionWithOverlaps(INDArray boxes, INDArray scores, int maxOutSize, double iouThreshold, double scoreThreshold)
ResizeArea(@NonNull INDArray x, INDArray z, int height, int width, boolean alignCorners)
ResizeBicubic(@NonNull INDArray image, INDArray size, boolean alignCorners, boolean alignPixelCenters)
ResizeBilinear(@NonNull INDArray x, INDArray z, int height, int width, boolean alignCorners, boolean halfPixelCenters)
ResizeBilinear(INDArray input, int height, int width, boolean alignCorners, boolean halfPixelCenters)
-
Uses of INDArray in org.nd4j.linalg.api.ops.impl.indexaccum
Constructors in org.nd4j.linalg.api.ops.impl.indexaccum with parameters of type INDArray Constructor Description FirstIndex(INDArray x, boolean keepDims, @NonNull Condition condition, int... dimension)
FirstIndex(INDArray x, @NonNull Condition condition, boolean keepDims, int... dimension)
FirstIndex(INDArray x, @NonNull Condition condition, double eps, int... dimension)
FirstIndex(INDArray x, @NonNull Condition condition, int... dimension)
LastIndex(INDArray in, boolean keepDim, Condition condition, int... dimensions)
LastIndex(INDArray x, @NonNull Condition condition, boolean keepDim, int... dimensions)
LastIndex(INDArray x, @NonNull Condition condition, double eps, int... dimensions)
LastIndex(INDArray x, @NonNull Condition condition, int... dimensions)
-
Uses of INDArray in org.nd4j.linalg.api.ops.impl.indexaccum.custom
Constructors in org.nd4j.linalg.api.ops.impl.indexaccum.custom with parameters of type INDArray Constructor Description ArgAmax(INDArray[] inputs)
ArgAmax(INDArray[] inputs, int[] dim)
ArgAmax(INDArray[] inputs, INDArray[] outputs)
ArgAmax(INDArray[] inputs, INDArray[] outputs, boolean keepDims)
ArgAmax(INDArray[] inputs, INDArray[] outputs, boolean keepDims, int... dimensions)
ArgAmin(INDArray[] inputs)
ArgAmin(INDArray[] inputs, int[] dim)
ArgAmin(INDArray[] inputs, INDArray[] outputs)
ArgAmin(INDArray[] inputs, INDArray[] outputs, boolean keepDims)
ArgAmin(INDArray[] inputs, INDArray[] outputs, boolean keepDims, int... dimensions)
ArgMax(String opName, INDArray[] inputs, INDArray[] outputs, boolean keepDims, boolean isComplex, boolean isEmptyReduce, int[] dimensions)
ArgMax(String opName, INDArray[] inputs, INDArray[] outputs, List<Double> tArguments, int[] iArguments, boolean keepDims, boolean isComplex, boolean isEmptyReduce, int[] dimensions)
ArgMax(String opName, INDArray[] inputs, INDArray[] outputs, List<Double> tArguments, List<Integer> iArguments, boolean keepDims, boolean isComplex, boolean isEmptyReduce, int[] dimensions)
ArgMax(String opName, INDArray input, INDArray output, List<Double> tArguments, int[] iArguments, boolean keepDims, boolean isComplex, boolean isEmptyReduce, int[] dimensions)
ArgMax(INDArray arr)
ArgMax(INDArray[] inputs)
ArgMax(INDArray[] inputs, boolean keepDims, int[] dimensions)
ArgMax(INDArray[] inputs, INDArray[] outputs)
ArgMax(INDArray[] inputs, INDArray[] outputs, boolean keepDims)
ArgMax(INDArray[] inputs, INDArray[] outputs, boolean keepDims, boolean isComplex, boolean isEmptyReduce, int[] dimensions)
ArgMax(INDArray[] input, INDArray[] output, boolean keepDims, boolean isComplex, int[] dimensions)
ArgMax(INDArray[] inputs, INDArray[] outputs, boolean keepDims, int... dimensions)
ArgMax(INDArray in, boolean keepDims, int[] dimensions)
ArgMin(String opName, INDArray[] inputs, INDArray[] outputs, boolean keepDims, boolean isComplex, boolean isEmptyReduce, int[] dimensions)
ArgMin(String opName, INDArray[] inputs, INDArray[] outputs, List<Double> tArguments, int[] iArguments, boolean keepDims, boolean isComplex, boolean isEmptyReduce, int[] dimensions)
ArgMin(String opName, INDArray[] inputs, INDArray[] outputs, List<Double> tArguments, List<Integer> iArguments, boolean keepDims, boolean isComplex, boolean isEmptyReduce, int[] dimensions)
ArgMin(String opName, INDArray input, INDArray output, List<Double> tArguments, int[] iArguments, boolean keepDims, boolean isComplex, boolean isEmptyReduce, int[] dimensions)
ArgMin(INDArray arr)
ArgMin(INDArray[] inputs)
ArgMin(INDArray[] inputs, boolean keepDims, int[] dimensions)
ArgMin(INDArray[] inputs, INDArray[] outputs)
ArgMin(INDArray[] inputs, INDArray[] outputs, boolean keepDims)
ArgMin(INDArray[] inputs, INDArray[] outputs, boolean keepDims, boolean isComplex, boolean isEmptyReduce, int[] dimensions)
ArgMin(INDArray[] input, INDArray[] output, boolean keepDims, boolean isComplex, int[] dimensions)
ArgMin(INDArray[] inputs, INDArray[] outputs, boolean keepDims, int... dimensions)
ArgMin(INDArray in, boolean keepDims, int[] dimensions)
-
Uses of INDArray in org.nd4j.linalg.api.ops.impl.layers
Constructor parameters in org.nd4j.linalg.api.ops.impl.layers with type arguments of type INDArray Constructor Description ExternalErrorsFunction(SameDiff sd, List<SDVariable> inputs, Map<String,INDArray> gradients)
-
Uses of INDArray in org.nd4j.linalg.api.ops.impl.layers.convolution
Constructors in org.nd4j.linalg.api.ops.impl.layers.convolution with parameters of type INDArray Constructor Description AvgPooling2D(@NonNull INDArray input, INDArray output, @NonNull Pooling2DConfig config)
AvgPooling2D(@NonNull INDArray input, Pooling2DConfig config)
AvgPooling3D(@NonNull INDArray input, Pooling3DConfig pooling3DConfig)
BatchNorm(SameDiff sameDiff, SDVariable[] inputFunctions, INDArray[] inputArrays, INDArray[] outputArrays, boolean inPlace, boolean applyGamma, boolean applyBeta, double epsilon, int[] axis)
BatchNorm(INDArray input, INDArray mean, INDArray variance, INDArray gamma, INDArray beta, double epsilon, int... axis)
BatchNormDerivative(SameDiff sameDiff, SDVariable[] inputFunctions, INDArray[] inputArrays, INDArray[] outputArrays, boolean inPlace, boolean applyGamma, boolean applyBeta, double epsilon, int[] axis)
Col2Im(@NonNull INDArray in, @NonNull Conv2DConfig conv2DConfig)
Col2Im(SameDiff sameDiff, SDVariable[] inputFunctions, INDArray[] inputArrays, INDArray[] outputs, Conv2DConfig conv2DConfig)
Conv1D(@NonNull INDArray input, @NonNull INDArray weights, INDArray bias, INDArray output, @NonNull Conv1DConfig config)
Conv1D(INDArray[] inputs, INDArray[] outputs, Conv1DConfig config)
Conv1D(INDArray input, INDArray weights, INDArray bias, Conv1DConfig config)
Conv1DDerivative(@NonNull INDArray input, @NonNull INDArray weights, INDArray bias, @NonNull INDArray gradOut, INDArray output, @NonNull Conv1DConfig config)
Conv1DDerivative(INDArray[] inputs, INDArray[] outputs, Conv1DConfig config)
Conv2D(@NonNull INDArray input, @NonNull INDArray weights, INDArray bias, INDArray output, @NonNull Conv2DConfig config)
Conv2D(INDArray[] inputs, INDArray[] outputs, Conv2DConfig config)
Conv2D(INDArray layerInput, INDArray weights, INDArray bias, Conv2DConfig config)
Conv3D(@NonNull INDArray input, @NonNull INDArray weights, INDArray bias, INDArray output, @NonNull Conv3DConfig config)
Conv3D(INDArray[] inputs, INDArray[] outputs, Conv3DConfig config)
Conv3D(INDArray input, INDArray weights, INDArray bias, Conv3DConfig config)
Conv3D(INDArray input, INDArray weights, Conv3DConfig config)
DeConv2D(@NonNull INDArray input, @NonNull INDArray weights, INDArray bias, INDArray output, @NonNull DeConv2DConfig config)
DeConv2D(INDArray[] inputs, INDArray[] outputs, DeConv2DConfig config)
DeConv2D(INDArray layerInput, INDArray weights, INDArray bias, DeConv2DConfig config)
DeConv2DTF(INDArray[] inputs, INDArray[] outputs, DeConv2DConfig config)
DeConv3D(@NonNull INDArray input, @NonNull INDArray weights, INDArray bias, INDArray output, @NonNull DeConv3DConfig config)
DeConv3D(INDArray[] inputs, INDArray[] outputs, DeConv3DConfig config)
DeConv3D(INDArray input, INDArray weights, INDArray bias, DeConv3DConfig config)
DepthToSpace(INDArray in, int blockSize, DataFormat dataFormat)
DepthToSpace(INDArray in, INDArray out, int blockSize, DataFormat dataFormat)
DepthwiseConv2D(@NonNull INDArray input, @NonNull INDArray weights, INDArray bias, INDArray output, @NonNull Conv2DConfig config)
DepthwiseConv2D(INDArray[] inputs, INDArray[] outputs, Conv2DConfig config)
DepthwiseConv2D(INDArray layerInput, INDArray depthWeights, INDArray bias, Conv2DConfig config)
Im2col(SameDiff sameDiff, SDVariable[] inputFunctions, INDArray[] inputArrays, INDArray[] outputs, Conv2DConfig conv2DConfig)
Im2col(INDArray in, Conv2DConfig conv2DConfig)
LocalResponseNormalization(@NonNull INDArray input, @NonNull LocalResponseNormalizationConfig LocalResponseNormalizationConfig)
LocalResponseNormalization(@NonNull INDArray input, INDArray output, @NonNull LocalResponseNormalizationConfig config)
MaxPooling2D(INDArray input, @NonNull Pooling2DConfig config)
MaxPooling2D(INDArray input, INDArray output, @NonNull Pooling2DConfig config)
MaxPooling3D(INDArray arrayInput, INDArray arrayOutput, Pooling3DConfig config)
MaxPooling3D(INDArray input, Pooling3DConfig pooling3DConfig)
MaxPoolWithArgmax(@NonNull INDArray input, @NonNull Pooling2DConfig config)
MaxPoolWithArgmax(@NonNull INDArray input, INDArray output, INDArray outArgMax, @NonNull Pooling2DConfig config)
Pooling2D(@NonNull INDArray[] inputs, INDArray[] outputs, @NonNull Pooling2DConfig config)
Pooling2D(@NonNull INDArray input, INDArray output, @NonNull Pooling2DConfig config)
Pooling2DDerivative(@NonNull INDArray input, @NonNull INDArray grad, INDArray output, Pooling2DConfig config)
Pooling3D(SameDiff sameDiff, SDVariable[] inputs, INDArray[] inputArrays, INDArray[] outputs, boolean inPlace, Pooling3DConfig pooling3DConfig, Pooling3D.Pooling3DType type)
Pooling3DDerivative(SameDiff sameDiff, SDVariable[] inputs, INDArray[] inputArrays, INDArray[] outputs, boolean inPlace, Pooling3DConfig pooling3DConfig, Pooling3D.Pooling3DType type)
SConv2D(@NonNull INDArray layerInput, @NonNull INDArray depthWeights, INDArray pointWeights, @NonNull Conv2DConfig Conv2DConfig)
SConv2D(INDArray[] inputs, INDArray[] outputs, Conv2DConfig config)
SConv2D(INDArray layerInput, INDArray depthWeights, INDArray pointWeights, INDArray bias, Conv2DConfig config)
SpaceToDepth(INDArray x, int blockSize, DataFormat dataFormat)
SpaceToDepth(INDArray in, INDArray out, int blockSize, DataFormat dataFormat)
Upsampling2d(INDArray input, int scale)
Upsampling2d(INDArray input, int scaleH, int scaleW, boolean nchw)
Upsampling3d(INDArray input, boolean ncdhw, int scaleH, int scaleW, int scaleD)
-
Uses of INDArray in org.nd4j.linalg.api.ops.impl.layers.recurrent
Constructors in org.nd4j.linalg.api.ops.impl.layers.recurrent with parameters of type INDArray Constructor Description GRU(@NonNull INDArray x, @NonNull INDArray hI, @NonNull INDArray Wx, @NonNull INDArray Wh, @NonNull INDArray biases)
GRUCell(INDArray x, INDArray hLast, GRUWeights gruWeights)
LSTMBlock(INDArray x, INDArray cLast, INDArray yLast, INDArray maxTSLength, LSTMWeights lstmWeights, LSTMConfiguration lstmConfiguration)
LSTMBlockCell(INDArray x, INDArray cLast, INDArray yLast, LSTMWeights lstmWeights, LSTMConfiguration lstmConfiguration)
LSTMLayer(INDArray x, INDArray cLast, INDArray yLast, INDArray maxTSLength, LSTMLayerWeights lstmWeights, LSTMLayerConfig LSTMLayerConfig)
SRU(INDArray x, INDArray initialC, INDArray mask, SRUWeights sruWeights)
SRU(INDArray x, INDArray initialC, SRUWeights sruWeights)
SRUCell(INDArray x, INDArray cLast, SRUWeights sruWeights)
-
Uses of INDArray in org.nd4j.linalg.api.ops.impl.layers.recurrent.weights
Methods in org.nd4j.linalg.api.ops.impl.layers.recurrent.weights that return INDArray Modifier and Type Method Description INDArray[]
LSTMLayerWeights. argsWithInputs(INDArray... inputs)
INDArray[]
RNNWeights. argsWithInputs(INDArray... inputs)
INDArray[]
GRUWeights. arrayArgs()
INDArray[]
LSTMLayerWeights. arrayArgs()
INDArray[]
LSTMWeights. arrayArgs()
abstract INDArray[]
RNNWeights. arrayArgs()
INDArray[]
SRUWeights. arrayArgs()
Methods in org.nd4j.linalg.api.ops.impl.layers.recurrent.weights with parameters of type INDArray Modifier and Type Method Description INDArray[]
LSTMLayerWeights. argsWithInputs(INDArray... inputs)
INDArray[]
RNNWeights. argsWithInputs(INDArray... inputs)
-
Uses of INDArray in org.nd4j.linalg.api.ops.impl.loss
Methods in org.nd4j.linalg.api.ops.impl.loss that return INDArray Modifier and Type Method Description protected static INDArray
BaseLoss. getWeights(INDArray weights, INDArray predictions)
Methods in org.nd4j.linalg.api.ops.impl.loss with parameters of type INDArray Modifier and Type Method Description protected static INDArray
BaseLoss. getWeights(INDArray weights, INDArray predictions)
Constructors in org.nd4j.linalg.api.ops.impl.loss with parameters of type INDArray Constructor Description AbsoluteDifferenceLoss(INDArray labels, INDArray predictions, INDArray weights, LossReduce lossReduce)
BaseLoss(@NonNull LossReduce lossReduce, @NonNull INDArray predictions, INDArray weights, @NonNull INDArray labels)
CosineDistanceLoss(INDArray labels, INDArray predictions, INDArray weights, LossReduce lossReduce, int dimension)
CtcLoss(INDArray targetLabels, INDArray logitInputs, INDArray targetLabelLengths, INDArray logitInputLengths)
HingeLoss(INDArray labels, INDArray predictions, INDArray weights, LossReduce lossReduce)
HuberLoss(INDArray labels, INDArray predictions, INDArray weights, LossReduce lossReduce, double delta)
L2Loss(INDArray var)
LogLoss(INDArray labels, INDArray predictions, INDArray weights, LossReduce lossReduce, double epsilon)
LogPoissonLoss(INDArray labels, INDArray predictions, INDArray weights, LossReduce lossReduce, boolean full)
MeanPairwiseSquaredErrorLoss(INDArray labels, INDArray predictions, INDArray weights, LossReduce lossReduce)
MeanSquaredErrorLoss(INDArray labels, INDArray predictions, INDArray weights, LossReduce lossReduce)
SigmoidCrossEntropyLoss(INDArray labels, INDArray predictions, INDArray weights, LossReduce lossReduce, double labelSmoothing)
SoftmaxCrossEntropyLoss(INDArray labels, INDArray predictions, INDArray weights, LossReduce lossReduce, double labelSmoothing)
SparseSoftmaxCrossEntropyLossWithLogits(@NonNull INDArray logits, @NonNull INDArray labels)
WeightedCrossEntropyLoss(@NonNull LossReduce lossReduce, @NonNull INDArray predictions, INDArray weights, @NonNull INDArray labels)
WeightedCrossEntropyLoss(INDArray targets, INDArray inputs, INDArray weights)
-
Uses of INDArray in org.nd4j.linalg.api.ops.impl.meta
Constructors in org.nd4j.linalg.api.ops.impl.meta with parameters of type INDArray Constructor Description BaseMetaOp(INDArray x, INDArray y)
InvertedPredicateMetaOp(INDArray x, INDArray y)
PostulateMetaOp(INDArray x, INDArray y)
PredicateMetaOp(INDArray x, INDArray y)
ReduceMetaOp(INDArray x, INDArray y)
-
Uses of INDArray in org.nd4j.linalg.api.ops.impl.nlp
Constructors in org.nd4j.linalg.api.ops.impl.nlp with parameters of type INDArray Constructor Description CbowRound(int target, @lombok.NonNull int[] context, @lombok.NonNull int[] lockedWords, int ngStarter, @NonNull INDArray syn0, @NonNull INDArray syn1Neg, @NonNull INDArray expTable, @NonNull INDArray negTable, int nsRounds, double alpha, long nextRandom, @NonNull INDArray inferenceVector, int numLabels)
ns roundCbowRound(int target, @lombok.NonNull int[] context, @lombok.NonNull int[] lockedWords, @NonNull INDArray syn0, @NonNull INDArray syn1, @NonNull INDArray expTable, @lombok.NonNull int[] indices, @lombok.NonNull byte[] codes, double alpha, long nextRandom, @NonNull INDArray inferenceVector, int numLabels)
hs roundCbowRound(@NonNull INDArray target, @NonNull INDArray context, @NonNull INDArray lockedWords, @NonNull INDArray ngStarter, @NonNull INDArray syn0, @NonNull INDArray syn1, @NonNull INDArray syn1Neg, @NonNull INDArray expTable, @NonNull INDArray negTable, @NonNull INDArray indices, @NonNull INDArray codes, int nsRounds, @NonNull INDArray alpha, @NonNull INDArray nextRandom, @NonNull INDArray inferenceVector, @NonNull INDArray numLabels, boolean trainWords, int numWorkers)
full constructorSkipGramRound(int target, int ngStarter, @NonNull INDArray syn0, @NonNull INDArray syn1Neg, @NonNull INDArray expTable, @NonNull INDArray negTable, int nsRounds, double alpha, long randomValue, INDArray inferenceVector)
sg ns roundSkipGramRound(int target, @NonNull INDArray syn0, @NonNull INDArray syn1, @NonNull INDArray expTable, int[] indices, byte[] codes, double alpha, long randomValue, INDArray inferenceVector)
sg hs roundSkipGramRound(@NonNull INDArray target, @NonNull INDArray ngStarter, @NonNull INDArray syn0, @NonNull INDArray syn1, @NonNull INDArray syn1Neg, @NonNull INDArray expTable, @NonNull INDArray negTable, int nsRounds, @NonNull INDArray indices, @NonNull INDArray codes, @NonNull INDArray alpha, @NonNull INDArray randomValue, INDArray inferenceVector, boolean preciseMode, int numWorkers)
full constructor -
Uses of INDArray in org.nd4j.linalg.api.ops.impl.reduce
Constructors in org.nd4j.linalg.api.ops.impl.reduce with parameters of type INDArray Constructor Description HashCode(@NonNull INDArray array)
HashCode(@NonNull INDArray array, @NonNull INDArray result)
Mmul(INDArray x, INDArray y)
Mmul(INDArray x, INDArray y, boolean transposeX, boolean transposeY, boolean transposeZ)
Mmul(INDArray x, INDArray y, double alpha, double beta)
Mmul(INDArray x, INDArray y, double alpha, double beta, boolean transposeX, boolean transposeY, boolean transposeZ)
Mmul(INDArray x, INDArray y, INDArray z, double alpha, double beta, MMulTranspose mt)
Mmul(INDArray x, INDArray y, INDArray z, MMulTranspose mt)
MmulBp(INDArray x, INDArray y, INDArray eps, INDArray dldx, INDArray dldy, MMulTranspose mt)
Moments(@NonNull INDArray input, boolean keepDims, int... dimensions)
Moments(@NonNull INDArray input, int... dimensions)
Moments(INDArray input, int[] axes, boolean keepDims)
Moments(INDArray input, INDArray axes, boolean keepDims)
Moments(INDArray in, INDArray outMean, INDArray outStd, int... axes)
NormalizeMoments(INDArray counts, INDArray means, INDArray variances, double shift)
NormalizeMoments(INDArray counts, INDArray ssSum, INDArray ssSqSum, INDArray outMean, INDArray outVar)
SufficientStatistics(@NonNull INDArray x, @NonNull INDArray axes)
SufficientStatistics(@NonNull INDArray x, @NonNull INDArray axes, INDArray shift)
TensorMmul(INDArray x, INDArray y, int[][] axes)
TensorMmul(INDArray x, INDArray y, int[] dimensionsX, int[] dimensionsY, boolean transposeX, boolean transposeY, boolean transposeZ)
TensorMmul(INDArray x, INDArray y, INDArray z, int[][] axes)
Initialize with the given input, pairwise transform, result, and number of elementsTensorMmulBp(INDArray x, INDArray y, INDArray gradAtOutput, int[][] axes)
TensorMmulBp(INDArray x, INDArray y, INDArray gradAtOutput, int[] axesX, int[] axesY)
TensorMmulBp(INDArray x, INDArray y, INDArray gradAtOutput, INDArray dldx, INDArray dldy, int[][] axes)
TensorMmulBp(INDArray x, INDArray y, INDArray gradAtOutput, INDArray dldx, INDArray dldy, int[] axesX, int[] axesY)
ZeroFraction(@NonNull INDArray input)
-
Uses of INDArray in org.nd4j.linalg.api.ops.impl.reduce.bool
Constructors in org.nd4j.linalg.api.ops.impl.reduce.bool with parameters of type INDArray Constructor Description All(INDArray x)
All(INDArray x, boolean keepDims, int... dimensions)
All(INDArray x, int... axis)
All(INDArray x, INDArray z, boolean keepDims, int[] dimensions)
All(INDArray x, INDArray z, int... dimensions)
All(INDArray x, INDArray y, INDArray z, boolean keepDims, int[] dimensions)
All(INDArray x, INDArray y, INDArray z, int... dimensions)
Any(INDArray x)
Any(INDArray x, boolean keepDims, int... dimensions)
Any(INDArray x, int... dimensions)
Any(INDArray x, INDArray z, boolean keepDims, int[] dimensions)
Any(INDArray x, INDArray z, int... dimensions)
Any(INDArray x, INDArray y, INDArray z, boolean keepDims, int[] dimensions)
Any(INDArray x, INDArray y, INDArray z, int... dimensions)
IsInf(INDArray x)
IsInf(INDArray x, boolean keepDims, int... dimensions)
IsInf(INDArray x, int... dimensions)
IsInf(INDArray x, INDArray z)
IsInf(INDArray x, INDArray z, boolean keepDims, int[] dimensions)
IsInf(INDArray x, INDArray z, int... dimensions)
IsInf(INDArray x, INDArray y, INDArray z, boolean keepDims, int[] dimensions)
IsInf(INDArray x, INDArray y, INDArray z, int... dimensions)
IsNaN(INDArray x)
IsNaN(INDArray x, boolean keepDims, int... dimensions)
IsNaN(INDArray x, int... dimensions)
IsNaN(INDArray x, INDArray z)
IsNaN(INDArray x, INDArray z, boolean keepDims, int[] dimensions)
IsNaN(INDArray x, INDArray z, int... dimensions)
IsNaN(INDArray x, INDArray y, INDArray z, boolean keepDims, int[] dimensions)
IsNaN(INDArray x, INDArray y, INDArray z, int... dimensions)
-
Uses of INDArray in org.nd4j.linalg.api.ops.impl.reduce.bp
Constructors in org.nd4j.linalg.api.ops.impl.reduce.bp with parameters of type INDArray Constructor Description BaseReductionBp(INDArray origInput, INDArray gradAtOutput, INDArray output, boolean keepDims, int... dimensions)
BaseReductionBp(INDArray origInput, INDArray gradAtOutput, INDArray output, boolean keepDims, INDArray dimensions)
BaseReductionBp(INDArray origInput1, INDArray origInput2, INDArray gradAtOutput, INDArray output, boolean keepDims, int... dimensions)
BaseReductionBp(INDArray origInput1, INDArray origInput2, INDArray gradAtOutput, INDArray output1, INDArray output2, boolean keepDims, int... dimensions)
CumProdBp(INDArray origInput, INDArray gradAtOutput, INDArray output, boolean keepDims, boolean exclusive, boolean reverse, int... dimensions)
CumProdBp(INDArray origInput, INDArray gradAtOutput, INDArray output, boolean exclusive, boolean reverse, int... axis)
CumProdBp(INDArray origInput, INDArray gradAtOutput, INDArray output, boolean keepDims, INDArray dimensions, boolean exclusive, boolean reverse)
CumProdBp(INDArray origInput1, INDArray origInput2, INDArray gradAtOutput, INDArray output, boolean keepDims, boolean exclusive, boolean reverse, int... dimensions)
CumProdBp(INDArray origInput1, INDArray origInput2, INDArray gradAtOutput, INDArray output1, INDArray output2, boolean keepDims, boolean exclusive, boolean reverse, int... dimensions)
CumSumBp(INDArray origInput, INDArray gradAtOutput, INDArray output, boolean keepDims, boolean exclusive, boolean reverse, int... dimensions)
CumSumBp(INDArray origInput, INDArray gradAtOutput, INDArray output, boolean exclusive, boolean reverse, int... axis)
CumSumBp(INDArray origInput, INDArray gradAtOutput, INDArray output, boolean keepDims, INDArray dimensions, boolean exclusive, boolean reverse)
CumSumBp(INDArray origInput1, INDArray origInput2, INDArray gradAtOutput, INDArray output, boolean keepDims, boolean exclusive, boolean reverse, int... dimensions)
CumSumBp(INDArray origInput1, INDArray origInput2, INDArray gradAtOutput, INDArray output1, INDArray output2, boolean keepDims, boolean exclusive, boolean reverse, int... dimensions)
DotBp(INDArray origInput, INDArray gradAtOutput, INDArray output, boolean keepDims, int... dimensions)
DotBp(INDArray origInput, INDArray gradAtOutput, INDArray output, boolean keepDims, INDArray dimensions)
DotBp(INDArray origInput1, INDArray origInput2, INDArray gradAtOutput, INDArray output, boolean keepDims, int... dimensions)
DotBp(INDArray origInput1, INDArray origInput2, INDArray gradAtOutput, INDArray outputX, INDArray outputY, boolean keepDims, int... dimensions)
MaxBp(INDArray origInput, INDArray gradAtOutput, INDArray output, boolean keepDims, int... dimensions)
MaxBp(INDArray origInput, INDArray gradAtOutput, INDArray output, boolean keepDims, INDArray dimensions)
MaxBp(INDArray origInput1, INDArray origInput2, INDArray gradAtOutput, INDArray output, boolean keepDims, int... dimensions)
MaxBp(INDArray origInput1, INDArray origInput2, INDArray gradAtOutput, INDArray output1, INDArray output2, boolean keepDims, int... dimensions)
MeanBp(INDArray origInput, INDArray gradAtOutput, INDArray output, boolean keepDims, int... dimensions)
MeanBp(INDArray origInput, INDArray gradAtOutput, INDArray output, boolean keepDims, INDArray dimensions)
MeanBp(INDArray origInput1, INDArray origInput2, INDArray gradAtOutput, INDArray output, boolean keepDims, int... dimensions)
MeanBp(INDArray origInput1, INDArray origInput2, INDArray gradAtOutput, INDArray output1, INDArray output2, boolean keepDims, int... dimensions)
MinBp(INDArray origInput, INDArray gradAtOutput, INDArray output, boolean keepDims, int... dimensions)
MinBp(INDArray origInput, INDArray gradAtOutput, INDArray output, boolean keepDims, INDArray dimensions)
MinBp(INDArray origInput1, INDArray origInput2, INDArray gradAtOutput, INDArray output, boolean keepDims, int... dimensions)
MinBp(INDArray origInput1, INDArray origInput2, INDArray gradAtOutput, INDArray output1, INDArray output2, boolean keepDims, int... dimensions)
Norm1Bp(INDArray origInput, INDArray gradAtOutput, INDArray output, boolean keepDims, int... dimensions)
Norm1Bp(INDArray origInput, INDArray gradAtOutput, INDArray output, boolean keepDims, INDArray dimensions)
Norm1Bp(INDArray origInput1, INDArray origInput2, INDArray gradAtOutput, INDArray output, boolean keepDims, int... dimensions)
Norm1Bp(INDArray origInput1, INDArray origInput2, INDArray gradAtOutput, INDArray output1, INDArray output2, boolean keepDims, int... dimensions)
Norm2Bp(INDArray origInput, INDArray gradAtOutput, INDArray output, boolean keepDims, int... dimensions)
Norm2Bp(INDArray origInput, INDArray gradAtOutput, INDArray output, boolean keepDims, INDArray dimensions)
Norm2Bp(INDArray origInput1, INDArray origInput2, INDArray gradAtOutput, INDArray output, boolean keepDims, int... dimensions)
Norm2Bp(INDArray origInput1, INDArray origInput2, INDArray gradAtOutput, INDArray output1, INDArray output2, boolean keepDims, int... dimensions)
NormMaxBp(INDArray origInput, INDArray gradAtOutput, INDArray output, boolean keepDims, int... dimensions)
NormMaxBp(INDArray origInput, INDArray gradAtOutput, INDArray output, boolean keepDims, INDArray dimensions)
NormMaxBp(INDArray origInput1, INDArray origInput2, INDArray gradAtOutput, INDArray output, boolean keepDims, int... dimensions)
NormMaxBp(INDArray origInput1, INDArray origInput2, INDArray gradAtOutput, INDArray output1, INDArray output2, boolean keepDims, int... dimensions)
PowBp(INDArray x, INDArray y, INDArray dLdz, INDArray dLdx, INDArray dLdy)
ProdBp(INDArray origInput, INDArray gradAtOutput, INDArray output, boolean keepDims, int... dimensions)
ProdBp(INDArray origInput, INDArray gradAtOutput, INDArray output, boolean keepDims, INDArray dimensions)
ProdBp(INDArray origInput1, INDArray origInput2, INDArray gradAtOutput, INDArray output, boolean keepDims, int... dimensions)
ProdBp(INDArray origInput1, INDArray origInput2, INDArray gradAtOutput, INDArray output1, INDArray output2, boolean keepDims, int... dimensions)
SquaredNormBp(INDArray origInput, INDArray gradAtOutput, INDArray output, boolean keepDims, int... dimensions)
SquaredNormBp(INDArray origInput, INDArray gradAtOutput, INDArray output, boolean keepDims, INDArray dimensions)
SquaredNormBp(INDArray origInput1, INDArray origInput2, INDArray gradAtOutput, INDArray output, boolean keepDims, int... dimensions)
SquaredNormBp(INDArray origInput1, INDArray origInput2, INDArray gradAtOutput, INDArray output1, INDArray output2, boolean keepDims, int... dimensions)
StandardDeviationBp(INDArray origInput, INDArray gradAtOutput, INDArray output, boolean biasCorrected, boolean keepDims, int... dimensions)
StandardDeviationBp(INDArray origInput, INDArray gradAtOutput, INDArray output, boolean keepDims, INDArray dimensions, boolean biasCorrected)
StandardDeviationBp(INDArray origInput1, INDArray origInput2, INDArray gradAtOutput, INDArray output, boolean keepDims, boolean biasCorrected, int... dimensions)
StandardDeviationBp(INDArray origInput1, INDArray origInput2, INDArray gradAtOutput, INDArray output1, INDArray output2, boolean keepDims, boolean biasCorrected, int... dimensions)
SumBp(INDArray preReduceInput, INDArray dLdOut, INDArray dLdIn, boolean keepDims)
SumBp(INDArray origInput, INDArray gradAtOutput, INDArray output, boolean keepDims, INDArray dimensions)
VarianceBp(INDArray origInput, INDArray gradAtOutput, INDArray output, boolean biasCorrected, boolean keepDims, int... dimensions)
VarianceBp(INDArray origInput, INDArray gradAtOutput, INDArray output, boolean keepDims, INDArray dimensions, boolean biasCorrected)
VarianceBp(INDArray origInput1, INDArray origInput2, INDArray gradAtOutput, INDArray output, boolean keepDims, boolean biasCorrected, int... dimensions)
VarianceBp(INDArray origInput1, INDArray origInput2, INDArray gradAtOutput, INDArray output1, INDArray output2, boolean keepDims, boolean biasCorrected, int... dimensions)
-
Uses of INDArray in org.nd4j.linalg.api.ops.impl.reduce.custom
Constructors in org.nd4j.linalg.api.ops.impl.reduce.custom with parameters of type INDArray Constructor Description BaseDynamicCustomBoolReduction(String opName, INDArray[] inputs, INDArray[] outputs, boolean keepDims, boolean isComplex, boolean isEmptyReduce, int[] dimensions)
BaseDynamicCustomBoolReduction(String opName, INDArray[] inputs, INDArray[] outputs, List<Double> tArguments, int[] iArguments, boolean keepDims, boolean isComplex, boolean isEmptyReduce, int[] dimensions)
BaseDynamicCustomBoolReduction(String opName, INDArray[] inputs, INDArray[] outputs, List<Double> tArguments, List<Integer> iArguments, boolean keepDims, boolean isComplex, boolean isEmptyReduce, int[] dimensions)
BaseDynamicCustomBoolReduction(String opName, INDArray input, INDArray output, List<Double> tArguments, int[] iArguments, boolean keepDims, boolean isComplex, boolean isEmptyReduce, int[] dimensions)
BaseDynamicCustomBoolReduction(INDArray[] inputs, boolean keepDims, int[] dimensions)
BaseDynamicCustomBoolReduction(INDArray[] inputs, INDArray[] outputs)
BaseDynamicCustomBoolReduction(INDArray[] inputs, INDArray[] outputs, boolean keepDims)
BaseDynamicCustomBoolReduction(INDArray[] inputs, INDArray[] outputs, boolean keepDims, boolean isComplex, boolean isEmptyReduce, int[] dimensions)
BaseDynamicCustomBoolReduction(INDArray[] input, INDArray[] output, boolean keepDims, boolean isComplex, int[] dimensions)
BaseDynamicCustomBoolReduction(INDArray[] inputs, INDArray[] outputs, boolean keepDims, int[] dimensions)
BaseDynamicCustomIndexReduction(String opName, INDArray[] inputs, INDArray[] outputs, boolean keepDims, boolean isComplex, boolean isEmptyReduce, int[] dimensions)
BaseDynamicCustomIndexReduction(String opName, INDArray[] inputs, INDArray[] outputs, List<Double> tArguments, int[] iArguments, boolean keepDims, boolean isComplex, boolean isEmptyReduce, int[] dimensions)
BaseDynamicCustomIndexReduction(String opName, INDArray[] inputs, INDArray[] outputs, List<Double> tArguments, List<Integer> iArguments, boolean keepDims, boolean isComplex, boolean isEmptyReduce, int[] dimensions)
BaseDynamicCustomIndexReduction(String opName, INDArray input, INDArray output, List<Double> tArguments, int[] iArguments, boolean keepDims, boolean isComplex, boolean isEmptyReduce, int[] dimensions)
BaseDynamicCustomIndexReduction(INDArray[] inputs, boolean keepDims, int[] dimensions)
BaseDynamicCustomIndexReduction(INDArray[] inputs, INDArray[] outputs)
BaseDynamicCustomIndexReduction(INDArray[] inputs, INDArray[] outputs, boolean keepDims)
BaseDynamicCustomIndexReduction(INDArray[] inputs, INDArray[] outputs, boolean keepDims, boolean isComplex, boolean isEmptyReduce, int[] dimensions)
BaseDynamicCustomIndexReduction(INDArray[] input, INDArray[] output, boolean keepDims, boolean isComplex, int[] dimensions)
BaseDynamicCustomIndexReduction(INDArray[] inputs, INDArray[] outputs, boolean keepDims, int... dimensions)
BaseDynamicCustomLongReduction(String opName, INDArray[] inputs, INDArray[] outputs, boolean keepDims, boolean isComplex, boolean isEmptyReduce, int[] dimensions)
BaseDynamicCustomLongReduction(String opName, INDArray[] inputs, INDArray[] outputs, List<Double> tArguments, int[] iArguments, boolean keepDims, boolean isComplex, boolean isEmptyReduce, int[] dimensions)
BaseDynamicCustomLongReduction(String opName, INDArray[] inputs, INDArray[] outputs, List<Double> tArguments, List<Integer> iArguments, boolean keepDims, boolean isComplex, boolean isEmptyReduce, int[] dimensions)
BaseDynamicCustomLongReduction(String opName, INDArray input, INDArray output, List<Double> tArguments, int[] iArguments, boolean keepDims, boolean isComplex, boolean isEmptyReduce, int[] dimensions)
BaseDynamicCustomLongReduction(INDArray[] inputs, boolean keepDims, int[] dimensions)
BaseDynamicCustomLongReduction(INDArray[] inputs, INDArray[] outputs)
BaseDynamicCustomLongReduction(INDArray[] inputs, INDArray[] outputs, boolean keepDims)
BaseDynamicCustomLongReduction(INDArray[] inputs, INDArray[] outputs, boolean keepDims, boolean isComplex, boolean isEmptyReduce, int[] dimensions)
BaseDynamicCustomLongReduction(INDArray[] input, INDArray[] output, boolean keepDims, boolean isComplex, int[] dimensions)
BaseDynamicCustomLongReduction(INDArray[] inputs, INDArray[] outputs, boolean keepDims, int[] dimensions)
BaseDynamicCustomReduction(String opName, INDArray[] inputs, INDArray[] outputs, boolean keepDims, boolean isComplex, boolean isEmptyReduce, int[] dimensions)
BaseDynamicCustomReduction(String opName, INDArray[] inputs, INDArray[] outputs, List<Double> tArguments, int[] iArguments, boolean keepDims, boolean isComplex, boolean isEmptyReduce, int[] dimensions)
BaseDynamicCustomReduction(String opName, INDArray[] inputs, INDArray[] outputs, List<Double> tArguments, List<Integer> iArguments, boolean keepDims, boolean isComplex, boolean isEmptyReduce, int[] dimensions)
BaseDynamicCustomReduction(String opName, INDArray input, INDArray output, List<Double> tArguments, int[] iArguments, boolean keepDims, boolean isComplex, boolean isEmptyReduce, int[] dimensions)
BaseDynamicCustomReduction(INDArray[] inputs, boolean keepDims, int[] dimensions)
BaseDynamicCustomReduction(INDArray[] inputs, INDArray[] outputs)
BaseDynamicCustomReduction(INDArray[] inputs, INDArray[] outputs, boolean keepDims)
BaseDynamicCustomReduction(INDArray[] inputs, INDArray[] outputs, boolean keepDims, boolean isComplex, boolean isEmptyReduce, int[] dimensions)
BaseDynamicCustomReduction(INDArray[] input, INDArray[] output, boolean keepDims, boolean isComplex, int[] dimensions)
BaseDynamicCustomReduction(INDArray[] inputs, INDArray[] outputs, boolean keepDims, int[] dimensions)
BatchMmul(INDArray[] matricesA, INDArray[] matricesB, boolean transposeA, boolean transposeB)
LogSumExp(INDArray x, boolean keepDim, int... dimensions)
LogSumExp(INDArray x, int... dimensions)
LogSumExp(INDArray x, INDArray z, boolean keepDim, int... dimensions)
-
Uses of INDArray in org.nd4j.linalg.api.ops.impl.reduce.floating
Methods in org.nd4j.linalg.api.ops.impl.reduce.floating that return INDArray Modifier and Type Method Description INDArray
Norm1. noOp()
INDArray
Norm2. noOp()
INDArray
NormMax. noOp()
Constructors in org.nd4j.linalg.api.ops.impl.reduce.floating with parameters of type INDArray Constructor Description AMean(INDArray in, boolean keepDims, int[] dimensions)
AMean(INDArray x, int... dimensions)
AMean(INDArray in, int[] dimensions, boolean keepDims)
AMean(INDArray in, INDArray dimensions, boolean keepDims)
AMean(INDArray input, INDArray output, boolean keepDims, int... dimensions)
AMean(INDArray x, INDArray z, int... dimensions)
AMean(INDArray x, INDArray y, INDArray z, boolean keepDims, int... dimensions)
AMean(INDArray x, INDArray y, INDArray z, int... dimensions)
Entropy(INDArray in, boolean keepDims, int[] dimensions)
Entropy(INDArray x, int... dimensions)
Entropy(INDArray in, int[] dimensions, boolean keepDims)
Entropy(INDArray input, INDArray output, boolean keepDims, int... dimensions)
Entropy(INDArray x, INDArray z, int... dimensions)
Entropy(INDArray x, INDArray y, INDArray z, boolean keepDims, int... dimensions)
Entropy(INDArray x, INDArray y, INDArray z, int... dimensions)
LogEntropy(INDArray in, boolean keepDims, int[] dimensions)
LogEntropy(INDArray x, int... dimensions)
LogEntropy(INDArray in, int[] dimensions, boolean keepDims)
LogEntropy(INDArray input, INDArray output, boolean keepDims, int... dimensions)
LogEntropy(INDArray x, INDArray z, int... dimensions)
LogEntropy(INDArray x, INDArray y, INDArray z, boolean keepDims, int... dimensions)
LogEntropy(INDArray x, INDArray y, INDArray z, int... dimensions)
Mean(INDArray x, boolean keepDims, int... dimensions)
Mean(INDArray x, int... dimensions)
Mean(INDArray in, int[] dimensions, boolean keepDims)
Mean(INDArray x, INDArray z, boolean keepDims, int... dimensions)
Mean(INDArray x, INDArray z, int... dimensions)
Mean(INDArray x, INDArray y, INDArray z, boolean keepDims, int... dimensions)
Mean(INDArray x, INDArray y, INDArray z, int... dimensions)
Norm1(INDArray x, boolean keepDims, int... dimensions)
Norm1(INDArray x, int... dimensions)
Norm1(INDArray in, int[] dimensions, boolean keepDims)
Norm1(INDArray in, INDArray dimensions, boolean keepDims)
Norm1(INDArray input, INDArray output, boolean keepDims, int... dimensions)
Norm1(INDArray x, INDArray z, int... dimensions)
Norm1(INDArray x, INDArray y, INDArray z, boolean keepDims, int... dimensions)
Norm1(INDArray x, INDArray y, INDArray z, int... dimensions)
Norm2(INDArray x, boolean keepDims, int... dimensions)
Norm2(INDArray x, int... dimensions)
Norm2(INDArray in, int[] dimensions, boolean keepDims)
Norm2(INDArray in, INDArray indArray, boolean keepDims)
Norm2(INDArray input, INDArray output, boolean keepDims, int... dimensions)
Norm2(INDArray x, INDArray z, int... dimensions)
Norm2(INDArray x, INDArray y, INDArray z, boolean keepDims, int... dimensions)
Norm2(INDArray x, INDArray y, INDArray z, int... dimensions)
NormMax(INDArray x, boolean keepDims, int... dimensions)
NormMax(INDArray x, int... dimensions)
NormMax(INDArray in, int[] dimensions, boolean keepDims)
NormMax(INDArray in, INDArray indArray, boolean keepDims)
NormMax(INDArray input, INDArray output, boolean keepDims, int... dimensions)
NormMax(INDArray x, INDArray z, int... dimensions)
NormMax(INDArray x, INDArray y, INDArray z, boolean keepDims, int... dimensions)
NormMax(INDArray x, INDArray y, INDArray z, int... dimensions)
ShannonEntropy(INDArray in, boolean keepDims, int[] dimensions)
ShannonEntropy(INDArray x, int... dimensions)
ShannonEntropy(INDArray in, int[] dimensions, boolean keepDims)
ShannonEntropy(INDArray in, INDArray dimensions, boolean keepDims)
ShannonEntropy(INDArray input, INDArray output, boolean keepDims, int... dimensions)
ShannonEntropy(INDArray x, INDArray z, int... dimensions)
ShannonEntropy(INDArray x, INDArray y, INDArray z, boolean keepDims, int... dimensions)
ShannonEntropy(INDArray x, INDArray y, INDArray z, int... dimensions)
SquaredNorm(INDArray input, boolean keepDims, int... dimensions)
SquaredNorm(INDArray x, int... dimensions)
SquaredNorm(INDArray in, int[] dimensions, boolean keepDims)
SquaredNorm(INDArray input, INDArray output, boolean keepDims, int... dimensions)
SquaredNorm(INDArray x, INDArray z, int... dimensions)
SquaredNorm(INDArray x, INDArray y, INDArray z, boolean keepDims, int... dimensions)
SquaredNorm(INDArray x, INDArray y, INDArray z, int... dimensions)
-
Uses of INDArray in org.nd4j.linalg.api.ops.impl.reduce.longer
Constructors in org.nd4j.linalg.api.ops.impl.reduce.longer with parameters of type INDArray Constructor Description CountNonZero(INDArray in, boolean keepDims, int[] dimensions)
CountNonZero(INDArray x, int... dimensions)
CountNonZero(INDArray in, int[] dimensions, boolean keepDims)
CountNonZero(INDArray x, INDArray z, int... dimensions)
CountNonZero(INDArray x, INDArray y, INDArray z, boolean keepDims, int[] dimensions)
CountNonZero(INDArray x, INDArray y, INDArray z, int... dimensions)
CountZero(INDArray x, boolean keepDims, int... dimensions)
CountZero(INDArray x, int... dimensions)
CountZero(INDArray in, int[] dimensions, boolean keepDims)
CountZero(INDArray x, INDArray z, int... dimensions)
CountZero(INDArray x, INDArray y, INDArray z, boolean keepDims, int[] dimensions)
CountZero(INDArray x, INDArray y, INDArray z, int... dimensions)
MatchCondition(INDArray x, boolean keepDims, double compare, double eps, int... dimensions)
MatchCondition(INDArray x, boolean keepDims, double compare, double eps, int mode, int... dimensions)
MatchCondition(INDArray x, boolean keepDims, double compare, int... dimensions)
MatchCondition(INDArray x, double compare, double eps, int... dimensions)
MatchCondition(INDArray x, double compare, double eps, int mode, int... dimensions)
MatchCondition(INDArray x, double compare, int... dimensions)
MatchCondition(INDArray x, double eps, Condition condition, int... dimensions)
MatchCondition(INDArray x, INDArray z, double compare, double eps, int... dimensions)
MatchCondition(INDArray x, INDArray z, double compare, double eps, int mode, int... dimensions)
MatchCondition(INDArray x, INDArray z, double compare, int... dimensions)
MatchCondition(INDArray x, INDArray y, INDArray z, boolean keepDims, int[] dimensions, double compare)
MatchCondition(INDArray x, INDArray y, INDArray z, boolean keepDims, int[] dimensions, double compare, double eps)
MatchCondition(INDArray x, INDArray y, INDArray z, boolean keepDims, int[] dimensions, double compare, double eps, int mode)
MatchCondition(INDArray x, INDArray y, INDArray z, double compare, double eps, int... dimensions)
MatchCondition(INDArray x, INDArray y, INDArray z, double compare, double eps, int mode, int... dimensions)
MatchCondition(INDArray x, INDArray y, INDArray z, double compare, int... dimensions)
MatchCondition(INDArray x, Condition condition, boolean keepDims, int... dimensions)
MatchCondition(INDArray x, Condition condition, int... dimensions)
-
Uses of INDArray in org.nd4j.linalg.api.ops.impl.reduce.same
Constructors in org.nd4j.linalg.api.ops.impl.reduce.same with parameters of type INDArray Constructor Description AMax(INDArray in, boolean keepDims, int[] dimensions)
AMax(INDArray x, int... dimensions)
AMax(INDArray in, int[] dimensions, boolean keepDims)
AMax(INDArray in, INDArray dimensions, boolean keepDims)
AMax(INDArray x, INDArray z, boolean keepDims, int[] dimensions)
AMax(INDArray x, INDArray z, int... dimensions)
AMax(INDArray x, INDArray y, INDArray z, boolean keepDims, int[] dimensions)
AMax(INDArray x, INDArray y, INDArray z, int... dimensions)
AMin(INDArray in, boolean keepDims, int[] dimensions)
AMin(INDArray x, int... dimensions)
AMin(INDArray in, int[] dimensions, boolean keepDims)
AMin(INDArray in, INDArray dimensions, boolean keepDims)
AMin(INDArray x, INDArray z, boolean keepDims, int[] dimensions)
AMin(INDArray x, INDArray z, int... dimensions)
AMin(INDArray x, INDArray y, INDArray z, boolean keepDims, int[] dimensions)
AMin(INDArray x, INDArray y, INDArray z, int... dimensions)
ASum(INDArray in, boolean keepDims, int[] dimensions)
ASum(INDArray x, int... dimensions)
ASum(INDArray in, int[] dimensions, boolean keepDims)
ASum(INDArray x, INDArray z, boolean keepDims, int[] dimensions)
ASum(INDArray x, INDArray z, int... dimensions)
ASum(INDArray x, INDArray y, INDArray z, boolean keepDims, int[] dimensions)
ASum(INDArray x, INDArray y, INDArray z, int... dimensions)
Max(INDArray x, boolean keepDims, int... axis)
Max(INDArray x, int... axis)
Initialize with the given input, pairwise transform, result, and number of elementsMax(INDArray in, int[] dimensions, boolean keepDims)
Max(INDArray x, INDArray z, boolean keepDims, int... dimensions)
Max(INDArray x, INDArray z, int... axis)
Max(INDArray x, INDArray y, INDArray z, boolean keepDims, int[] dimensions)
Max(INDArray x, INDArray y, INDArray z, int... dimensions)
Min(INDArray x, boolean keepDims, int... dimensions)
Min(INDArray x, int... dimensions)
Min(INDArray in, int[] dimensions, boolean keepDims)
Min(INDArray x, INDArray z, boolean keepDims, int... dimensions)
Min(INDArray x, INDArray z, int... dimensions)
Min(INDArray x, INDArray y, INDArray z, boolean keepDims, int[] dimensions)
Min(INDArray x, INDArray y, INDArray z, int... dimensions)
Prod(INDArray x, boolean keepDims, int... dimensions)
Prod(INDArray x, int... dimensions)
Prod(INDArray in, int[] dimensions, boolean keepDims)
Prod(INDArray x, INDArray z, boolean keepDims, int... dimensions)
Prod(INDArray x, INDArray z, int... dimensions)
Prod(INDArray x, INDArray y, INDArray z, boolean keepDims, int[] dimensions)
Prod(INDArray x, INDArray y, INDArray z, int... dimensions)
Sum(INDArray x, boolean keepDims, int... dimensions)
Sum(INDArray x, int... dimensions)
Sum(INDArray in, int[] dimensions, boolean keepDims)
Sum(INDArray x, INDArray z, boolean keepDims, int... dimensions)
Sum(INDArray x, INDArray z, int... dimensions)
Sum(INDArray x, INDArray y, INDArray z, boolean keepDims, int[] dimensions)
Sum(INDArray x, INDArray y, INDArray z, int... dimensions)
-
Uses of INDArray in org.nd4j.linalg.api.ops.impl.reduce3
Constructors in org.nd4j.linalg.api.ops.impl.reduce3 with parameters of type INDArray Constructor Description BaseReduce3Op(INDArray x, INDArray y, boolean allDistances, int... dimensions)
BaseReduce3Op(INDArray x, INDArray y, int... dimensions)
BaseReduce3Op(INDArray x, INDArray y, INDArray z)
BaseReduce3Op(INDArray x, INDArray y, INDArray z, boolean keepDims, boolean allDistances, int... dimensions)
BaseReduce3Op(INDArray x, INDArray y, INDArray z, boolean keepDims, int... dimensions)
BaseReduce3Op(INDArray x, INDArray y, INDArray z, int... dimensions)
CosineDistance(INDArray x, INDArray y, boolean keepDims, boolean isComplex, int[] dimensions)
CosineDistance(INDArray x, INDArray y, boolean allDistances, int... dimension)
CosineDistance(INDArray x, INDArray y, int... dimension)
CosineDistance(INDArray x, INDArray y, INDArray z)
CosineDistance(INDArray x, INDArray y, INDArray z, boolean keepDims, boolean allDistances, int... dimensions)
CosineDistance(INDArray x, INDArray y, INDArray z, boolean allDistances, int... dimension)
CosineDistance(INDArray x, INDArray y, INDArray z, int... dimension)
CosineSimilarity(INDArray x, INDArray y, boolean keepDims, boolean isComplex, int[] dimensions)
CosineSimilarity(INDArray x, INDArray y, boolean allDistances, int... dimension)
CosineSimilarity(INDArray x, INDArray y, int... dimensions)
CosineSimilarity(INDArray x, INDArray y, INDArray z)
CosineSimilarity(INDArray x, INDArray y, INDArray z, boolean keepDims, boolean allDistances, int... dimensions)
CosineSimilarity(INDArray x, INDArray y, INDArray z, boolean allDistances, int... dimension)
CosineSimilarity(INDArray x, INDArray y, INDArray z, int... dimensions)
Dot(INDArray x, INDArray y, boolean allDistances, int... dimensions)
Dot(INDArray x, INDArray y, int... dimensions)
Dot(INDArray x, INDArray y, INDArray z)
Dot(INDArray x, INDArray y, INDArray z, boolean newFormat, boolean keepDims, int... dimensions)
Dot(INDArray x, INDArray y, INDArray z, boolean keepDims, int... dimensions)
Dot(INDArray x, INDArray y, INDArray z, int... dimensions)
Full array dot product reduction, optionally along specified dimensions.
See wikipedia for details.EqualsWithEps(INDArray x, INDArray y, boolean allDistances, double eps, int... dimensions)
EqualsWithEps(INDArray x, INDArray y, boolean allDistances, int... dimensions)
EqualsWithEps(INDArray x, INDArray y, double eps, int... dimensions)
EqualsWithEps(INDArray x, INDArray y, int... dimensions)
EqualsWithEps(INDArray x, INDArray y, INDArray z)
EqualsWithEps(INDArray x, INDArray y, INDArray z, boolean keepDims, boolean allDistances, double eps, int... dimensions)
EqualsWithEps(INDArray x, INDArray y, INDArray z, boolean keepDims, boolean allDistances, int... dimensions)
EqualsWithEps(INDArray x, INDArray y, INDArray z, boolean keepDims, double eps, int... dimensions)
EqualsWithEps(INDArray x, INDArray y, INDArray z, boolean keepDims, int... dimensions)
EqualsWithEps(INDArray x, INDArray y, INDArray z, double eps)
EqualsWithEps(INDArray x, INDArray y, INDArray z, double eps, int... dimensions)
EqualsWithEps(INDArray x, INDArray y, INDArray z, int... dimensions)
EuclideanDistance(INDArray x, INDArray y, boolean keepDims, boolean isComplex, int[] dimensions)
EuclideanDistance(INDArray x, INDArray y, boolean allDistances, int... dimensions)
EuclideanDistance(INDArray x, INDArray y, int... dimensions)
EuclideanDistance(INDArray x, INDArray y, INDArray z)
EuclideanDistance(INDArray x, INDArray y, INDArray z, boolean keepDims, boolean allDistances, int... dimensions)
EuclideanDistance(INDArray x, INDArray y, INDArray z, boolean allDistances, int... dimensions)
EuclideanDistance(INDArray x, INDArray y, INDArray z, int... dimensions)
HammingDistance(INDArray x, INDArray y, boolean keepDims, boolean isComplex, int[] dimensions)
HammingDistance(INDArray x, INDArray y, boolean allDistances, int... dimensions)
HammingDistance(INDArray x, INDArray y, int... dimensions)
HammingDistance(INDArray x, INDArray y, INDArray z)
HammingDistance(INDArray x, INDArray y, INDArray z, boolean keepDims, boolean allDistances, int... dimensions)
HammingDistance(INDArray x, INDArray y, INDArray z, boolean allDistances, int... dimensions)
HammingDistance(INDArray x, INDArray y, INDArray z, int... dimensions)
JaccardDistance(INDArray x, INDArray y, boolean allDistances)
JaccardDistance(INDArray x, INDArray y, boolean keepDims, boolean isComplex, int[] dimensions)
JaccardDistance(INDArray x, INDArray y, boolean allDistances, int... dimensions)
JaccardDistance(INDArray x, INDArray y, int... dimensions)
JaccardDistance(INDArray x, INDArray y, INDArray z)
JaccardDistance(INDArray x, INDArray y, INDArray z, boolean keepDims, boolean allDistances, int... dimensions)
JaccardDistance(INDArray x, INDArray y, INDArray z, boolean allDistances, int... dimensions)
JaccardDistance(INDArray x, INDArray y, INDArray z, int... dimensions)
ManhattanDistance(INDArray x, INDArray y, boolean keepDims, boolean isComplex, int[] dimensions)
ManhattanDistance(INDArray x, INDArray y, boolean allDistances, int... dimensions)
ManhattanDistance(INDArray x, INDArray y, int... dimensions)
ManhattanDistance(INDArray x, INDArray y, INDArray z)
ManhattanDistance(INDArray x, INDArray y, INDArray z, boolean keepDims, boolean allDistances, int... dimensions)
ManhattanDistance(INDArray x, INDArray y, INDArray z, boolean allDistances, int... dimensions)
ManhattanDistance(INDArray x, INDArray y, INDArray z, int... dimensions)
-
Uses of INDArray in org.nd4j.linalg.api.ops.impl.scalar
-
Uses of INDArray in org.nd4j.linalg.api.ops.impl.scalar.comparison
-
Uses of INDArray in org.nd4j.linalg.api.ops.impl.scatter
Constructors in org.nd4j.linalg.api.ops.impl.scatter with parameters of type INDArray Constructor Description ScatterAdd(@NonNull INDArray ref, @NonNull INDArray indices, @NonNull INDArray update)
ScatterDiv(@NonNull INDArray ref, @NonNull INDArray indices, @NonNull INDArray update)
ScatterMax(@NonNull INDArray ref, @NonNull INDArray indices, @NonNull INDArray update)
ScatterMin(@NonNull INDArray ref, @NonNull INDArray indices, @NonNull INDArray update)
ScatterMul(@NonNull INDArray ref, @NonNull INDArray indices, @NonNull INDArray update)
ScatterSub(INDArray ref, INDArray indices, INDArray update)
ScatterUpdate(INDArray ref, INDArray indices, INDArray update)
-
Uses of INDArray in org.nd4j.linalg.api.ops.impl.shape
Methods in org.nd4j.linalg.api.ops.impl.shape that return INDArray Modifier and Type Method Description static INDArray
CreateView. createFrom(INDArray input, INDArray... indices)
Methods in org.nd4j.linalg.api.ops.impl.shape with parameters of type INDArray Modifier and Type Method Description protected static boolean
MergeMaxIndex. areEqualShapes(INDArray... inputs)
static INDArray
CreateView. createFrom(INDArray input, INDArray... indices)
static INDArrayIndex
CreateView. fromIndexArr(INDArray index)
static INDArrayIndex[]
CreateView. indices(INDArray... indexArrs)
Constructors in org.nd4j.linalg.api.ops.impl.shape with parameters of type INDArray Constructor Description Concat(int concatDimension, INDArray... arrays)
Concat(INDArray[] arrays, int concatDimension)
ConfusionMatrix(@NonNull INDArray labels, @NonNull INDArray predicted, int numClasses)
ConfusionMatrix(@NonNull INDArray labels, @NonNull INDArray predicted, @NonNull DataType dataType)
ConfusionMatrix(@NonNull INDArray labels, @NonNull INDArray predicted, Integer numClasses, @NonNull DataType dataType)
ConfusionMatrix(@NonNull INDArray labels, @NonNull INDArray predicted, INDArray weights)
ConfusionMatrix(@NonNull INDArray labels, @NonNull INDArray predicted, INDArray weights, Integer numClasses)
ConfusionMatrix(@NonNull INDArray labels, @NonNull INDArray predicted, INDArray weights, Integer numClasses, @NonNull DataType dataType)
Create(@NonNull INDArray shape, char order, boolean initialize, DataType dataType)
Create(INDArray shape, boolean initialize, DataType dataType)
Create(INDArray shape, DataType dataType)
Create(INDArray shape, DataType dataType, String order, boolean initialize)
CreateView(INDArray[] inputs)
CreateView(INDArray input, INDArray[] indices)
Cross(INDArray a, INDArray b)
Cross(INDArray a, INDArray b, INDArray out)
Diag(@NonNull INDArray input)
Diag(@NonNull INDArray input, @NonNull INDArray output)
DiagPart(INDArray in)
DiagPart(INDArray in, INDArray out)
ExpandDims(INDArray[] inputs, INDArray[] outputs)
ExpandDims(INDArray x, int axis)
Eye(@NonNull INDArray rows)
Eye(@NonNull INDArray rows, @NonNull INDArray columns)
Flatten2D(INDArray in, long axis)
Gather(INDArray df, int[] indexes, int axis)
Gather(INDArray df, INDArray indexes, int axis)
GatherNd(INDArray[] inputs, INDArray[] outputs)
GatherNd(INDArray df, INDArray indices)
Linspace(@NonNull INDArray start, @NonNull INDArray stop, @NonNull INDArray number, @NonNull DataType dataType)
Linspace(DataType dataType, INDArray start, INDArray stop, INDArray number)
MergeAvg(INDArray... inputs)
MergeMax(INDArray... inputs)
MergeMaxIndex(@NonNull INDArray... inputs)
MergeMaxIndex(@NonNull INDArray[] x, @NonNull DataType dataType)
MeshGrid(@NonNull INDArray[] inputs, boolean cartesian)
OneHot(INDArray indices, int depth)
OneHot(INDArray indices, int depth, int axis, double on, double off)
OneHot(INDArray indices, int depth, int axis, double on, double off, DataType dataType)
OneHot(INDArray indices, INDArray output, int depth)
OneHot(INDArray indices, INDArray output, int depth, int axis, double on, double off)
OnesAs(@NonNull INDArray input)
OnesAs(@NonNull INDArray input, DataType dataType)
OnesLike(@NonNull INDArray input)
OnesLike(@NonNull INDArray input, DataType dataType)
ParallelStack(INDArray[] inputs)
Permute(INDArray input, int... permuteDims)
Permute(INDArray input, INDArray result, int... permuteDims)
Rank(INDArray indArray)
Repeat(INDArray[] inputs, INDArray[] outputs, int axis)
Repeat(INDArray[] inputs, INDArray[] outputs, List<Double> tArguments, List<Integer> iArguments, int axis)
Repeat(INDArray input, INDArray repeats, int axis)
Reshape(@NonNull INDArray in, @NonNull INDArray shape, INDArray out)
Reshape(INDArray in, long... shape)
Reshape(INDArray in, INDArray shape)
SequenceMask(@NonNull INDArray input, int maxLen, DataType dataType)
SequenceMask(@NonNull INDArray input, @NonNull DataType dataType)
SequenceMask(@NonNull INDArray input, INDArray maxLength, @NonNull DataType dataType)
SetShape(INDArray in, INDArray shape)
SetShape(INDArray in, INDArray shape, INDArray out)
Shape(INDArray in)
Shape(INDArray in, INDArray out)
Size(INDArray in)
SizeAt(INDArray input, int dimension)
SizeAt(INDArray input, INDArray output, int dimension)
Slice(@NonNull INDArray input, @NonNull INDArray begin, @NonNull INDArray end)
Slice(INDArray input, int[] begin, int... size)
Split(@NonNull INDArray in, INDArray out)
Split(INDArray input, int numSplit, int splitDim)
Split(INDArray input, INDArray numSplit, int splitDim)
SplitV(INDArray input, INDArray sizes, int numSplit, int splitDim)
Squeeze(INDArray x, int axis)
Stack(INDArray[] input, int axis)
Stack(INDArray[] inputs, INDArray output, int axis)
StridedSlice(INDArray in, int[] begin, int[] end, int[] strides, int beginMask, int endMask, int ellipsisMask, int newAxisMask, int shrinkAxisMask)
StridedSlice(INDArray in, long[] begin, long[] end, long[] strides, int beginMask, int endMask, int ellipsisMask, int newAxisMask, int shrinkAxisMask)
StridedSlice(INDArray in, INDArray begin, INDArray end, INDArray strides)
StridedSlice(INDArray in, INDArray begin, INDArray end, INDArray strides, int beginMask, int endMask, int ellipsisMask, int newAxisMask, int shrinkAxisMask)
Tile(INDArray[] inputs, INDArray[] outputs, int[] axis)
Tile(INDArray[] inputs, INDArray[] outputs, int[] axis, boolean is_static_reps)
Tile(INDArray inputs, int... axis)
Tile(INDArray x, INDArray repeat)
Transpose(INDArray input)
Transpose(INDArray input, INDArray result)
Unstack(@NonNull INDArray value, int axis, int num)
Unstack(INDArray in, INDArray[] out, int axis)
ZerosLike(INDArray in)
ZerosLike(INDArray in, INDArray out)
ZerosLike(INDArray in, INDArray out, DataType dataType)
-
Uses of INDArray in org.nd4j.linalg.api.ops.impl.shape.tensorops
Constructors in org.nd4j.linalg.api.ops.impl.shape.tensorops with parameters of type INDArray Constructor Description EmbeddingLookup(@NonNull INDArray in, @NonNull INDArray indices, PartitionMode partitionMode, INDArray output)
EmbeddingLookup(@NonNull INDArray in, INDArray output, PartitionMode partitionMode, @lombok.NonNull int... indices)
TensorArrayConcat(INDArray inputVar)
TensorArrayGather(INDArray in, INDArray indices)
TensorArrayScatter(INDArray input, INDArray indices, INDArray scatter)
-
Uses of INDArray in org.nd4j.linalg.api.ops.impl.summarystats
Methods in org.nd4j.linalg.api.ops.impl.summarystats that return INDArray Modifier and Type Method Description INDArray
Variance. noOp()
Constructors in org.nd4j.linalg.api.ops.impl.summarystats with parameters of type INDArray Constructor Description StandardDeviation(INDArray x)
StandardDeviation(INDArray x, boolean biasCorrected, boolean keepDims, int... dimension)
StandardDeviation(INDArray x, boolean keepDims, double mean, double bias, boolean biasCorrected, int... dimensions)
StandardDeviation(INDArray x, boolean keepDims, double mean, double bias, int... dimensions)
StandardDeviation(INDArray x, boolean keepDims, double mean, int... dimensions)
StandardDeviation(INDArray x, boolean biasCorrected, int... dimension)
StandardDeviation(INDArray x, double mean, double bias, boolean biasCorrected, int... dimensions)
StandardDeviation(INDArray x, double mean, double bias, int... dimensions)
StandardDeviation(INDArray x, double mean, int... dimensions)
StandardDeviation(INDArray x, int... dimension)
StandardDeviation(INDArray x, INDArray z, boolean newFormat, boolean keepDims, int[] dimensions)
StandardDeviation(INDArray x, INDArray z, boolean biasCorrected, int... dimension)
StandardDeviation(INDArray x, INDArray y, double mean, double bias, boolean biasCorrected, int... dimensions)
StandardDeviation(INDArray x, INDArray y, double mean, double bias, int... dimensions)
StandardDeviation(INDArray x, INDArray y, double mean, int... dimensions)
StandardDeviation(INDArray x, INDArray y, INDArray z, boolean keepDims, int[] dimensions, double mean)
StandardDeviation(INDArray x, INDArray y, INDArray z, boolean keepDims, int[] dimensions, double mean, double bias)
StandardDeviation(INDArray x, INDArray y, INDArray z, boolean keepDims, int[] dimensions, double mean, double bias, boolean biasCorrected)
StandardDeviation(INDArray x, INDArray y, INDArray z, double mean, double bias, boolean biasCorrected, int... dimensions)
StandardDeviation(INDArray x, INDArray y, INDArray z, double mean, double bias, int... dimensions)
StandardDeviation(INDArray x, INDArray y, INDArray z, double mean, int... dimensions)
Variance(INDArray x, boolean biasCorrected, boolean keepDims, int... dimensions)
Variance(INDArray x, boolean keepDims, double mean, double bias, boolean biasCorrected, int... dimensions)
Variance(INDArray x, boolean keepDims, double mean, double bias, int... dimensions)
Variance(INDArray x, boolean keepDims, double mean, int... dimensions)
Variance(INDArray x, boolean biasCorrected, int... dimensions)
Variance(INDArray x, double mean, double bias, boolean biasCorrected, int... dimensions)
Variance(INDArray x, double mean, double bias, int... dimensions)
Variance(INDArray x, double mean, int... dimensions)
Variance(INDArray x, int... dimension)
Variance(INDArray x, INDArray z, boolean biasCorrected, boolean keepDims, int... dimensions)
Variance(INDArray x, INDArray z, boolean biasCorrected, int... dimensions)
Variance(INDArray x, INDArray y, double mean, double bias, boolean biasCorrected, int... dimensions)
Variance(INDArray x, INDArray y, double mean, double bias, int... dimensions)
Variance(INDArray x, INDArray y, double mean, int... dimensions)
Variance(INDArray x, INDArray y, INDArray z, boolean keepDims, int[] dimensions, double mean)
Variance(INDArray x, INDArray y, INDArray z, boolean keepDims, int[] dimensions, double mean, double bias)
Variance(INDArray x, INDArray y, INDArray z, boolean keepDims, int[] dimensions, double mean, double bias, boolean biasCorrected)
Variance(INDArray x, INDArray y, INDArray z, double mean, double bias, boolean biasCorrected, int... dimensions)
Variance(INDArray x, INDArray y, INDArray z, double mean, double bias, int... dimensions)
Variance(INDArray x, INDArray y, INDArray z, double mean, int... dimensions)
-
Uses of INDArray in org.nd4j.linalg.api.ops.impl.transforms
Constructors in org.nd4j.linalg.api.ops.impl.transforms with parameters of type INDArray Constructor Description Assert(INDArray x)
BaseDynamicTransformOp(INDArray[] inputs, INDArray[] outputs)
Cholesky(INDArray input)
Histogram(INDArray input, long numBins)
Histogram(INDArray input, INDArray output)
MaxOut(INDArray x)
MaxOut(INDArray x, INDArray z)
Pad(@NonNull INDArray in, @NonNull INDArray padding, double padValue)
Pad(@NonNull INDArray in, @NonNull INDArray padding, @NonNull PadMode mode, double padValue)
Pad(@NonNull INDArray in, @NonNull INDArray padding, INDArray out, @NonNull PadMode mode, double padValue)
Pad(@NonNull INDArray in, @NonNull INDArray padding, INDArray out, @NonNull Pad.Mode mode, double padValue)
Pad(INDArray input, INDArray padding, Mode mode, double padValue)
ReluLayer(@NonNull INDArray input, @NonNull INDArray weights, @NonNull INDArray bias)
-
Uses of INDArray in org.nd4j.linalg.api.ops.impl.transforms.any
Constructors in org.nd4j.linalg.api.ops.impl.transforms.any with parameters of type INDArray Constructor Description Assign(INDArray x)
Assign(INDArray x, INDArray z)
IsMax(INDArray x)
IsMax(INDArray x, int... dimensions)
IsMax(INDArray x, INDArray z)
IsMax(INDArray x, INDArray z, int... dimensions)
-
Uses of INDArray in org.nd4j.linalg.api.ops.impl.transforms.bool
Constructors in org.nd4j.linalg.api.ops.impl.transforms.bool with parameters of type INDArray Constructor Description BooleanNot(@NonNull INDArray x)
BooleanNot(@NonNull INDArray x, INDArray z)
IsFinite(INDArray x)
IsFinite(INDArray x, INDArray z)
IsInf(INDArray x)
IsInf(INDArray x, INDArray z)
IsNaN(INDArray x)
IsNaN(INDArray x, INDArray z)
MatchConditionTransform(@NonNull INDArray x, @NonNull INDArray y, @NonNull INDArray z, @NonNull Condition condition)
MatchConditionTransform(@NonNull INDArray x, @NonNull INDArray z, @NonNull Condition condition)
MatchConditionTransform(INDArray x, double eps, @NonNull Condition condition)
MatchConditionTransform(INDArray x, @NonNull Condition condition)
MatchConditionTransform(INDArray x, INDArray z, double eps, @NonNull Condition condition)
-
Uses of INDArray in org.nd4j.linalg.api.ops.impl.transforms.clip
Constructors in org.nd4j.linalg.api.ops.impl.transforms.clip with parameters of type INDArray Constructor Description ClipByAvgNorm(INDArray in, double clipValue, int... dimensions)
ClipByAvgNorm(INDArray in, INDArray out, double clipValue, int... dimensions)
ClipByNorm(INDArray in, double clipValue, int... dimensions)
ClipByNorm(INDArray in, INDArray out, double clipValue, int... dimensions)
ClipByNorm(INDArray x, INDArray clipValue, INDArray dimensions)
ClipByValue(@NonNull INDArray input, double clipValueMin, double clipValueMax)
ClipByValue(INDArray x, INDArray clipValueMin, INDArray clipValueMax)
-
Uses of INDArray in org.nd4j.linalg.api.ops.impl.transforms.comparison
Constructors in org.nd4j.linalg.api.ops.impl.transforms.comparison with parameters of type INDArray Constructor Description CompareAndReplace(INDArray x, INDArray y, INDArray z, Condition condition)
With this constructor, op will check each X element against given Condition, and if condition met, element Z will be set to Y value, and X otherwise Pseudocode: z[i] = condition(x[i]) ? y[i] : x[i];CompareAndReplace(INDArray x, INDArray y, Condition condition)
With this constructor, op will check each X element against given Condition, and if condition met, element Z will be set to Y value, and X otherwise PLEASE NOTE: X will be modified inplace.CompareAndSet(INDArray x, double compare, double set, double eps)
CompareAndSet(INDArray x, double compare, double set, double eps, Condition condition)
CompareAndSet(INDArray x, double set, Condition condition)
With this constructor, op will check each X element against given Condition, and if condition met, element will be replaced with Set value Pseudocode: z[i] = condition(x[i]) ? set : x[i]; PLEASE NOTE: X will be modified inplace.CompareAndSet(INDArray x, INDArray z, double compare, double set, double eps)
This constructor is shortcut to epsEquals.CompareAndSet(INDArray x, INDArray z, double set, Condition condition)
With this constructor, op will check each X element against given Condition, and if condition met, element will be replaced with Set value Pseudocode: z[i] = condition(x[i]) ? set : x[i];CompareAndSet(INDArray x, INDArray y, INDArray z, Condition condition)
With this constructor, op will check each Y element against given Condition, and if condition met, element Z will be set to Y value, and X otherwise Pseudocode: z[i] = condition(y[i]) ? y[i] : x[i];CompareAndSet(INDArray x, INDArray y, Condition condition)
With this constructor, op will check each Y element against given Condition, and if condition met, element Z will be set to Y value, and X otherwise PLEASE NOTE: X will be modified inplace.Eps(INDArray indArray)
Eps(INDArray x, INDArray y, INDArray z)
-
Uses of INDArray in org.nd4j.linalg.api.ops.impl.transforms.custom
Methods in org.nd4j.linalg.api.ops.impl.transforms.custom that return INDArray Modifier and Type Method Description INDArray
InvertPermutation. generateFake(long... shape)
INDArray
InvertPermutation. generateFake(DataType dataType, long... shape)
Constructors in org.nd4j.linalg.api.ops.impl.transforms.custom with parameters of type INDArray Constructor Description Assign(INDArray[] inputs, INDArray[] outputs)
Assign(INDArray x, INDArray y)
ATan2(INDArray x, INDArray y)
Note that the order of x and y matchMath.atan2(double, double)
, and are reversed when compared to OldATan2.ATan2(INDArray x, INDArray y, INDArray z)
Note that the order of x and y matchMath.atan2(double, double)
, and are reversed when compared to OldATan2.BatchToSpace(INDArray x, int[] blocks, int[] croppingTop, int... croppingBottom)
BitsHammingDistance(@NonNull INDArray x, @NonNull INDArray y)
BitwiseAnd(INDArray x, INDArray y)
BitwiseAnd(INDArray x, INDArray y, INDArray output)
BitwiseOr(INDArray x, INDArray y)
BitwiseOr(INDArray x, INDArray y, INDArray output)
BitwiseXor(INDArray x, INDArray y)
BitwiseXor(INDArray x, INDArray y, INDArray output)
Choose(String opName, INDArray[] inputs, INDArray[] outputs, List<Double> tArguments, List<Integer> iArguments)
Choose(String opName, INDArray[] inputs, Condition condition)
Choose(INDArray[] inputs, List<Integer> iArgs, List<Double> tArgs, Condition condition)
Note that iArgs (integer arguments) and tArgs(double/float arguments) may end up being used under the following conditions: scalar operations (if a scalar is specified the you do not need to specify an ndarray) otherwise, if an ndarray is needed as a second input then put it in the inputs Usually, you only need 1 input (the equivalent of the array you're trying to do indexing on)Choose(INDArray[] inputs, Condition condition)
CReLU(@NonNull INDArray input)
CReluBp(@NonNull INDArray input, @NonNull INDArray epsilonNext, INDArray output)
CumProd(INDArray in, boolean exclusive, boolean reverse, int... axis)
CumProd(INDArray in, INDArray result, boolean exclusive, boolean reverse, int... axis)
CumSum(INDArray in, boolean exclusive, boolean reverse, int... axis)
CumSum(INDArray in, INDArray result, boolean exclusive, boolean reverse, int... axis)
CyclicRShiftBits(INDArray input, INDArray shift)
CyclicRShiftBits(INDArray input, INDArray shift, INDArray output)
CyclicShiftBits(INDArray input, INDArray shift)
CyclicShiftBits(INDArray input, INDArray shift, INDArray output)
Dilation2D(INDArray[] inputArrays, INDArray[] outputs)
Dilation2D(INDArray df, INDArray weights, int[] strides, int[] rates, boolean isSameMode)
DotProductAttention(@NonNull INDArray queries, @NonNull INDArray keys, @NonNull INDArray values, INDArray mask, boolean scaled)
DotProductAttention(@NonNull INDArray queries, @NonNull INDArray keys, @NonNull INDArray values, INDArray mask, boolean scaled, boolean withWeights)
DynamicPartition(@NonNull INDArray input, @NonNull INDArray partitions, int numPartitions)
DynamicPartition(INDArray x, INDArray[] partitions, int numPartitions)
DynamicStitch(@NonNull INDArray[] indices, @NonNull INDArray[] inputs)
EqualTo(INDArray[] inputs, INDArray[] outputs)
EqualTo(INDArray x, INDArray y)
EqualTo(INDArray x, INDArray y, INDArray z)
FakeQuantWithMinMaxArgs(INDArray x, INDArray min, INDArray max, int num_bits, boolean narrow)
FakeQuantWithMinMaxVars(INDArray x, INDArray min, INDArray max, int num_bits, boolean narrow)
Fill(INDArray shape, DataType dtype, double value)
Fill(INDArray shape, INDArray result, double value)
Fill(INDArray shape, INDArray value, INDArray result)
GreaterThan(INDArray[] inputs, INDArray[] outputs)
GreaterThan(INDArray x, INDArray y)
GreaterThan(INDArray x, INDArray y, INDArray z)
GreaterThanOrEqual(INDArray[] inputs, INDArray[] outputs)
GreaterThanOrEqual(INDArray x, INDArray y)
GreaterThanOrEqual(INDArray x, INDArray y, INDArray z)
InvertPermutation(INDArray input)
IsNonDecreasing(@NonNull INDArray input)
IsNonDecreasing(@NonNull INDArray input, INDArray output)
IsNumericTensor(INDArray inputs)
IsNumericTensor(INDArray[] inputs, INDArray[] outputs)
IsStrictlyIncreasing(@NonNull INDArray input)
IsStrictlyIncreasing(@NonNull INDArray input, INDArray output)
LayerNorm(@NonNull INDArray input, @NonNull INDArray gain, boolean channelsFirst, int... dimensions)
LayerNorm(INDArray input, INDArray gain, INDArray result, boolean channelsFirst, int... dimensions)
LayerNorm(INDArray input, INDArray gain, INDArray bias, INDArray result, boolean channelsFirst, int... dimensions)
LayerNormBp(@NonNull INDArray input, @NonNull INDArray gain, INDArray bias, @NonNull INDArray grad, @NonNull INDArray dLdx, @NonNull INDArray dLdg, INDArray dLdb, boolean channelsFirst, int... dimensions)
LayerNormBp(INDArray input, INDArray gain, INDArray grad, INDArray dLdx, INDArray dLdg, boolean channelsFirst, int... dimensions)
LessThan(INDArray[] inputs, INDArray[] outputs)
LessThan(INDArray x, INDArray y)
LessThan(INDArray x, INDArray y, INDArray z)
LessThanOrEqual(INDArray[] inputs, INDArray[] outputs)
LessThanOrEqual(INDArray x, INDArray y)
LessThanOrEqual(INDArray x, INDArray y, INDArray z)
ListDiff(@NonNull INDArray x, @NonNull INDArray y)
LogSoftMax(INDArray x)
LogSoftMax(INDArray x, int dimension)
LogSoftMax(INDArray x, INDArray z)
MatrixDeterminant(@NonNull INDArray input)
MatrixInverse(@NonNull INDArray input)
MatrixSetDiag(@NonNull INDArray in, @NonNull INDArray diag)
Max(INDArray[] inputs, INDArray[] outputs)
Max(INDArray first, INDArray second)
Max(INDArray first, INDArray second, INDArray out)
Min(INDArray[] inputs, INDArray[] outputs)
Min(INDArray first, INDArray second)
Min(INDArray first, INDArray second, INDArray out)
MultiHeadDotProductAttention(@NonNull INDArray queries, @NonNull INDArray keys, @NonNull INDArray values, @NonNull INDArray Wq, @NonNull INDArray Wk, @NonNull INDArray Wv, @NonNull INDArray Wo, INDArray mask, boolean scaled)
MultiHeadDotProductAttention(@NonNull INDArray queries, @NonNull INDArray keys, @NonNull INDArray values, @NonNull INDArray Wq, @NonNull INDArray Wk, @NonNull INDArray Wv, @NonNull INDArray Wo, INDArray mask, boolean scaled, boolean withWeights)
NotEqualTo(INDArray[] inputs, INDArray[] outputs)
NotEqualTo(INDArray x, INDArray y)
NotEqualTo(INDArray x, INDArray y, INDArray z)
Pow(@NonNull INDArray x, @NonNull INDArray y)
Qr(INDArray input)
Qr(INDArray input, boolean fullMatrices)
Reverse(INDArray x)
Inplace reverse.Reverse(INDArray x, int... axis)
This constructor allows to specify axis for Reverse operationReverse(INDArray x, INDArray z)
Reverses whole array for compatibility with OldReverse.Reverse(INDArray x, INDArray z, int... axis)
This constructor allows to specify axis for Reverse operationReverseSequence(INDArray x, INDArray seq_lengths)
ReverseSequence(INDArray x, INDArray seq_lengths, int seqDim, int batchDim)
RShiftBits(INDArray input, INDArray shift)
RShiftBits(INDArray input, INDArray shift, INDArray output)
ShiftBits(INDArray x, INDArray y)
ShiftBits(INDArray x, INDArray y, INDArray output)
SoftMax(@NonNull INDArray input, int dimension)
SoftMax(INDArray input)
SoftMax(INDArray input, INDArray result)
SoftMax(INDArray input, INDArray result, int dimension)
SpaceToBatch(INDArray x, int[] blocks, int[] paddingTop, int... paddingBottom)
Standardize(INDArray input, int... dimensions)
Standardize(INDArray input, INDArray result, int... dimensions)
StandardizeBp(INDArray input, INDArray eps, INDArray result, int... dimensions)
Svd(INDArray input, boolean fullUV, boolean computeUV, int switchNum)
Svd(INDArray input, boolean full_matrices, INDArray s, INDArray u, INDArray v)
ThresholdRelu(@NonNull INDArray input, INDArray output, double cutoff)
TopK(INDArray input, double k, boolean sorted)
Trace(@NonNull INDArray in)
XwPlusB(INDArray[] inputs, INDArray output)
XwPlusB(INDArray input, INDArray weights, INDArray bias)
-
Uses of INDArray in org.nd4j.linalg.api.ops.impl.transforms.custom.segment
Constructors in org.nd4j.linalg.api.ops.impl.transforms.custom.segment with parameters of type INDArray Constructor Description SegmentMax(INDArray data, INDArray segmentIds)
SegmentMean(INDArray data, INDArray segmentIds)
SegmentMin(INDArray data, INDArray segmentIds)
SegmentProd(INDArray data, INDArray segmentIds)
SegmentSum(INDArray data, INDArray segmentIds)
-
Uses of INDArray in org.nd4j.linalg.api.ops.impl.transforms.dtype
Constructors in org.nd4j.linalg.api.ops.impl.transforms.dtype with parameters of type INDArray Constructor Description Cast(@NonNull INDArray arg, @NonNull DataType dataType)
-
Uses of INDArray in org.nd4j.linalg.api.ops.impl.transforms.floating
Constructors in org.nd4j.linalg.api.ops.impl.transforms.floating with parameters of type INDArray Constructor Description RSqrt(INDArray x)
RSqrt(INDArray x, INDArray z)
Sqrt(INDArray x)
Sqrt(INDArray x, INDArray z)
SqrtM(INDArray input)
SqrtM(INDArray[] inputs, INDArray[] outputs)
SqrtM(INDArray[] inputs, INDArray[] outputs, List<Double> tArguments, int[] iArguments)
SqrtM(INDArray[] inputs, INDArray[] outputs, List<Double> tArguments, List<Integer> iArguments)
-
Uses of INDArray in org.nd4j.linalg.api.ops.impl.transforms.gradient
Constructors in org.nd4j.linalg.api.ops.impl.transforms.gradient with parameters of type INDArray Constructor Description CubeBp(@NonNull INDArray input, @NonNull INDArray gradient, INDArray output)
CubeDerivative(INDArray x)
Deprecated.CubeDerivative(INDArray x, INDArray z)
Deprecated.EluBp(@NonNull INDArray input, @NonNull INDArray gradient, INDArray output)
EluBp(@NonNull INDArray input, @NonNull INDArray gradient, INDArray output, double alpha)
HardSigmoidBp(@NonNull INDArray input, @NonNull INDArray gradient, INDArray output)
HardSigmoidDerivative(INDArray x)
Deprecated.HardSigmoidDerivative(INDArray x, INDArray z)
Deprecated.HardTanhBp(@NonNull INDArray input, @NonNull INDArray gradient, INDArray output)
HardTanhDerivative(INDArray x)
Deprecated.HardTanhDerivative(INDArray x, INDArray z)
Deprecated.LeakyReLUBp(@NonNull INDArray input, @NonNull INDArray gradient, INDArray output, double alpha)
LeakyReLUDerivative(INDArray x)
LeakyReLUDerivative(INDArray x, double alpha)
LeakyReLUDerivative(INDArray x, INDArray z)
LeakyReLUDerivative(INDArray x, INDArray z, double alpha)
LogSoftMaxDerivative(INDArray in, INDArray gradO, INDArray out)
PReluBp(@NonNull INDArray input, @NonNull INDArray alpha, @NonNull INDArray gradient, INDArray dLdI, INDArray dLdA, int... sharedAxes)
RationalTanhBp(@NonNull INDArray input, @NonNull INDArray gradient, INDArray output)
RationalTanhDerivative(INDArray x)
Deprecated.RationalTanhDerivative(INDArray x, INDArray z)
Deprecated.RectifiedTanhBp(@NonNull INDArray input, @NonNull INDArray gradient, INDArray output)
RectifiedTanhDerivative(INDArray x)
Deprecated.RectifiedTanhDerivative(INDArray x, INDArray z)
Deprecated.Relu6Derivative(@NonNull INDArray input, @NonNull INDArray gradient, INDArray output)
Relu6Derivative(@NonNull INDArray input, @NonNull INDArray gradient, INDArray output, double cutoff)
SeluBp(@NonNull INDArray input, @NonNull INDArray gradient, INDArray output)
SELUDerivative(INDArray x)
Deprecated.SELUDerivative(INDArray x, INDArray z)
Deprecated.SigmoidDerivative(@NonNull INDArray x, @NonNull INDArray y)
SigmoidDerivative(INDArray x, INDArray y, INDArray z)
SoftmaxBp(@NonNull INDArray input, @NonNull INDArray grad, Integer dimension)
SoftmaxBp(@NonNull INDArray input, @NonNull INDArray grad, INDArray output, Integer dimension)
SoftPlusBp(@NonNull INDArray input, @NonNull INDArray gradient, INDArray output)
SoftSignBp(@NonNull INDArray input, @NonNull INDArray gradient, INDArray output)
SoftSignDerivative(INDArray x)
Deprecated.SoftSignDerivative(INDArray x, INDArray z)
Deprecated.TanhDerivative(INDArray x, INDArray y)
TanhDerivative(INDArray x, INDArray y, INDArray z)
ThresholdReluBp(@NonNull INDArray input, @NonNull INDArray gradient, INDArray output, double cutoff)
-
Uses of INDArray in org.nd4j.linalg.api.ops.impl.transforms.pairwise
Constructors in org.nd4j.linalg.api.ops.impl.transforms.pairwise with parameters of type INDArray Constructor Description BinaryMinimalRelativeError(INDArray x, INDArray y, double thresholdRelative, double thresholdAbsolute)
BinaryMinimalRelativeError(INDArray x, INDArray y, INDArray z, double thresholdRelative, double thresholdAbsolute)
BinaryRelativeError(INDArray x, INDArray y, double threshold)
BinaryRelativeError(INDArray x, INDArray y, INDArray z, double threshold)
RelativeError(INDArray x, INDArray y)
RelativeError(INDArray x, INDArray y, INDArray z)
Set(INDArray x)
Set(INDArray x, INDArray z)
Set(INDArray x, INDArray y, INDArray z)
-
Uses of INDArray in org.nd4j.linalg.api.ops.impl.transforms.pairwise.arithmetic
-
Uses of INDArray in org.nd4j.linalg.api.ops.impl.transforms.pairwise.bool
Constructors in org.nd4j.linalg.api.ops.impl.transforms.pairwise.bool with parameters of type INDArray Constructor Description And(@NonNull INDArray x, @NonNull INDArray y)
And(@NonNull INDArray x, @NonNull INDArray y, Number comparable)
And(@NonNull INDArray x, @NonNull INDArray y, INDArray z)
And(@NonNull INDArray x, @NonNull INDArray y, INDArray z, Number comparable)
Not(@NonNull INDArray x, INDArray y, INDArray z, Number comparable)
Or(@NonNull INDArray x, @NonNull INDArray y)
Or(@NonNull INDArray x, @NonNull INDArray y, INDArray z)
Or(@NonNull INDArray x, @NonNull INDArray y, INDArray z, Number comparable)
Xor(@NonNull INDArray x, @NonNull INDArray y)
Xor(@NonNull INDArray x, @NonNull INDArray y, INDArray z)
Xor(@NonNull INDArray x, @NonNull INDArray y, INDArray z, Number comparable)
-
Uses of INDArray in org.nd4j.linalg.api.ops.impl.transforms.same
Constructors in org.nd4j.linalg.api.ops.impl.transforms.same with parameters of type INDArray Constructor Description Abs(INDArray x)
Abs(INDArray x, INDArray z)
AMax(INDArray x, INDArray y, INDArray z)
AMin(INDArray x, INDArray y, INDArray z)
Ceil(INDArray x)
Ceil(INDArray x, INDArray z)
Cube(INDArray x)
Cube(INDArray x, INDArray z)
Floor(INDArray x)
Floor(INDArray x, INDArray z)
Identity(INDArray x)
Identity(INDArray x, INDArray z)
Max(INDArray x, INDArray y, INDArray z)
Min(INDArray x, INDArray y, INDArray z)
Negative(INDArray x)
Negative(INDArray x, INDArray z)
OneMinus(INDArray x)
OneMinus(INDArray x, INDArray z)
Reciprocal(INDArray x)
Reciprocal(INDArray x, INDArray z)
Round(INDArray x)
Round(INDArray x, INDArray z)
Sign(INDArray x)
Sign(INDArray x, INDArray z)
Square(INDArray x)
Square(INDArray x, INDArray z)
TimesOneMinus(INDArray x)
TimesOneMinus(INDArray x, INDArray z)
-
Uses of INDArray in org.nd4j.linalg.api.ops.impl.transforms.segment
-
Uses of INDArray in org.nd4j.linalg.api.ops.impl.transforms.strict
-
Uses of INDArray in org.nd4j.linalg.api.ops.impl.updaters
Constructors in org.nd4j.linalg.api.ops.impl.updaters with parameters of type INDArray Constructor Description AdaBeliefUpdater(@NonNull INDArray gradients, @NonNull INDArray stateU, @NonNull INDArray stateM, double lr, double beta1, double beta2, double epsilon, int iteration)
AdaBeliefUpdater(@NonNull INDArray gradients, @NonNull INDArray stateU, @NonNull INDArray stateM, @NonNull INDArray updates, @NonNull INDArray updatedStateU, @NonNull INDArray updatedStateM, double lr, double beta1, double beta2, double epsilon, int iteration)
AdaDeltaUpdater(@NonNull INDArray gradients, @NonNull INDArray stateMsg, @NonNull INDArray stateMsdx, double rho, double epsilon)
AdaDeltaUpdater(@NonNull INDArray gradients, @NonNull INDArray stateMsg, @NonNull INDArray stateMsdx, @NonNull INDArray updates, @NonNull INDArray updatedStateMsg, @NonNull INDArray updatedStateMsdx, double rho, double epsilon)
AdaGradUpdater(@NonNull INDArray gradients, @NonNull INDArray state, double lr, double epsilon)
AdaGradUpdater(@NonNull INDArray gradients, @NonNull INDArray state, @NonNull INDArray updates, @NonNull INDArray updatedState, double lr, double epsilon)
AdaMaxUpdater(@NonNull INDArray gradients, @NonNull INDArray stateU, @NonNull INDArray stateM, double lr, double beta1, double beta2, double epsilon, int iteration)
AdaMaxUpdater(@NonNull INDArray gradients, @NonNull INDArray stateU, @NonNull INDArray stateM, @NonNull INDArray updates, @NonNull INDArray updatedStateU, @NonNull INDArray updatedStateM, double lr, double beta1, double beta2, double epsilon, int iteration)
AdamUpdater(@NonNull INDArray gradients, @NonNull INDArray stateU, @NonNull INDArray stateM, double lr, double beta1, double beta2, double epsilon, int iteration)
AdamUpdater(@NonNull INDArray gradients, @NonNull INDArray stateU, @NonNull INDArray stateM, @NonNull INDArray updates, @NonNull INDArray updatedStateU, @NonNull INDArray updatedStateM, double lr, double beta1, double beta2, double epsilon, int iteration)
AmsGradUpdater(@NonNull INDArray gradients, @NonNull INDArray stateV, @NonNull INDArray stateM, @NonNull INDArray stateH, double lr, double beta1, double beta2, double epsilon, int iteration)
AmsGradUpdater(@NonNull INDArray gradients, @NonNull INDArray stateV, @NonNull INDArray stateM, @NonNull INDArray stateH, @NonNull INDArray updates, @NonNull INDArray updatedStateV, @NonNull INDArray updatedStateM, @NonNull INDArray updatedStateH, double lr, double beta1, double beta2, double epsilon, int iteration)
NadamUpdater(@NonNull INDArray gradients, @NonNull INDArray stateV, @NonNull INDArray stateM, double lr, double beta1, double beta2, double epsilon, int iteration)
NadamUpdater(@NonNull INDArray gradients, @NonNull INDArray stateV, @NonNull INDArray stateM, @NonNull INDArray updates, @NonNull INDArray updatedStateV, @NonNull INDArray updatedStateM, double lr, double beta1, double beta2, double epsilon, int iteration)
NesterovsUpdater(@NonNull INDArray gradients, @NonNull INDArray state, double lr, double momentum)
NesterovsUpdater(@NonNull INDArray gradients, @NonNull INDArray state, @NonNull INDArray updates, @NonNull INDArray updatedState, double lr, double momentum)
RmsPropUpdater(@NonNull INDArray gradients, @NonNull INDArray state, double lr, double decay, double epsilon)
RmsPropUpdater(@NonNull INDArray gradients, @NonNull INDArray state, @NonNull INDArray updates, @NonNull INDArray updatedState, double lr, double decay, double epsilon)
SgdUpdater(@NonNull INDArray input, double lr)
SgdUpdater(@NonNull INDArray input, @NonNull INDArray output, double lr)
-
Uses of INDArray in org.nd4j.linalg.api.ops.random
Constructors in org.nd4j.linalg.api.ops.random with parameters of type INDArray Constructor Description BaseRandomOp(INDArray x, INDArray y, INDArray z)
-
Uses of INDArray in org.nd4j.linalg.api.ops.random.compat
Constructors in org.nd4j.linalg.api.ops.random.compat with parameters of type INDArray Constructor Description RandomStandardNormal(INDArray shape)
RandomStandardNormal(INDArray shape, INDArray output)
-
Uses of INDArray in org.nd4j.linalg.api.ops.random.custom
Constructors in org.nd4j.linalg.api.ops.random.custom with parameters of type INDArray Constructor Description DistributionUniform(INDArray shape, INDArray out, double min, double max)
DistributionUniform(INDArray shape, INDArray out, double min, double max, DataType dataType)
RandomBernoulli(INDArray shape, INDArray out, double p)
RandomExponential(INDArray shape, INDArray out, double lambda)
RandomGamma(@NonNull INDArray shape, @NonNull INDArray alpha, INDArray beta)
RandomGamma(@NonNull INDArray shape, @NonNull INDArray alpha, INDArray beta, int... seeds)
RandomPoisson(@NonNull INDArray shape, @NonNull INDArray rate)
RandomPoisson(@NonNull INDArray shape, @NonNull INDArray rate, int... seeds)
RandomShuffle(@NonNull INDArray value)
RandomShuffle(@NonNull INDArray value, int... seeds)
-
Uses of INDArray in org.nd4j.linalg.api.ops.random.impl
Methods in org.nd4j.linalg.api.ops.random.impl that return INDArray Modifier and Type Method Description INDArray
Linspace. x()
INDArray
Linspace. y()
Methods in org.nd4j.linalg.api.ops.random.impl with parameters of type INDArray Modifier and Type Method Description void
Linspace. setX(INDArray x)
void
Linspace. setY(INDArray y)
void
BinomialDistribution. setZ(INDArray z)
void
LogNormalDistribution. setZ(INDArray z)
void
TruncatedNormalDistribution. setZ(INDArray z)
Constructors in org.nd4j.linalg.api.ops.random.impl with parameters of type INDArray Constructor Description AlphaDropOut(@NonNull INDArray x, double p, double alpha, double alphaPrime, double beta)
AlphaDropOut(@NonNull INDArray x, @NonNull INDArray z, double p, double alpha, double alphaPrime, double beta)
BernoulliDistribution(@NonNull INDArray z, double prob)
This op fills Z with bernoulli trial results, so 0, or 1, depending by common probabilityBernoulliDistribution(@NonNull INDArray z, @NonNull INDArray prob)
This op fills Z with bernoulli trial results, so 0, or 1, each element will have it's own success probability defined in prob arrayBinomialDistribution(@NonNull INDArray z, int trials, double probability)
This op fills Z with binomial distribution over given trials with single given probability for all trialsBinomialDistribution(@NonNull INDArray z, int trials, @NonNull INDArray probabilities)
This op fills Z with binomial distribution over given trials with probability for each trial given as probabilities INDArrayBinomialDistribution(@NonNull INDArray z, @NonNull INDArray probabilities)
This op fills Z with binomial distribution over given trials with probability for each trial given as probabilities INDArrayBinomialDistributionEx(@NonNull INDArray z, long trials, double probability)
This op fills Z with binomial distribution over given trials with single given probability for all trialsBinomialDistributionEx(@NonNull INDArray z, long trials, @NonNull INDArray probabilities)
This op fills Z with binomial distribution over given trials with probability for each trial given as probabilities INDArrayBinomialDistributionEx(@NonNull INDArray z, @NonNull INDArray probabilities)
This op fills Z with binomial distribution over given trials with probability for each trial given as probabilities INDArrayChoice(@NonNull INDArray source, @NonNull INDArray probabilities, @NonNull INDArray z)
DropOut(@NonNull INDArray x, double p)
DropOut(@NonNull INDArray x, @NonNull INDArray z, double p)
DropOutInverted(@NonNull INDArray x, double p)
DropOutInverted(@NonNull INDArray x, @NonNull INDArray z, double p)
GaussianDistribution(@NonNull INDArray z)
This op fills Z with random values within -1.0..0..1.0GaussianDistribution(@NonNull INDArray z, double stddev)
This op fills Z with random values within stddev..0..stddevGaussianDistribution(@NonNull INDArray z, double mean, double stddev)
This op fills Z with random values within stddev..mean..stddev boundariesGaussianDistribution(@NonNull INDArray z, @NonNull INDArray means, double stddev)
Linspace(@NonNull INDArray z, double from, double to)
Linspace(@NonNull INDArray z, double from, double to, double step)
LogNormalDistribution(@NonNull INDArray z)
This op fills Z with random values within -1.0..0..1.0LogNormalDistribution(@NonNull INDArray z, double stddev)
This op fills Z with random values within stddev..0..stddevLogNormalDistribution(@NonNull INDArray z, double mean, double stddev)
This op fills Z with random values within stddev..mean..stddev boundariesLogNormalDistribution(@NonNull INDArray z, @NonNull INDArray means, double stddev)
ProbablisticMerge(@NonNull INDArray x, @NonNull INDArray y, double probability)
ProbablisticMerge(@NonNull INDArray x, @NonNull INDArray y, @NonNull INDArray z, double probability)
Range(INDArray from, INDArray to, INDArray step, DataType dataType)
TruncatedNormalDistribution(@NonNull INDArray z)
This op fills Z with random values within -1.0..0..1.0TruncatedNormalDistribution(@NonNull INDArray z, double stddev)
This op fills Z with random values within stddev..0..stddevTruncatedNormalDistribution(@NonNull INDArray z, double mean, double stddev)
This op fills Z with random values within stddev..mean..stddev boundariesTruncatedNormalDistribution(@NonNull INDArray z, @NonNull INDArray means, double stddev)
UniformDistribution(@NonNull INDArray z)
This op fills Z with random values within 0...1UniformDistribution(@NonNull INDArray z, double to)
This op fills Z with random values within 0...toUniformDistribution(@NonNull INDArray z, double from, double to)
This op fills Z with random values within from...to boundaries -
Uses of INDArray in org.nd4j.linalg.api.ops.util
Constructors in org.nd4j.linalg.api.ops.util with parameters of type INDArray Constructor Description PrintAffinity(INDArray array)
PrintVariable(INDArray array)
PrintVariable(INDArray array, boolean printSpecial)
PrintVariable(INDArray array, String message)
PrintVariable(INDArray array, String message, boolean printSpecial)
PrintVariable(INDArray array, INDArray message)
PrintVariable(INDArray array, INDArray message, boolean printSpecial)
-
Uses of INDArray in org.nd4j.linalg.api.rng
Methods in org.nd4j.linalg.api.rng that return INDArray Modifier and Type Method Description INDArray
DefaultRandom. nextDouble(char order, int[] shape)
INDArray
DefaultRandom. nextDouble(char order, long[] shape)
INDArray
DefaultRandom. nextDouble(int[] shape)
INDArray
DefaultRandom. nextDouble(long[] shape)
INDArray
Random. nextDouble(char order, int[] shape)
Generate a uniform number ndarray of the specified shape and orderINDArray
Random. nextDouble(char order, long[] shape)
INDArray
Random. nextDouble(int[] shape)
Generate a uniform number ndarray of the specified shapeINDArray
Random. nextDouble(long[] shape)
INDArray
DefaultRandom. nextFloat(char order, int[] shape)
INDArray
DefaultRandom. nextFloat(char order, long[] shape)
INDArray
DefaultRandom. nextFloat(int[] shape)
INDArray
DefaultRandom. nextFloat(long[] shape)
INDArray
Random. nextFloat(char order, int[] shape)
Generate a uniform number ndarray of the specified shapeINDArray
Random. nextFloat(char order, long[] shape)
INDArray
Random. nextFloat(int[] shape)
Generate a uniform number ndarray of the specified shapeINDArray
Random. nextFloat(long[] shape)
INDArray
DefaultRandom. nextGaussian(char order, int[] shape)
INDArray
DefaultRandom. nextGaussian(char order, long[] shape)
INDArray
DefaultRandom. nextGaussian(int[] shape)
INDArray
DefaultRandom. nextGaussian(long[] shape)
INDArray
Random. nextGaussian(char order, int[] shape)
Generate a gaussian number ndarray of the specified shape and orderINDArray
Random. nextGaussian(char order, long[] shape)
INDArray
Random. nextGaussian(int[] shape)
Generate a gaussian number ndarray of the specified shapeINDArray
Random. nextGaussian(long[] shape)
INDArray
DefaultRandom. nextInt(int[] shape)
INDArray
DefaultRandom. nextInt(int n, int[] shape)
INDArray
DefaultRandom. nextInt(int n, long[] shape)
INDArray
DefaultRandom. nextInt(long[] shape)
INDArray
Random. nextInt(int[] shape)
Generate a random set of integers of the specified shape.INDArray
Random. nextInt(int n, int[] shape)
Generate a random set of integers of the specified shape.INDArray
Random. nextInt(int n, long[] shape)
INDArray
Random. nextInt(long[] shape)
-
Uses of INDArray in org.nd4j.linalg.api.rng.distribution
Methods in org.nd4j.linalg.api.rng.distribution that return INDArray Modifier and Type Method Description INDArray
BaseDistribution. sample(int[] shape)
INDArray
BaseDistribution. sample(long[] shape)
INDArray
BaseDistribution. sample(INDArray target)
INDArray
Distribution. sample(int[] shape)
Sample the given shapeINDArray
Distribution. sample(long[] shape)
INDArray
Distribution. sample(INDArray target)
Fill the target array by sampling from the distributionMethods in org.nd4j.linalg.api.rng.distribution with parameters of type INDArray Modifier and Type Method Description INDArray
BaseDistribution. sample(INDArray target)
INDArray
Distribution. sample(INDArray target)
Fill the target array by sampling from the distribution -
Uses of INDArray in org.nd4j.linalg.api.rng.distribution.factory
Methods in org.nd4j.linalg.api.rng.distribution.factory with parameters of type INDArray Modifier and Type Method Description Distribution
DefaultDistributionFactory. createBinomial(int n, INDArray p)
Distribution
DistributionFactory. createBinomial(int n, INDArray p)
Create a distributionDistribution
DefaultDistributionFactory. createNormal(INDArray mean, double std)
Distribution
DistributionFactory. createNormal(INDArray mean, double std)
Create a normal distribution with the given mean and std -
Uses of INDArray in org.nd4j.linalg.api.rng.distribution.impl
Methods in org.nd4j.linalg.api.rng.distribution.impl that return INDArray Modifier and Type Method Description INDArray
BinomialDistribution. sample(int[] shape)
INDArray
BinomialDistribution. sample(INDArray ret)
INDArray
ConstantDistribution. sample(int[] shape)
INDArray
ConstantDistribution. sample(INDArray target)
INDArray
LogNormalDistribution. sample(int[] shape)
INDArray
LogNormalDistribution. sample(INDArray ret)
INDArray
NormalDistribution. sample(int[] shape)
INDArray
NormalDistribution. sample(INDArray ret)
INDArray
OrthogonalDistribution. sample(int[] shape)
INDArray
OrthogonalDistribution. sample(long[] shape)
INDArray
OrthogonalDistribution. sample(INDArray target)
INDArray
TruncatedNormalDistribution. sample(int[] shape)
INDArray
TruncatedNormalDistribution. sample(INDArray ret)
INDArray
UniformDistribution. sample(int[] shape)
INDArray
UniformDistribution. sample(INDArray ret)
Methods in org.nd4j.linalg.api.rng.distribution.impl with parameters of type INDArray Modifier and Type Method Description INDArray
BinomialDistribution. sample(INDArray ret)
INDArray
ConstantDistribution. sample(INDArray target)
INDArray
LogNormalDistribution. sample(INDArray ret)
INDArray
NormalDistribution. sample(INDArray ret)
INDArray
OrthogonalDistribution. sample(INDArray target)
INDArray
TruncatedNormalDistribution. sample(INDArray ret)
INDArray
UniformDistribution. sample(INDArray ret)
Constructors in org.nd4j.linalg.api.rng.distribution.impl with parameters of type INDArray Constructor Description BinomialDistribution(int n, INDArray p)
LogNormalDistribution(double standardDeviation, INDArray means)
LogNormalDistribution(INDArray mean, double std)
LogNormalDistribution(Random rng, double standardDeviation, INDArray means)
NormalDistribution(double standardDeviation, INDArray means)
NormalDistribution(INDArray mean, double std)
NormalDistribution(Random rng, double standardDeviation, INDArray means)
TruncatedNormalDistribution(double standardDeviation, INDArray means)
TruncatedNormalDistribution(INDArray mean, double std)
TruncatedNormalDistribution(Random rng, double standardDeviation, INDArray means)
-
Uses of INDArray in org.nd4j.linalg.api.shape
Methods in org.nd4j.linalg.api.shape that return INDArray Modifier and Type Method Description static INDArray
Shape. ndArrayDimFromInt(int... dimensions)
Create an INDArray to represent the (possibly null) int[] dimensions.static INDArray
Shape. newShapeNoCopy(INDArray arr, int[] newShape, boolean isFOrder)
static INDArray
Shape. newShapeNoCopy(INDArray arr, long[] newShape, boolean isFOrder)
A port of numpy's reshaping algorithm that leverages no copy where possible and returns null if the reshape couldn't happen without copyingstatic INDArray
Shape. toMmulCompatible(INDArray input)
This method is used in DL4J LSTM implementationstatic INDArray
Shape. toOffsetZero(INDArray arr)
Create a copy of the matrix where the new offset is zerostatic INDArray
Shape. toOffsetZeroCopy(INDArray arr)
Create a copy of the ndarray where the new offset is zerostatic INDArray
Shape. toOffsetZeroCopy(INDArray arr, char order)
Create a copy of the ndarray where the new offset is zero, and has specified orderstatic INDArray
Shape. toOffsetZeroCopyAnyOrder(INDArray arr)
Create a copy of the ndarray where the new offset is zero.Methods in org.nd4j.linalg.api.shape with parameters of type INDArray Modifier and Type Method Description static void
Shape. assertBroadcastable(@NonNull INDArray x, @NonNull INDArray y)
static void
Shape. assertBroadcastable(String op, INDArray first, INDArray second, INDArray result)
Assert that the broadcast operationresult = first.op(second)
is valid, given the shapes of first, second, and result.
Throws an exception otherwisestatic double
Shape. getDouble(INDArray arr, int[] indices)
Get a double based on the array and given indicesstatic double
Shape. getDouble(INDArray arr, long... indices)
static long
Shape. getLong(INDArray arr, long... indices)
static long[]
Shape. getMaxShape(INDArray... inputs)
Return the shape of the largest length array based on the inputstatic char
Shape. getOrder(INDArray arr)
Infer the order for the ndarray based on the array's stridesstatic boolean
Shape. hasDefaultStridesForShape(INDArray input)
static long[]
Shape. ind2sub(INDArray arr, long index)
Convert a linear index to the equivalent nd index based on the shape of the specified ndarray.static long[]
Shape. ind2subC(INDArray arr, long index)
Convert a linear index to the equivalent nd index based on the shape of the specified ndarray.static boolean
Shape. isContiguousInBuffer(INDArray in)
Are the elements in the buffer contiguous for this NDArray?static void
Shape. iterate(INDArray arr, INDArray arr2, CoordinateFunction coordinateFunction)
Iterate over 2 coordinate spaces given 2 arraysstatic void
Shape. iterate(INDArray arr, CoordinateFunction coordinateFunction)
Iterate over 2 coordinate spaces given 2 arraysstatic INDArray
Shape. newShapeNoCopy(INDArray arr, int[] newShape, boolean isFOrder)
static INDArray
Shape. newShapeNoCopy(INDArray arr, long[] newShape, boolean isFOrder)
A port of numpy's reshaping algorithm that leverages no copy where possible and returns null if the reshape couldn't happen without copyingstatic long[]
Shape. reductionShape(INDArray x, int[] dimension, boolean newFormat, boolean keepDims)
Calculate the shape of the returned array, for a reduction along dimensionstatic String
Shape. shapeToString(INDArray arr)
Prints the shape for this shape informationstatic String
Shape. shapeToStringShort(INDArray arr)
static boolean
Shape. strideDescendingCAscendingF(INDArray array)
Check if strides are in order suitable for non-strided mmul etc.static INDArray
Shape. toMmulCompatible(INDArray input)
This method is used in DL4J LSTM implementationstatic INDArray
Shape. toOffsetZero(INDArray arr)
Create a copy of the matrix where the new offset is zerostatic INDArray
Shape. toOffsetZeroCopy(INDArray arr)
Create a copy of the ndarray where the new offset is zerostatic INDArray
Shape. toOffsetZeroCopy(INDArray arr, char order)
Create a copy of the ndarray where the new offset is zero, and has specified orderstatic INDArray
Shape. toOffsetZeroCopyAnyOrder(INDArray arr)
Create a copy of the ndarray where the new offset is zero. -
Uses of INDArray in org.nd4j.linalg.cache
Methods in org.nd4j.linalg.cache with parameters of type INDArray Modifier and Type Method Description Pair<DataBuffer,DataBuffer>
TADManager. getTADOnlyShapeInfo(INDArray array, int... dimension)
This method returns TAD shapeInfo and all offsets for specified tensor and dimensions.Constructors in org.nd4j.linalg.cache with parameters of type INDArray Constructor Description TadDescriptor(INDArray array, int[] dimension)
Pass in an ndarray to get the databuffer and the appropriate dimensions -
Uses of INDArray in org.nd4j.linalg.checkutil
Methods in org.nd4j.linalg.checkutil that return INDArray Modifier and Type Method Description static INDArray
CheckUtil. convertFromApacheMatrix(org.apache.commons.math3.linear.RealMatrix matrix, DataType dataType)
Methods in org.nd4j.linalg.checkutil that return types with arguments of type INDArray Modifier and Type Method Description static List<Pair<INDArray,String>>
NDArrayCreationUtil. get3dPermutedWithShape(int seed, int[] shape, DataType dataType)
static List<Pair<INDArray,String>>
NDArrayCreationUtil. get3dPermutedWithShape(long seed, long[] shape, DataType dataType)
static List<Pair<INDArray,String>>
NDArrayCreationUtil. get3dReshapedWithShape(int seed, int[] shape, DataType dataType)
static List<Pair<INDArray,String>>
NDArrayCreationUtil. get3dReshapedWithShape(long seed, long[] shape, DataType dataType)
static List<Pair<INDArray,String>>
NDArrayCreationUtil. get3dSubArraysWithShape(int seed, int[] shape, DataType dataType)
static List<Pair<INDArray,String>>
NDArrayCreationUtil. get3dSubArraysWithShape(long seed, long[] shape, DataType dataType)
static List<Pair<INDArray,String>>
NDArrayCreationUtil. get3dTensorAlongDimensionWithShape(int seed, int[] shape, DataType dataType)
static List<Pair<INDArray,String>>
NDArrayCreationUtil. get3dTensorAlongDimensionWithShape(long seed, long[] shape, DataType dataType)
static List<Pair<INDArray,String>>
NDArrayCreationUtil. get4dPermutedWithShape(int seed, int[] shape, DataType dataType)
static List<Pair<INDArray,String>>
NDArrayCreationUtil. get4dReshapedWithShape(int seed, int[] shape, DataType dataType)
static List<Pair<INDArray,String>>
NDArrayCreationUtil. get4dSubArraysWithShape(int seed, int[] shape, DataType dataType)
static List<Pair<INDArray,String>>
NDArrayCreationUtil. get4dTensorAlongDimensionWithShape(int seed, int[] shape, DataType dataType)
static List<Pair<INDArray,String>>
NDArrayCreationUtil. get5dPermutedWithShape(int seed, int[] shape, DataType dataType)
static List<Pair<INDArray,String>>
NDArrayCreationUtil. get5dReshapedWithShape(int seed, int[] shape, DataType dataType)
static List<Pair<INDArray,String>>
NDArrayCreationUtil. get5dSubArraysWithShape(int seed, int[] shape, DataType dataType)
static List<Pair<INDArray,String>>
NDArrayCreationUtil. get5dTensorAlongDimensionWithShape(int seed, int[] shape, DataType dataType)
static List<Pair<INDArray,String>>
NDArrayCreationUtil. get6dPermutedWithShape(int seed, int[] shape, DataType dataType)
static List<Pair<INDArray,String>>
NDArrayCreationUtil. get6dReshapedWithShape(int seed, int[] shape, DataType dataType)
static List<Pair<INDArray,String>>
NDArrayCreationUtil. get6dSubArraysWithShape(int seed, int[] shape, DataType dataType)
static List<Pair<INDArray,String>>
NDArrayCreationUtil. getAll3dTestArraysWithShape(int seed, int[] shape, DataType dataType)
static List<Pair<INDArray,String>>
NDArrayCreationUtil. getAll3dTestArraysWithShape(long seed, long[] shape, DataType dataType)
static List<Pair<INDArray,String>>
NDArrayCreationUtil. getAll4dTestArraysWithShape(int seed, int[] shape, DataType dataType)
static List<Pair<INDArray,String>>
NDArrayCreationUtil. getAll4dTestArraysWithShape(int seed, long[] shape, DataType dataType)
static List<Pair<INDArray,String>>
NDArrayCreationUtil. getAll5dTestArraysWithShape(int seed, int[] shape, DataType dataType)
static List<Pair<INDArray,String>>
NDArrayCreationUtil. getAll6dTestArraysWithShape(int seed, int[] shape, DataType dataType)
static List<Pair<INDArray,String>>
NDArrayCreationUtil. getAllTestMatricesWithShape(char ordering, int rows, int cols, int seed, DataType dataType)
Get an array of INDArrays (2d) all with the specified shape.static List<Pair<INDArray,String>>
NDArrayCreationUtil. getAllTestMatricesWithShape(long rows, long cols, long seed, DataType dataType)
Get an array of INDArrays (2d) all with the specified shape.static Pair<INDArray,String>
NDArrayCreationUtil. getPermutedWithShape(char ordering, long rows, long cols, long seed, DataType dataType)
static Pair<INDArray,String>
NDArrayCreationUtil. getPermutedWithShape(long rows, long cols, long seed, DataType dataType)
static Pair<INDArray,String>
NDArrayCreationUtil. getReshapedWithShape(char ordering, long rows, long cols, long seed, DataType dataType)
static Pair<INDArray,String>
NDArrayCreationUtil. getReshapedWithShape(long rows, long cols, long seed, DataType dataType)
static List<Pair<INDArray,String>>
NDArrayCreationUtil. getSubMatricesWithShape(char ordering, long rows, long cols, long seed, DataType dataType)
static List<Pair<INDArray,String>>
NDArrayCreationUtil. getSubMatricesWithShape(long rows, long cols, long seed, DataType dataType)
static List<Pair<INDArray,String>>
NDArrayCreationUtil. getTensorAlongDimensionMatricesWithShape(char ordering, long rows, long cols, long seed, DataType dataType)
static List<Pair<INDArray,String>>
NDArrayCreationUtil. getTensorAlongDimensionMatricesWithShape(long rows, long cols, long seed, DataType dataType)
static List<Pair<INDArray,String>>
NDArrayCreationUtil. getTestMatricesWithVaryingShapes(int rank, char order, DataType dataType)
Test utility to sweep shapes given a rank Given a rank will generate random test matrices that will cover all cases of a shape with a '1' anywhere in the shape as well a shape with random ints that are not 0 or 1 eg.static Pair<INDArray,String>
NDArrayCreationUtil. getTransposedMatrixWithShape(char ordering, int rows, int cols, int seed, DataType dataType)
static Pair<INDArray,String>
NDArrayCreationUtil. getTransposedMatrixWithShape(long rows, long cols, long seed, DataType dataType)
Methods in org.nd4j.linalg.checkutil with parameters of type INDArray Modifier and Type Method Description static boolean
CheckUtil. checkAdd(INDArray first, INDArray second, double maxRelativeDifference, double minAbsDifference)
Same as checkMmul, but for matrix additionstatic boolean
CheckUtil. checkDivManually(INDArray first, INDArray second, double maxRelativeDifference, double minAbsDifference)
static boolean
CheckUtil. checkEntries(org.apache.commons.math3.linear.RealMatrix rmResult, INDArray result, double maxRelativeDifference, double minAbsDifference)
static boolean
CheckUtil. checkEntries(INDArray expected, INDArray actual, double maxRelativeDifference, double minAbsDifference)
static boolean
CheckUtil. checkGemm(INDArray a, INDArray b, INDArray c, boolean transposeA, boolean transposeB, double alpha, double beta, double maxRelativeDifference, double minAbsDifference)
static boolean
CheckUtil. checkMmul(INDArray first, INDArray second, double maxRelativeDifference, double minAbsDifference)
Check first.mmul(second) using Apache commons math mmul.static boolean
CheckUtil. checkMulManually(INDArray first, INDArray second, double maxRelativeDifference, double minAbsDifference)
static boolean
CheckUtil. checkSubtract(INDArray first, INDArray second, double maxRelativeDifference, double minAbsDifference)
Same as checkMmul, but for matrix subtractionstatic org.apache.commons.math3.linear.RealMatrix
CheckUtil. convertToApacheMatrix(INDArray matrix)
static void
CheckUtil. printFailureDetails(INDArray first, INDArray second, org.apache.commons.math3.linear.RealMatrix expected, INDArray actual, INDArray onCopies, String op)
static void
CheckUtil. printFailureDetails(INDArray first, INDArray second, INDArray expected, INDArray actual, INDArray onCopies, String op)
static void
CheckUtil. printGemmFailureDetails(INDArray a, INDArray b, INDArray c, boolean transposeA, boolean transposeB, double alpha, double beta, org.apache.commons.math3.linear.RealMatrix expected, INDArray actual, INDArray onCopies)
static void
CheckUtil. printMatrixFullPrecision(INDArray matrix)
static void
CheckUtil. printNDArrayHeader(INDArray array)
-
Uses of INDArray in org.nd4j.linalg.compression
Methods in org.nd4j.linalg.compression that return INDArray Modifier and Type Method Description INDArray
BasicNDArrayCompressor. compress(double[] array)
This method returns compressed INDArray instance which contains JVM array passed inINDArray
BasicNDArrayCompressor. compress(float[] array)
This method returns compressed INDArray instance which contains JVM array passed inINDArray
BasicNDArrayCompressor. compress(INDArray array)
INDArray
BasicNDArrayCompressor. compress(INDArray array, String algorithm)
Returns a compressed version of the given ndarrayINDArray
NDArrayCompressor. compress(double[] data)
This method creates compressed INDArray from Java double array, skipping usual INDArray instantiation routines Please note: This method compresses input data as vectorINDArray
NDArrayCompressor. compress(double[] data, int[] shape, char order)
This method creates compressed INDArray from Java double array, skipping usual INDArray instantiation routinesINDArray
NDArrayCompressor. compress(float[] data)
This method creates compressed INDArray from Java float array, skipping usual INDArray instantiation routines Please note: This method compresses input data as vectorINDArray
NDArrayCompressor. compress(float[] data, int[] shape, char order)
This method creates compressed INDArray from Java float array, skipping usual INDArray instantiation routinesINDArray
NDArrayCompressor. compress(INDArray array)
This method returns compressed copy of referenced arrayINDArray
BasicNDArrayCompressor. decompress(INDArray array)
INDArray
NDArrayCompressor. decompress(INDArray array)
This method returns decompressed copy of referenced arrayINDArray
AbstractStorage. get(T key)
Get object from the storage, by keyMethods in org.nd4j.linalg.compression with parameters of type INDArray Modifier and Type Method Description void
BasicNDArrayCompressor. autoDecompress(INDArray array)
void
BasicNDArrayCompressor. autoDecompress(INDArray... arrays)
Decompress several ndarraysINDArray
BasicNDArrayCompressor. compress(INDArray array)
INDArray
BasicNDArrayCompressor. compress(INDArray array, String algorithm)
Returns a compressed version of the given ndarrayINDArray
NDArrayCompressor. compress(INDArray array)
This method returns compressed copy of referenced arrayvoid
BasicNDArrayCompressor. compressi(INDArray array)
In place compression of the passed in ndarray with the default compression algorithmvoid
BasicNDArrayCompressor. compressi(INDArray array, String algorithm)
In place Compress the given ndarray with the given algorithmvoid
NDArrayCompressor. compressi(INDArray array)
Inplace compression of INDArrayINDArray
BasicNDArrayCompressor. decompress(INDArray array)
INDArray
NDArrayCompressor. decompress(INDArray array)
This method returns decompressed copy of referenced arrayvoid
BasicNDArrayCompressor. decompressi(INDArray array)
in place decompression of the given ndarray.void
NDArrayCompressor. decompressi(INDArray array)
Inplace decompression of INDArrayvoid
AbstractStorage. store(T key, INDArray object)
Store object into storageboolean
AbstractStorage. storeIfAbsent(T key, INDArray object)
Store object into storage, if it doesn't exist -
Uses of INDArray in org.nd4j.linalg.convolution
Methods in org.nd4j.linalg.convolution that return INDArray Modifier and Type Method Description static INDArray
Convolution. col2im(INDArray col, int[] stride, int[] padding, int height, int width)
static INDArray
Convolution. col2im(INDArray col, int sH, int sW, int ph, int pW, int kH, int kW)
Rearrange matrix columns into blocksstatic INDArray
Convolution. col2im(INDArray col, INDArray z, int sH, int sW, int pH, int pW, int kH, int kW, int dH, int dW)
static INDArray
OldConvolution. col2im(INDArray col, int[] stride, int[] padding, int height, int width)
static INDArray
OldConvolution. col2im(INDArray col, int sy, int sx, int ph, int pw, int h, int w)
Rearrange matrix columns into blocksINDArray
BaseConvolution. conv2d(INDArray input, INDArray kernel, Convolution.Type type)
2d convolution (aka the last 2 dimensionsstatic INDArray
Convolution. conv2d(INDArray input, INDArray kernel, Convolution.Type type)
2d convolution (aka the last 2 dimensionsINDArray
ConvolutionInstance. conv2d(INDArray input, INDArray kernel, Convolution.Type type)
2d convolution (aka the last 2 dimensionsINDArray
BaseConvolution. convn(INDArray input, INDArray kernel, Convolution.Type type)
ND Convolutionstatic INDArray
Convolution. convn(INDArray input, INDArray kernel, Convolution.Type type)
ND Convolutionstatic INDArray
Convolution. convn(INDArray input, INDArray kernel, Convolution.Type type, int[] axes)
ND ConvolutionINDArray
ConvolutionInstance. convn(INDArray input, INDArray kernel, Convolution.Type type)
ND ConvolutionINDArray
ConvolutionInstance. convn(INDArray input, INDArray kernel, Convolution.Type type, int[] axes)
ND ConvolutionINDArray
DefaultConvolutionInstance. convn(INDArray input, INDArray kernel, Convolution.Type type, int[] axes)
ND Convolutionstatic INDArray
Convolution. im2col(INDArray img, int[] kernel, int[] stride, int[] padding)
static INDArray
Convolution. im2col(INDArray img, int kh, int kw, int sy, int sx, int ph, int pw, boolean isSameMode)
Implement column formatted imagesstatic INDArray
Convolution. im2col(INDArray img, int kh, int kw, int sy, int sx, int ph, int pw, boolean isSameMode, INDArray out)
static INDArray
Convolution. im2col(INDArray img, int kh, int kw, int sy, int sx, int ph, int pw, int pval, boolean isSameMode)
Implement column formatted imagesstatic INDArray
Convolution. im2col(INDArray img, int kh, int kw, int sy, int sx, int ph, int pw, int dh, int dw, boolean isSameMode)
static INDArray
Convolution. im2col(INDArray img, int kh, int kw, int sy, int sx, int ph, int pw, int dH, int dW, boolean isSameMode, INDArray out)
Execute im2col.static INDArray
OldConvolution. im2col(INDArray img, int[] kernel, int[] stride, int[] padding)
static INDArray
OldConvolution. im2col(INDArray img, int kh, int kw, int sy, int sx, int ph, int pw, int pval, boolean coverAll)
Implement column formatted imagesstatic INDArray
Convolution. pooling2D(INDArray img, int kh, int kw, int sy, int sx, int ph, int pw, int dh, int dw, boolean isSameMode, Pooling2D.Pooling2DType type, Pooling2D.Divisor divisor, double extra, int virtualHeight, int virtualWidth, INDArray out)
Pooling 2d implementationMethods in org.nd4j.linalg.convolution with parameters of type INDArray Modifier and Type Method Description static INDArray
Convolution. col2im(INDArray col, int[] stride, int[] padding, int height, int width)
static INDArray
Convolution. col2im(INDArray col, int sH, int sW, int ph, int pW, int kH, int kW)
Rearrange matrix columns into blocksstatic INDArray
Convolution. col2im(INDArray col, INDArray z, int sH, int sW, int pH, int pW, int kH, int kW, int dH, int dW)
static INDArray
OldConvolution. col2im(INDArray col, int[] stride, int[] padding, int height, int width)
static INDArray
OldConvolution. col2im(INDArray col, int sy, int sx, int ph, int pw, int h, int w)
Rearrange matrix columns into blocksINDArray
BaseConvolution. conv2d(INDArray input, INDArray kernel, Convolution.Type type)
2d convolution (aka the last 2 dimensionsstatic INDArray
Convolution. conv2d(INDArray input, INDArray kernel, Convolution.Type type)
2d convolution (aka the last 2 dimensionsINDArray
ConvolutionInstance. conv2d(INDArray input, INDArray kernel, Convolution.Type type)
2d convolution (aka the last 2 dimensionsINDArray
BaseConvolution. convn(INDArray input, INDArray kernel, Convolution.Type type)
ND Convolutionstatic INDArray
Convolution. convn(INDArray input, INDArray kernel, Convolution.Type type)
ND Convolutionstatic INDArray
Convolution. convn(INDArray input, INDArray kernel, Convolution.Type type, int[] axes)
ND ConvolutionINDArray
ConvolutionInstance. convn(INDArray input, INDArray kernel, Convolution.Type type)
ND ConvolutionINDArray
ConvolutionInstance. convn(INDArray input, INDArray kernel, Convolution.Type type, int[] axes)
ND ConvolutionINDArray
DefaultConvolutionInstance. convn(INDArray input, INDArray kernel, Convolution.Type type, int[] axes)
ND Convolutionstatic INDArray
Convolution. im2col(INDArray img, int[] kernel, int[] stride, int[] padding)
static INDArray
Convolution. im2col(INDArray img, int kh, int kw, int sy, int sx, int ph, int pw, boolean isSameMode)
Implement column formatted imagesstatic INDArray
Convolution. im2col(INDArray img, int kh, int kw, int sy, int sx, int ph, int pw, boolean isSameMode, INDArray out)
static INDArray
Convolution. im2col(INDArray img, int kh, int kw, int sy, int sx, int ph, int pw, int pval, boolean isSameMode)
Implement column formatted imagesstatic INDArray
Convolution. im2col(INDArray img, int kh, int kw, int sy, int sx, int ph, int pw, int dh, int dw, boolean isSameMode)
static INDArray
Convolution. im2col(INDArray img, int kh, int kw, int sy, int sx, int ph, int pw, int dH, int dW, boolean isSameMode, INDArray out)
Execute im2col.static INDArray
OldConvolution. im2col(INDArray img, int[] kernel, int[] stride, int[] padding)
static INDArray
OldConvolution. im2col(INDArray img, int kh, int kw, int sy, int sx, int ph, int pw, int pval, boolean coverAll)
Implement column formatted imagesstatic INDArray
Convolution. pooling2D(INDArray img, int kh, int kw, int sy, int sx, int ph, int pw, int dh, int dw, boolean isSameMode, Pooling2D.Pooling2DType type, Pooling2D.Divisor divisor, double extra, int virtualHeight, int virtualWidth, INDArray out)
Pooling 2d implementation -
Uses of INDArray in org.nd4j.linalg.dataset
Methods in org.nd4j.linalg.dataset that return INDArray Modifier and Type Method Description INDArray
DataSet. exampleMaxs()
INDArray
DataSet. exampleMeans()
INDArray
DataSet. exampleSums()
INDArray
DataSet. getFeatures()
INDArray[]
MultiDataSet. getFeatures()
INDArray
MultiDataSet. getFeatures(int index)
INDArray
DataSet. getFeaturesMaskArray()
INDArray
MultiDataSet. getFeaturesMaskArray(int index)
INDArray[]
MultiDataSet. getFeaturesMaskArrays()
INDArray
DataSet. getLabels()
Returns the labels for the datasetINDArray[]
MultiDataSet. getLabels()
INDArray
MultiDataSet. getLabels(int index)
INDArray
DataSet. getLabelsMaskArray()
INDArray
MultiDataSet. getLabelsMaskArray(int index)
INDArray[]
MultiDataSet. getLabelsMaskArrays()
Methods in org.nd4j.linalg.dataset with parameters of type INDArray Modifier and Type Method Description void
DataSet. addFeatureVector(INDArray toAdd)
Adds a feature for each example on to the current feature vectorvoid
DataSet. addFeatureVector(INDArray feature, int example)
The feature to add, and the example/row numberList<String>
DataSet. getLabelNames(INDArray idxs)
void
DataSet. setFeatures(INDArray features)
void
MultiDataSet. setFeatures(int idx, INDArray features)
void
MultiDataSet. setFeatures(INDArray[] features)
void
DataSet. setFeaturesMaskArray(INDArray featuresMask)
void
MultiDataSet. setFeaturesMaskArray(int idx, INDArray maskArray)
void
MultiDataSet. setFeaturesMaskArrays(INDArray[] maskArrays)
void
DataSet. setLabels(INDArray labels)
void
MultiDataSet. setLabels(int idx, INDArray labels)
void
MultiDataSet. setLabels(INDArray[] labels)
void
DataSet. setLabelsMaskArray(INDArray labelsMask)
void
MultiDataSet. setLabelsMaskArray(int idx, INDArray labelsMaskArray)
void
MultiDataSet. setLabelsMaskArray(INDArray[] labelsMaskArrays)
Constructors in org.nd4j.linalg.dataset with parameters of type INDArray Constructor Description DataSet(INDArray first, INDArray second)
Creates a dataset with the specified input matrix and labelsDataSet(INDArray features, INDArray labels, INDArray featuresMask, INDArray labelsMask)
Create a dataset with the specified input INDArray and labels (output) INDArray, plus (optionally) mask arrays for the features and labelsMultiDataSet(INDArray[] features, INDArray[] labels)
MultiDataSet constructor with no mask arraysMultiDataSet(INDArray[] features, INDArray[] labels, INDArray[] featuresMaskArrays, INDArray[] labelsMaskArrays)
MultiDataSet(INDArray[] features, INDArray[] labels, INDArray[] featuresMaskArrays, INDArray[] labelsMaskArrays, List<Serializable> exampleMetaData)
MultiDataSet(INDArray features, INDArray labels)
MultiDataSet constructor with single features/labels input, no mask arraysMultiDataSet(INDArray features, INDArray labels, INDArray featuresMask, INDArray labelsMask)
MultiDataSet constructor with single features/labels input, single mask arrays -
Uses of INDArray in org.nd4j.linalg.dataset.api
Methods in org.nd4j.linalg.dataset.api that return INDArray Modifier and Type Method Description INDArray
DataSet. exampleMaxs()
INDArray
DataSet. exampleMeans()
INDArray
DataSet. exampleSums()
INDArray
DataSet. getFeatures()
Returns the features array for the DataSetINDArray[]
MultiDataSet. getFeatures()
Get all of the input features, as an array of INDArraysINDArray
MultiDataSet. getFeatures(int index)
Get a single feature/input arrayINDArray
DataSet. getFeaturesMaskArray()
Input mask array: a mask array for input, where each value is in {0,1} in order to specify whether an input is actually present or not.INDArray
MultiDataSet. getFeaturesMaskArray(int index)
Get the specified feature mask array.INDArray[]
MultiDataSet. getFeaturesMaskArrays()
Get the feature mask arrays.INDArray
DataSet. getLabels()
INDArray[]
MultiDataSet. getLabels()
Get all of the labels, as an array of INDArraysINDArray
MultiDataSet. getLabels(int index)
Get a single label/output arrayINDArray
DataSet. getLabelsMaskArray()
Labels (output) mask array: a mask array for input, where each value is in {0,1} in order to specify whether an output is actually present or not.INDArray
MultiDataSet. getLabelsMaskArray(int index)
Get the specified label mask array.INDArray[]
MultiDataSet. getLabelsMaskArrays()
Get the labels mask arrays.static INDArray
DataSetUtil. mergeMasks2d(long[] outShape, INDArray[] arrays, INDArray[] masks)
static INDArray
DataSetUtil. mergeMasks4d(INDArray[] featuresOrLabels, INDArray[] masks)
static INDArray
DataSetUtil. mergePerOutputMasks2d(long[] outShape, INDArray[][] arrays, INDArray[][] masks, int inOutIdx)
static INDArray
DataSetUtil. mergePerOutputMasks2d(long[] outShape, INDArray[] arrays, INDArray[] masks)
Deprecated.static INDArray
DataSetUtil. tailor2d(@NonNull INDArray data, INDArray mask)
static INDArray
DataSetUtil. tailor2d(@NonNull DataSet dataSet, boolean areFeatures)
static INDArray
DataSetUtil. tailor3d2d(@NonNull INDArray data, INDArray mask)
static INDArray
DataSetUtil. tailor3d2d(DataSet dataset, boolean areFeatures)
Deprecated.static INDArray
DataSetUtil. tailor4d2d(@NonNull INDArray data)
static INDArray
DataSetUtil. tailor4d2d(DataSet dataset, boolean areFeatures)
Methods in org.nd4j.linalg.dataset.api that return types with arguments of type INDArray Modifier and Type Method Description static Pair<INDArray,INDArray>
DataSetUtil. merge2d(@NonNull INDArray[][] arrays, INDArray[][] masks, int inOutIdx)
Merge the specified 2d arrays and masks.static Pair<INDArray,INDArray>
DataSetUtil. merge2d(@NonNull INDArray[][] arrays, INDArray[][] masks, int inOutIdx)
Merge the specified 2d arrays and masks.static Pair<INDArray,INDArray>
DataSetUtil. merge2d(INDArray[] arrays, INDArray[] masks)
Merge the specified 2d arrays and masks.static Pair<INDArray,INDArray>
DataSetUtil. merge2d(INDArray[] arrays, INDArray[] masks)
Merge the specified 2d arrays and masks.static Pair<INDArray,INDArray>
DataSetUtil. merge4d(INDArray[][] arrays, INDArray[][] masks, int inOutIdx)
Merge the specified 4d arrays and masks.static Pair<INDArray,INDArray>
DataSetUtil. merge4d(INDArray[][] arrays, INDArray[][] masks, int inOutIdx)
Merge the specified 4d arrays and masks.static Pair<INDArray,INDArray>
DataSetUtil. merge4d(INDArray[] arrays, INDArray[] masks)
Merge the specified 4d arrays and masks.static Pair<INDArray,INDArray>
DataSetUtil. merge4d(INDArray[] arrays, INDArray[] masks)
Merge the specified 4d arrays and masks.static Pair<INDArray,INDArray>
DataSetUtil. mergeFeatures(@NonNull INDArray[] featuresToMerge, INDArray[] featureMasksToMerge)
Merge the specified features and mask arrays (i.e., concatenate the examples)static Pair<INDArray,INDArray>
DataSetUtil. mergeFeatures(@NonNull INDArray[] featuresToMerge, INDArray[] featureMasksToMerge)
Merge the specified features and mask arrays (i.e., concatenate the examples)static Pair<INDArray,INDArray>
DataSetUtil. mergeFeatures(INDArray[][] featuresToMerge, INDArray[][] featureMasksToMerge, int inOutIdx)
Extract out the specified column, and merge the specified features and mask arrays (i.e., concatenate the examples)static Pair<INDArray,INDArray>
DataSetUtil. mergeFeatures(INDArray[][] featuresToMerge, INDArray[][] featureMasksToMerge, int inOutIdx)
Extract out the specified column, and merge the specified features and mask arrays (i.e., concatenate the examples)static Pair<INDArray,INDArray>
DataSetUtil. mergeLabels(@NonNull INDArray[][] labelsToMerge, INDArray[][] labelMasksToMerge, int inOutIdx)
Extract out the specified column, and merge the specified label and label mask arrays (i.e., concatenate the examples)static Pair<INDArray,INDArray>
DataSetUtil. mergeLabels(@NonNull INDArray[][] labelsToMerge, INDArray[][] labelMasksToMerge, int inOutIdx)
Extract out the specified column, and merge the specified label and label mask arrays (i.e., concatenate the examples)static Pair<INDArray,INDArray>
DataSetUtil. mergeLabels(INDArray[] labelsToMerge, INDArray[] labelMasksToMerge)
Merge the specified labels and label mask arrays (i.e., concatenate the examples)static Pair<INDArray,INDArray>
DataSetUtil. mergeLabels(INDArray[] labelsToMerge, INDArray[] labelMasksToMerge)
Merge the specified labels and label mask arrays (i.e., concatenate the examples)static Pair<INDArray,INDArray>
DataSetUtil. mergeTimeSeries(INDArray[][] arrays, INDArray[][] masks, int inOutIdx)
Merge the specified time series (3d) arrays and masks.static Pair<INDArray,INDArray>
DataSetUtil. mergeTimeSeries(INDArray[][] arrays, INDArray[][] masks, int inOutIdx)
Merge the specified time series (3d) arrays and masks.static Pair<INDArray,INDArray>
DataSetUtil. mergeTimeSeries(INDArray[] arrays, INDArray[] masks)
Merge the specified time series (3d) arrays and masks.static Pair<INDArray,INDArray>
DataSetUtil. mergeTimeSeries(INDArray[] arrays, INDArray[] masks)
Merge the specified time series (3d) arrays and masks.Methods in org.nd4j.linalg.dataset.api with parameters of type INDArray Modifier and Type Method Description void
DataSet. addFeatureVector(INDArray toAdd)
void
DataSet. addFeatureVector(INDArray feature, int example)
List<String>
DataSet. getLabelNames(INDArray idxs)
static Pair<INDArray,INDArray>
DataSetUtil. merge2d(@NonNull INDArray[][] arrays, INDArray[][] masks, int inOutIdx)
Merge the specified 2d arrays and masks.static Pair<INDArray,INDArray>
DataSetUtil. merge2d(INDArray[] arrays, INDArray[] masks)
Merge the specified 2d arrays and masks.static Pair<INDArray,INDArray>
DataSetUtil. merge4d(INDArray[][] arrays, INDArray[][] masks, int inOutIdx)
Merge the specified 4d arrays and masks.static Pair<INDArray,INDArray>
DataSetUtil. merge4d(INDArray[] arrays, INDArray[] masks)
Merge the specified 4d arrays and masks.static Pair<INDArray[],INDArray[]>
DataSetUtil. mergeFeatures(@NonNull INDArray[][] featuresToMerge, INDArray[][] featureMasksToMerge)
Merge all of the features arrays into one minibatch.static Pair<INDArray,INDArray>
DataSetUtil. mergeFeatures(@NonNull INDArray[] featuresToMerge, INDArray[] featureMasksToMerge)
Merge the specified features and mask arrays (i.e., concatenate the examples)static Pair<INDArray,INDArray>
DataSetUtil. mergeFeatures(INDArray[][] featuresToMerge, INDArray[][] featureMasksToMerge, int inOutIdx)
Extract out the specified column, and merge the specified features and mask arrays (i.e., concatenate the examples)static Pair<INDArray,INDArray>
DataSetUtil. mergeLabels(@NonNull INDArray[][] labelsToMerge, INDArray[][] labelMasksToMerge, int inOutIdx)
Extract out the specified column, and merge the specified label and label mask arrays (i.e., concatenate the examples)static Pair<INDArray,INDArray>
DataSetUtil. mergeLabels(INDArray[] labelsToMerge, INDArray[] labelMasksToMerge)
Merge the specified labels and label mask arrays (i.e., concatenate the examples)static INDArray
DataSetUtil. mergeMasks2d(long[] outShape, INDArray[] arrays, INDArray[] masks)
static INDArray
DataSetUtil. mergeMasks4d(INDArray[] featuresOrLabels, INDArray[] masks)
static INDArray
DataSetUtil. mergePerOutputMasks2d(long[] outShape, INDArray[][] arrays, INDArray[][] masks, int inOutIdx)
static INDArray
DataSetUtil. mergePerOutputMasks2d(long[] outShape, INDArray[] arrays, INDArray[] masks)
Deprecated.static Pair<INDArray,INDArray>
DataSetUtil. mergeTimeSeries(INDArray[][] arrays, INDArray[][] masks, int inOutIdx)
Merge the specified time series (3d) arrays and masks.static Pair<INDArray,INDArray>
DataSetUtil. mergeTimeSeries(INDArray[] arrays, INDArray[] masks)
Merge the specified time series (3d) arrays and masks.void
DataSet. setFeatures(INDArray features)
Set the features array for the DataSetvoid
MultiDataSet. setFeatures(int idx, INDArray features)
Set a single features array (by index) for the MultiDataSetvoid
MultiDataSet. setFeatures(INDArray[] features)
Set all of the features arrays for the MultiDataSetvoid
DataSet. setFeaturesMaskArray(INDArray inputMask)
Set the features mask array in this DataSetvoid
MultiDataSet. setFeaturesMaskArray(int idx, INDArray maskArray)
Set a single feature mask array by indexvoid
MultiDataSet. setFeaturesMaskArrays(INDArray[] maskArrays)
Set the feature mask arraysvoid
DataSet. setLabels(INDArray labels)
void
MultiDataSet. setLabels(int idx, INDArray labels)
Set a single labels array (by index) for the MultiDataSetvoid
MultiDataSet. setLabels(INDArray[] labels)
Set all of the labels arrays for the MultiDataSetvoid
DataSet. setLabelsMaskArray(INDArray labelsMask)
Set the labels mask array in this data setvoid
MultiDataSet. setLabelsMaskArray(int idx, INDArray labelsMaskArray)
Set a single labels mask array by indexvoid
MultiDataSet. setLabelsMaskArray(INDArray[] labels)
Set the labels mask arraysstatic void
DataSetUtil. setMaskedValuesToZero(INDArray data, INDArray mask)
static INDArray
DataSetUtil. tailor2d(@NonNull INDArray data, INDArray mask)
static INDArray
DataSetUtil. tailor3d2d(@NonNull INDArray data, INDArray mask)
static INDArray
DataSetUtil. tailor4d2d(@NonNull INDArray data)
-
Uses of INDArray in org.nd4j.linalg.dataset.api.iterator
Methods in org.nd4j.linalg.dataset.api.iterator that return INDArray Modifier and Type Method Description INDArray
StandardScaler. getMean()
Deprecated.INDArray
StandardScaler. getStd()
Deprecated. -
Uses of INDArray in org.nd4j.linalg.dataset.api.iterator.fetcher
Methods in org.nd4j.linalg.dataset.api.iterator.fetcher that return INDArray Modifier and Type Method Description protected INDArray
BaseDataFetcher. createInputMatrix(int numRows)
Creates a feature vectorprotected INDArray
BaseDataFetcher. createOutputMatrix(int numRows)
protected INDArray
BaseDataFetcher. createOutputVector(int outcomeLabel)
Creates an output label matrix -
Uses of INDArray in org.nd4j.linalg.dataset.api.preprocessor
Fields in org.nd4j.linalg.dataset.api.preprocessor declared as INDArray Modifier and Type Field Description static INDArray
VGG16ImagePreProcessor. VGG_MEAN_OFFSET_BGR
static INDArray
VGG16ImagePreProcessor. VGG_MEAN_OFFSET_BGR_FLOAT
static INDArray
VGG16ImagePreProcessor. VGG_MEAN_OFFSET_BGR_FLOAT16
Methods in org.nd4j.linalg.dataset.api.preprocessor that return INDArray Modifier and Type Method Description INDArray
MultiNormalizerStandardize. getFeatureMean(int input)
INDArray
MultiNormalizerStandardize. getFeatureStd(int input)
INDArray
MultiNormalizerMinMaxScaler. getLabelMax(int output)
INDArray
NormalizerMinMaxScaler. getLabelMax()
INDArray
MultiNormalizerStandardize. getLabelMean(int output)
INDArray
NormalizerStandardize. getLabelMean()
INDArray
MultiNormalizerMinMaxScaler. getLabelMin(int output)
INDArray
NormalizerMinMaxScaler. getLabelMin()
INDArray
MultiNormalizerStandardize. getLabelStd(int output)
INDArray
NormalizerStandardize. getLabelStd()
INDArray
MultiNormalizerMinMaxScaler. getMax(int input)
INDArray
NormalizerMinMaxScaler. getMax()
INDArray
NormalizerStandardize. getMean()
protected static INDArray
VGG16ImagePreProcessor. getMeanFor(INDArray features)
INDArray
MultiNormalizerMinMaxScaler. getMin(int input)
INDArray
NormalizerMinMaxScaler. getMin()
INDArray
NormalizerStandardize. getStd()
Methods in org.nd4j.linalg.dataset.api.preprocessor with parameters of type INDArray Modifier and Type Method Description protected static INDArray
VGG16ImagePreProcessor. getMeanFor(INDArray features)
void
ImagePreProcessingScaler. preProcess(INDArray features)
void
MinMaxStrategy. preProcess(INDArray array, INDArray maskArray, MinMaxStats stats)
Normalize a data arrayvoid
NormalizerStrategy. preProcess(INDArray array, INDArray maskArray, S stats)
Normalize a data arrayvoid
StandardizeStrategy. preProcess(INDArray array, INDArray maskArray, DistributionStats stats)
Normalize a data arrayvoid
VGG16ImagePreProcessor. preProcess(INDArray features)
void
MinMaxStrategy. revert(INDArray array, INDArray maskArray, MinMaxStats stats)
Denormalize a data arrayvoid
NormalizerStrategy. revert(INDArray array, INDArray maskArray, S stats)
Denormalize a data arrayvoid
StandardizeStrategy. revert(INDArray array, INDArray maskArray, DistributionStats stats)
Denormalize a data arrayvoid
AbstractDataSetNormalizer. revertFeatures(INDArray features)
void
AbstractDataSetNormalizer. revertFeatures(INDArray features, INDArray featuresMask)
void
AbstractMultiDataSetNormalizer. revertFeatures(@NonNull INDArray[] features)
Undo (revert) the normalization applied by this normalizer to the features arraysvoid
AbstractMultiDataSetNormalizer. revertFeatures(@NonNull INDArray[] features, INDArray[] maskArrays)
Undo (revert) the normalization applied by this normalizer to the features arraysvoid
AbstractMultiDataSetNormalizer. revertFeatures(@NonNull INDArray features, INDArray mask, int input)
Undo (revert) the normalization applied by this normalizer to a specific features array.void
DataNormalization. revertFeatures(INDArray features)
Undo (revert) the normalization applied by this DataNormalization instance to the specified features arrayvoid
DataNormalization. revertFeatures(INDArray features, INDArray featuresMask)
Undo (revert) the normalization applied by this DataNormalization instance to the specified features arrayvoid
ImageMultiPreProcessingScaler. revertFeatures(INDArray[] features)
void
ImageMultiPreProcessingScaler. revertFeatures(INDArray[] features, INDArray[] featuresMask)
void
ImagePreProcessingScaler. revertFeatures(INDArray features)
void
ImagePreProcessingScaler. revertFeatures(INDArray features, INDArray featuresMask)
void
MultiDataNormalization. revertFeatures(INDArray[] features)
Undo (revert) the normalization applied by this DataNormalization instance to the specified features arrayvoid
MultiDataNormalization. revertFeatures(INDArray[] features, INDArray[] featuresMask)
Undo (revert) the normalization applied by this DataNormalization instance to the specified features arrayvoid
MultiNormalizerHybrid. revertFeatures(@NonNull INDArray[] features)
Undo (revert) the normalization applied by this DataNormalization instance to the entire inputs arrayvoid
MultiNormalizerHybrid. revertFeatures(@NonNull INDArray[] features, INDArray[] maskArrays)
Undo (revert) the normalization applied by this DataNormalization instance to the entire inputs arrayvoid
MultiNormalizerHybrid. revertFeatures(@NonNull INDArray[] features, INDArray[] maskArrays, int input)
Undo (revert) the normalization applied by this DataNormalization instance to the features of a particular inputvoid
VGG16ImagePreProcessor. revertFeatures(INDArray features)
void
VGG16ImagePreProcessor. revertFeatures(INDArray features, INDArray featuresMask)
void
AbstractDataSetNormalizer. revertLabels(INDArray labels)
Undo (revert) the normalization applied by this DataNormalization instance to the specified labels array.void
AbstractDataSetNormalizer. revertLabels(INDArray labels, INDArray labelsMask)
void
AbstractMultiDataSetNormalizer. revertLabels(@NonNull INDArray[] labels, INDArray[] labelsMask)
Undo (revert) the normalization applied by this normalizer to the labels arrays.void
AbstractMultiDataSetNormalizer. revertLabels(@NonNull INDArray labels, INDArray mask, int output)
Undo (revert) the normalization applied by this normalizer to a specific labels array.void
AbstractMultiDataSetNormalizer. revertLabels(INDArray[] labels)
Undo (revert) the normalization applied by this DataNormalization instance to the specified labels array.void
DataNormalization. revertLabels(INDArray labels)
Undo (revert) the normalization applied by this DataNormalization instance to the specified labels array.void
DataNormalization. revertLabels(INDArray labels, INDArray labelsMask)
Undo (revert) the normalization applied by this DataNormalization instance to the specified labels array.void
ImageMultiPreProcessingScaler. revertLabels(INDArray[] labels)
void
ImageMultiPreProcessingScaler. revertLabels(INDArray[] labels, INDArray[] labelsMask)
void
ImagePreProcessingScaler. revertLabels(INDArray labels)
void
ImagePreProcessingScaler. revertLabels(INDArray labels, INDArray labelsMask)
void
MultiDataNormalization. revertLabels(INDArray[] labels)
Undo (revert) the normalization applied by this DataNormalization instance to the specified labels array.void
MultiDataNormalization. revertLabels(INDArray[] labels, INDArray[] labelsMask)
Undo (revert) the normalization applied by this DataNormalization instance to the specified labels array.void
MultiNormalizerHybrid. revertLabels(@NonNull INDArray[] labels)
Undo (revert) the normalization applied by this DataNormalization instance to the entire outputs arrayvoid
MultiNormalizerHybrid. revertLabels(@NonNull INDArray[] labels, INDArray[] maskArrays)
Undo (revert) the normalization applied by this DataNormalization instance to the entire outputs arrayvoid
MultiNormalizerHybrid. revertLabels(@NonNull INDArray[] labels, INDArray[] maskArrays, int output)
Undo (revert) the normalization applied by this DataNormalization instance to the labels of a particular outputvoid
VGG16ImagePreProcessor. revertLabels(INDArray labels)
void
VGG16ImagePreProcessor. revertLabels(INDArray labels, INDArray labelsMask)
void
NormalizerMinMaxScaler. setFeatureStats(@NonNull INDArray featureMin, @NonNull INDArray featureMax)
void
NormalizerMinMaxScaler. setLabelStats(@NonNull INDArray labelMin, @NonNull INDArray labelMax)
void
NormalizerStandardize. setLabelStats(@NonNull INDArray labelMean, @NonNull INDArray labelStd)
void
AbstractDataSetNormalizer. transform(INDArray features)
Transform the given INDArrayvoid
AbstractDataSetNormalizer. transform(INDArray features, INDArray featuresMask)
void
DataNormalization. transform(INDArray features)
Transform the datasetvoid
DataNormalization. transform(INDArray features, INDArray featuresMask)
Transform the features, with an optional mask arrayvoid
ImagePreProcessingScaler. transform(INDArray features)
void
ImagePreProcessingScaler. transform(INDArray features, INDArray featuresMask)
void
VGG16ImagePreProcessor. transform(INDArray features)
void
VGG16ImagePreProcessor. transform(INDArray features, INDArray featuresMask)
void
AbstractDataSetNormalizer. transformLabel(INDArray label)
Transform the labels.void
AbstractDataSetNormalizer. transformLabel(INDArray label, INDArray labelsMask)
void
DataNormalization. transformLabel(INDArray labels)
Transform the labels.void
DataNormalization. transformLabel(INDArray labels, INDArray labelsMask)
Transform the labels.void
ImagePreProcessingScaler. transformLabel(INDArray label)
void
ImagePreProcessingScaler. transformLabel(INDArray labels, INDArray labelsMask)
void
VGG16ImagePreProcessor. transformLabel(INDArray label)
void
VGG16ImagePreProcessor. transformLabel(INDArray labels, INDArray labelsMask)
Constructors in org.nd4j.linalg.dataset.api.preprocessor with parameters of type INDArray Constructor Description NormalizerStandardize(@NonNull INDArray featureMean, @NonNull INDArray featureStd)
NormalizerStandardize(@NonNull INDArray featureMean, @NonNull INDArray featureStd, @NonNull INDArray labelMean, @NonNull INDArray labelStd)
-
Uses of INDArray in org.nd4j.linalg.dataset.api.preprocessor.classimbalance
Methods in org.nd4j.linalg.dataset.api.preprocessor.classimbalance that return INDArray Modifier and Type Method Description INDArray
BaseUnderSamplingPreProcessor. adjustMasks(INDArray label, INDArray labelMask, int minorityLabel, double targetDist)
Methods in org.nd4j.linalg.dataset.api.preprocessor.classimbalance with parameters of type INDArray Modifier and Type Method Description INDArray
BaseUnderSamplingPreProcessor. adjustMasks(INDArray label, INDArray labelMask, int minorityLabel, double targetDist)
-
Uses of INDArray in org.nd4j.linalg.dataset.api.preprocessor.stats
Methods in org.nd4j.linalg.dataset.api.preprocessor.stats that return INDArray Modifier and Type Method Description INDArray
MinMaxStats. getRange()
Get the feature wise range for the statistics.Methods in org.nd4j.linalg.dataset.api.preprocessor.stats with parameters of type INDArray Modifier and Type Method Description DistributionStats.Builder
DistributionStats.Builder. add(@NonNull INDArray data, INDArray mask)
Add rows of data to the statisticsMinMaxStats.Builder
MinMaxStats.Builder. add(@NonNull INDArray data, INDArray mask)
Add rows of data to the statisticsNormalizerStats.Builder<S>
NormalizerStats.Builder. add(INDArray data, INDArray mask)
Add rows of data to the statisticsConstructors in org.nd4j.linalg.dataset.api.preprocessor.stats with parameters of type INDArray Constructor Description DistributionStats(@NonNull INDArray mean, @NonNull INDArray std)
MinMaxStats(@NonNull INDArray lower, @NonNull INDArray upper)
-
Uses of INDArray in org.nd4j.linalg.dimensionalityreduction
Methods in org.nd4j.linalg.dimensionalityreduction that return INDArray Modifier and Type Method Description INDArray
PCA. convertBackToFeatures(INDArray data)
Take the data that has been transformed to the principal components about the mean and transform it back into the original feature set.INDArray
PCA. convertToComponents(INDArray data)
Takes a set of data on each row, with the same number of features as the constructing data and returns the data in the coordinates of the basis set about the mean.static INDArray[]
PCA. covarianceMatrix(INDArray in)
Returns the covariance matrix of a data set of many records, each with N features.INDArray
PCA. generateGaussianSamples(long count)
Generates a set of count random samples with the same variance and mean and eigenvector/values as the data set used to initialize the PCA object, with same number of features N.INDArray
PCA. getCovarianceMatrix()
INDArray
PCA. getEigenvalues()
INDArray
PCA. getEigenvectors()
INDArray
PCA. getMean()
static INDArray
PCA. pca(INDArray A, double variance, boolean normalize)
Calculates pca reduced value of a matrix, for a given variance.static INDArray
PCA. pca(INDArray A, int nDims, boolean normalize)
Calculates pca vectors of a matrix, for a flags number of reduced features returns the reduced feature set The return is a projection of A onto principal nDims components To use the PCA: assume A is the original feature set then project A onto a reduced set of features.static INDArray
PCA. pca_factor(INDArray A, double variance, boolean normalize)
Calculates pca vectors of a matrix, for a given variance.static INDArray
PCA. pca_factor(INDArray A, int nDims, boolean normalize)
Calculates pca factors of a matrix, for a flags number of reduced features returns the factors to scale observations The return is a factor matrix to reduce (normalized) feature setsstatic INDArray
PCA. pca2(INDArray in, double variance)
This method performs a dimensionality reduction, including principal components that cover a fraction of the total variance of the system.static INDArray[]
PCA. principalComponents(INDArray cov)
Calculates the principal component vectors and their eigenvalues (lambda) for the covariance matrix.INDArray
RandomProjection. project(INDArray data)
Create a copy random projection by using matrix product with a random matrixINDArray
RandomProjection. project(INDArray data, INDArray result)
Create a copy random projection by using matrix product with a random matrixINDArray
RandomProjection. projecti(INDArray data)
Create an in-place random projection by using in-place matrix product with a random matrixINDArray
RandomProjection. projecti(INDArray data, INDArray result)
Create an in-place random projection by using in-place matrix product with a random matrixINDArray
PCA. reducedBasis(double variance)
Return a reduced basis set that covers a certain fraction of the variance of the dataMethods in org.nd4j.linalg.dimensionalityreduction with parameters of type INDArray Modifier and Type Method Description INDArray
PCA. convertBackToFeatures(INDArray data)
Take the data that has been transformed to the principal components about the mean and transform it back into the original feature set.INDArray
PCA. convertToComponents(INDArray data)
Takes a set of data on each row, with the same number of features as the constructing data and returns the data in the coordinates of the basis set about the mean.static INDArray[]
PCA. covarianceMatrix(INDArray in)
Returns the covariance matrix of a data set of many records, each with N features.double
PCA. estimateVariance(INDArray data, int ndims)
Estimate the variance of a single record with reduced # of dimensions.static INDArray
PCA. pca(INDArray A, double variance, boolean normalize)
Calculates pca reduced value of a matrix, for a given variance.static INDArray
PCA. pca(INDArray A, int nDims, boolean normalize)
Calculates pca vectors of a matrix, for a flags number of reduced features returns the reduced feature set The return is a projection of A onto principal nDims components To use the PCA: assume A is the original feature set then project A onto a reduced set of features.static INDArray
PCA. pca_factor(INDArray A, double variance, boolean normalize)
Calculates pca vectors of a matrix, for a given variance.static INDArray
PCA. pca_factor(INDArray A, int nDims, boolean normalize)
Calculates pca factors of a matrix, for a flags number of reduced features returns the factors to scale observations The return is a factor matrix to reduce (normalized) feature setsstatic INDArray
PCA. pca2(INDArray in, double variance)
This method performs a dimensionality reduction, including principal components that cover a fraction of the total variance of the system.static INDArray[]
PCA. principalComponents(INDArray cov)
Calculates the principal component vectors and their eigenvalues (lambda) for the covariance matrix.INDArray
RandomProjection. project(INDArray data)
Create a copy random projection by using matrix product with a random matrixINDArray
RandomProjection. project(INDArray data, INDArray result)
Create a copy random projection by using matrix product with a random matrixINDArray
RandomProjection. projecti(INDArray data)
Create an in-place random projection by using in-place matrix product with a random matrixINDArray
RandomProjection. projecti(INDArray data, INDArray result)
Create an in-place random projection by using in-place matrix product with a random matrixstatic long[]
RandomProjection. targetShape(INDArray X, double eps)
Compute the target shape of a suitable projection matrixprotected static long[]
RandomProjection. targetShape(INDArray X, int targetDimension)
Compute the target shape of a suitable projection matrixConstructors in org.nd4j.linalg.dimensionalityreduction with parameters of type INDArray Constructor Description PCA(INDArray dataset)
Create a PCA instance with calculated data: covariance, mean, eigenvectors, and eigenvalues. -
Uses of INDArray in org.nd4j.linalg.eigen
Fields in org.nd4j.linalg.eigen declared as INDArray Modifier and Type Field Description static INDArray
Eigen. dummy
Methods in org.nd4j.linalg.eigen that return INDArray Modifier and Type Method Description static INDArray[]
Eigen. eig(INDArray A)
Compute the eigenvalues and eigenvectors of a square matrixstatic INDArray
Eigen. symmetricGeneralizedEigenvalues(INDArray A)
Compute generalized eigenvalues of the problem A x = L x.static INDArray
Eigen. symmetricGeneralizedEigenvalues(INDArray A, boolean calculateVectors)
Compute generalized eigenvalues of the problem A x = L x.static INDArray
Eigen. symmetricGeneralizedEigenvalues(INDArray A, INDArray B)
Compute generalized eigenvalues of the problem A x = L B x.static INDArray
Eigen. symmetricGeneralizedEigenvalues(INDArray A, INDArray B, boolean calculateVectors)
Compute generalized eigenvalues of the problem A x = L B x.Methods in org.nd4j.linalg.eigen with parameters of type INDArray Modifier and Type Method Description static INDArray[]
Eigen. eig(INDArray A)
Compute the eigenvalues and eigenvectors of a square matrixstatic INDArray
Eigen. symmetricGeneralizedEigenvalues(INDArray A)
Compute generalized eigenvalues of the problem A x = L x.static INDArray
Eigen. symmetricGeneralizedEigenvalues(INDArray A, boolean calculateVectors)
Compute generalized eigenvalues of the problem A x = L x.static INDArray
Eigen. symmetricGeneralizedEigenvalues(INDArray A, INDArray B)
Compute generalized eigenvalues of the problem A x = L B x.static INDArray
Eigen. symmetricGeneralizedEigenvalues(INDArray A, INDArray B, boolean calculateVectors)
Compute generalized eigenvalues of the problem A x = L B x. -
Uses of INDArray in org.nd4j.linalg.factory
Methods in org.nd4j.linalg.factory that return INDArray Modifier and Type Method Description static INDArray
Nd4j. accumulate(@NonNull INDArray... arrays)
This method sums given arrays and stores them to a new arraystatic INDArray
Nd4j. accumulate(INDArray target, Collection<INDArray> arrays)
This method sums given arrays and stores them to a given target arraystatic INDArray
Nd4j. accumulate(INDArray target, INDArray[] arrays)
This method sums given arrays and stores them to a given target arrayINDArray
NDArrayFactory. accumulate(INDArray target, INDArray... arrays)
This method sums given arrays to targetstatic INDArray
Broadcast. add(INDArray x, INDArray y, INDArray z, int... dimensions)
Broadcast add op.static INDArray
Broadcast. amax(INDArray x, INDArray y, INDArray z, int... dimensions)
Broadcast absolute max op.static INDArray
Broadcast. amin(INDArray x, INDArray y, INDArray z, int... dimensions)
Broadcast absolute min op.static INDArray
Nd4j. append(INDArray arr, int padAmount, double val, int axis)
Append the given array with the specified value size along a particular axis.INDArray
BaseNDArrayFactory. appendBias(INDArray... vectors)
Merge the vectors and append a bias.static INDArray
Nd4j. appendBias(@NonNull INDArray... vectors)
INDArray
NDArrayFactory. appendBias(INDArray... vectors)
INDArray
BaseNDArrayFactory. arange(double begin, double end, double step)
Array of evenly spaced values.static INDArray
Nd4j. arange(double end)
Create a 1D array of evenly spaced values between 0 (inclusive) andend
(exclusive) with a step size of 1 SeeNd4j.arange(double, double, double)
with begin = 0 and step size 1.static INDArray
Nd4j. arange(double begin, double end)
Create a 1D array of evenly spaced values betweenbegin
(inclusive) andend
(exclusive) with a step size of 1 SeeNd4j.arange(double, double, double)
with step size 1.static INDArray
Nd4j. arange(double begin, double end, double step)
Create a 1D array of evenly spaced values betweenbegin
(inclusive) andend
(exclusive) with a step size.INDArray
NDArrayFactory. arange(double begin, double end, double step)
Array of evenly spaced values.static INDArray
Nd4j. argMax(INDArray arr, @lombok.NonNull int... dimension)
Get the maximum values for a dimension.static INDArray
Nd4j. argMin(INDArray arr, @lombok.NonNull int... dimension)
SeeNd4j.argMax(INDArray, int...)
but return minimum values.INDArray
NDArrayFactory. average(Collection<INDArray> arrays)
This method averages input arrays, and returns averaged arrayINDArray
NDArrayFactory. average(INDArray[] arrays)
This method averages input arrays, and returns averaged arrayINDArray
NDArrayFactory. average(INDArray target, Collection<INDArray> arrays)
This method averages input arrays, and returns averaged arrayINDArray
NDArrayFactory. average(INDArray target, INDArray[] arrays)
This method averages input arrays, and returns averaged arraystatic INDArray
Nd4j. averageAndPropagate(Collection<INDArray> arrays)
This method averages input arrays, and returns averaged array.static INDArray
Nd4j. averageAndPropagate(INDArray[] arrays)
This method averages input arrays, and returns averaged array.static INDArray
Nd4j. averageAndPropagate(INDArray target, Collection<INDArray> arrays)
This method averages input arrays, and returns averaged array.INDArray
BaseBlasWrapper. axpy(double da, INDArray dx, INDArray dy)
INDArray
BaseBlasWrapper. axpy(float da, INDArray dx, INDArray dy)
INDArray
BaseBlasWrapper. axpy(Number da, INDArray dx, INDArray dy)
INDArray
BlasWrapper. axpy(double da, INDArray dx, INDArray dy)
Deprecated.INDArray
BlasWrapper. axpy(float da, INDArray dx, INDArray dy)
Deprecated.INDArray
BlasWrapper. axpy(Number da, INDArray dx, INDArray dy)
Compute y <- y + x * alphaINDArray
BaseNDArrayFactory. bilinearProducts(INDArray curr, INDArray in)
Returns a column vector where each entry is the nth bilinear product of the nth slices of the two tensors.INDArray
NDArrayFactory. bilinearProducts(INDArray curr, INDArray in)
Returns a column vector where each entry is the nth bilinear product of the nth slices of the two tensors.static INDArray
Nd4j. choice(@NonNull INDArray source, @NonNull INDArray probs, @NonNull INDArray target, Random rng)
This method samples value from Source array to Target, with probabilites provided in Probs argumentstatic INDArray
Nd4j. choice(INDArray source, INDArray probs, int numSamples)
This method returns new INDArray instance, sampled from Source array with probabilities given in Probs using the default random number generator.static INDArray
Nd4j. choice(INDArray source, INDArray probs, int numSamples, Random rng)
This method returns new INDArray instance, sampled from Source array with probabilities given in Probs.static INDArray
Nd4j. choice(INDArray source, INDArray probs, INDArray target)
This method samples value from Source array to Target,the default random number generator.INDArray
BaseNDArrayFactory. concat(int dimension, INDArray... toConcat)
concatenate ndarrays along a dimensionstatic INDArray
Nd4j. concat(int dimension, @NonNull INDArray... toConcat)
Concatenate ndarrays along a dimensionINDArray
NDArrayFactory. concat(int dimension, INDArray... toConcat)
Concatneate ndarrays along a dimensionINDArray
NDArrayFactory. convertDataEx(DataTypeEx typeSrc, INDArray source, DataTypeEx typeDst)
INDArray
BaseBlasWrapper. copy(INDArray x, INDArray y)
INDArray
BlasWrapper. copy(INDArray x, INDArray y)
Compute y <- x (copy a matrix)static INDArray
Broadcast. copy(INDArray x, INDArray y, INDArray z, int... dimensions)
Broadcast copy op.INDArray
BaseNDArrayFactory. create(double[] data)
Creates a row vector with the dataINDArray
BaseNDArrayFactory. create(double[] data, char order)
INDArray
BaseNDArrayFactory. create(double[] data, int[] shape)
Create an ndrray with the specified shapeINDArray
BaseNDArrayFactory. create(double[] data, int[] shape, int[] stride, char order, long offset)
abstract INDArray
BaseNDArrayFactory. create(double[] data, int[] shape, int[] stride, long offset)
Creates an ndarray with the specified shapeINDArray
BaseNDArrayFactory. create(double[] data, long[] shape)
INDArray
BaseNDArrayFactory. create(double[] data, long rows, long columns, int[] stride, long offset)
Creates an ndarray with the specified shapeINDArray
BaseNDArrayFactory. create(float[] data)
Creates a row vector with the dataINDArray
BaseNDArrayFactory. create(float[] data, char order)
INDArray
BaseNDArrayFactory. create(float[] data, int[] shape)
Create an ndrray with the specified shapeINDArray
BaseNDArrayFactory. create(float[] data, int[] shape, char ordering)
INDArray
BaseNDArrayFactory. create(float[] data, int[] shape, int[] stride, char order, long offset)
abstract INDArray
BaseNDArrayFactory. create(float[] data, int[] shape, int[] stride, long offset)
Creates an ndarray with the specified shapeINDArray
BaseNDArrayFactory. create(float[] data, int[] shape, long offset)
INDArray
BaseNDArrayFactory. create(float[] data, long[] shape)
abstract INDArray
BaseNDArrayFactory. create(float[] data, long[] shape, long[] stride, char order, DataType dataType, MemoryWorkspace workspace)
INDArray
BaseNDArrayFactory. create(float[] data, long rows, long columns, int[] stride, long offset)
Creates an ndarray with the specified shapeINDArray
BaseNDArrayFactory. create(int[] shape)
Creates an ndarray with the specified shapeINDArray
BaseNDArrayFactory. create(int[] shape, int[] stride)
Creates an ndarray with the specified shapeINDArray
BaseNDArrayFactory. create(int[] data, int[] shape, int[] stride, char order, long offset)
INDArray
BaseNDArrayFactory. create(int[] ints, int[] ints1, int[] stride, long offset)
INDArray
BaseNDArrayFactory. create(int[] shape, int[] stride, long offset)
Creates an ndarray with the specified shapeINDArray
BaseNDArrayFactory. create(int[] shape, int[] stride, long offset, char ordering)
INDArray
BaseNDArrayFactory. create(int[] shape, DataType dataType, MemoryWorkspace workspace)
INDArray
BaseNDArrayFactory. create(long columns)
Creates a row vector with the specified number of columnsINDArray
BaseNDArrayFactory. create(long[] shape)
Creates an ndarray with the specified shapeINDArray
BaseNDArrayFactory. create(long[] shape, long[] stride)
INDArray
BaseNDArrayFactory. create(long[] shape, long[] stride, long offset)
INDArray
BaseNDArrayFactory. create(long[] shape, long[] stride, long offset, char ordering)
INDArray
BaseNDArrayFactory. create(long rows, long columns)
Creates an ndarray with the specified shapeINDArray
BaseNDArrayFactory. create(long rows, long columns, char ordering)
INDArray
BaseNDArrayFactory. create(long rows, long columns, int[] stride)
Creates an ndarray with the specified shapeINDArray
BaseNDArrayFactory. create(long rows, long columns, int[] stride, long offset)
Creates an ndarray with the specified shapeabstract INDArray
BaseNDArrayFactory. create(List<INDArray> list, int[] shape)
Creates an ndarray with the specified shapeINDArray
BaseNDArrayFactory. create(DataBuffer buffer, int[] shape, int[] stride, char order, long offset)
static INDArray
Nd4j. create(@lombok.NonNull int[] shape, char ordering)
Creates an ndarray with the specified shapestatic INDArray
Nd4j. create(@lombok.NonNull long[] shape, char ordering)
Create an array with given shape and ordering.static INDArray
Nd4j. create(boolean[] data)
Create a vector based on a java boolean array.static INDArray
Nd4j. create(boolean[][] data)
Create 2D boolean array based on java 2d boolean array.static INDArray
Nd4j. create(boolean[][] data, @lombok.NonNull long... shape)
Create a boolean array with given shape based on java 2d boolean array.static INDArray
Nd4j. create(boolean[] data, long[] shape, long[] strides, char order, DataType type)
static INDArray
Nd4j. create(boolean[] data, long[] shape, DataType type)
static INDArray
Nd4j. create(byte[] data, long[] shape, long[] strides, char order, DataType type)
static INDArray
Nd4j. create(byte[] data, long[] shape, DataType type)
static INDArray
Nd4j. create(double[] data)
Create double array based on java double array.static INDArray
Nd4j. create(double[][] data)
Create 2D double array based on java 2d double array.static INDArray
Nd4j. create(double[][][] data)
Create a 3D double array based on the 3D java double array.static INDArray
Nd4j. create(double[][][][] data)
Create 4D double array based on 4D java double array.static INDArray
Nd4j. create(double[][] data, char ordering)
Create a 2D double array based on a 2D java double array with given ordering.static INDArray
Nd4j. create(double[] data, char order)
Creates a row vector with the datastatic INDArray
Nd4j. create(double[] data, int[] shape)
Create an array of the specified shape initialized with values from a java 1d array.static INDArray
Nd4j. create(double[] data, int[] shape, char ordering)
Create an array withgiven shape and ordering based on a java double array.static INDArray
Nd4j. create(double[] data, int[] shape, long offset, char ordering)
Create an array.static INDArray
Nd4j. create(double[] data, long... shape)
static INDArray
Nd4j. create(double[] data, long[] shape, char ordering)
static INDArray
Nd4j. create(double[] data, long[] shape, long[] strides, char order, DataType type)
static INDArray
Nd4j. create(double[] data, long[] shape, long offset, char ordering)
static INDArray
Nd4j. create(double[] data, long[] shape, DataType type)
static INDArray
Nd4j. create(float[] data)
Creates a row vector with the datastatic INDArray
Nd4j. create(float[][] data)
Create 2D float array based on java 2d float array.static INDArray
Nd4j. create(float[][][] data)
Create a 3D float array based on the 3D java float array.static INDArray
Nd4j. create(float[][][][] data)
Create 4D float array based on 4D java float array.static INDArray
Nd4j. create(float[][] data, char ordering)
Create 2D float array based on java 2d float array and ordering.static INDArray
Nd4j. create(float[] data, char order)
Creates a row vector with the datastatic INDArray
Nd4j. create(float[] data, int[] shape)
Create an ndrray with the specified shapestatic INDArray
Nd4j. create(float[] data, int[] shape, char ordering)
static INDArray
Nd4j. create(float[] data, int[] shape, int[] stride, long offset)
Create an array of the specified type, shape and stride initialized with values from a java 1d array using offset.static INDArray
Nd4j. create(float[] data, long... shape)
static INDArray
Nd4j. create(float[] data, long[] shape, char ordering)
static INDArray
Nd4j. create(float[] data, long[] shape, long[] strides, char order, DataType type)
static INDArray
Nd4j. create(float[] data, long[] shape, DataType type)
static INDArray
Nd4j. create(int columns)
Creates a row vector with the specified number of columnsstatic INDArray
Nd4j. create(int... shape)
Creates an ndarray with the specified shapestatic INDArray
Nd4j. create(int[][] data)
Create 2D double array based on java 2d double array.static INDArray
Nd4j. create(int[][][] data)
create 3D int array based on 3D java int array.static INDArray
Nd4j. create(int[][][][] data)
Create 4D int array based on 4D java int array.static INDArray
Nd4j. create(int[] sliceShape, double[]... arrays)
static INDArray
Nd4j. create(int[] sliceShape, float[]... arrays)
Create an ndarray based on the given datastatic INDArray
Nd4j. create(int[] shape, int[] stride)
Creates an ndarray with the specified shapestatic INDArray
Nd4j. create(int[] shape, int[] stride, char ordering)
Creates an ndarray with the specified shapestatic INDArray
Nd4j. create(int[] shape, int[] stride, long offset)
Creates an ndarray with the specified shapestatic INDArray
Nd4j. create(int[] data, long[] shape, long[] strides, char order, DataType type)
Create an array of the specified type, shape and stride initialized with values from a java 1d array.static INDArray
Nd4j. create(int[] data, long[] shape, DataType type)
Create an array of the specified type and shape initialized with values from a java 1d array.static INDArray
Nd4j. create(int[] shape, DataType dataType)
Create an array of given shape and data type.static INDArray
Nd4j. create(int columns, char order)
Creates a row vector with the specified number of columnsstatic INDArray
Nd4j. create(int rows, int columns, int[] stride)
Creates an ndarray with the specified shapestatic INDArray
Nd4j. create(int rows, int columns, int[] stride, char ordering)
Create a 2D array with given rows, columns, stride and ordering.static INDArray
Nd4j. create(int rows, int columns, int[] stride, long offset)
Creates an ndarray with the specified shapestatic INDArray
Nd4j. create(long... shape)
Creates an ndarray with the specified shapestatic INDArray
Nd4j. create(long[][] data)
Create 2D long array based on java 2d long array.static INDArray
Nd4j. create(long[] shape, long[] stride)
static INDArray
Nd4j. create(long[] shape, long[] stride, char ordering)
static INDArray
Nd4j. create(long[] data, long[] shape, long[] strides, char order, DataType type)
static INDArray
Nd4j. create(long[] shape, long[] stride, long offset, char ordering)
Creates an ndarray with the specified shapestatic INDArray
Nd4j. create(long[] data, long[] shape, DataType type)
static INDArray
Nd4j. create(long rows, long columns, char ordering)
Creates an ndarray with the specified shapestatic INDArray
Nd4j. create(short[] data, long[] shape, long[] strides, char order, DataType type)
static INDArray
Nd4j. create(short[] data, long[] shape, DataType type)
static INDArray
Nd4j. create(@NonNull String... strings)
static INDArray
Nd4j. create(@NonNull Collection<String> strings, long... shape)
static INDArray
Nd4j. create(@NonNull Collection<String> strings, long[] shape, char order)
static INDArray
Nd4j. create(@NonNull DataType dataType, @lombok.NonNull long[] shape, char ordering)
Create an array with given data type shape and ordering.static INDArray
Nd4j. create(List<? extends Number> list)
Creates a row vector with the datastatic INDArray
Nd4j. create(List<INDArray> list, int... shape)
Creates an array with the specified shape from a list of arrays.static INDArray
Nd4j. create(List<INDArray> list, long... shape)
static INDArray
Nd4j. create(DataBuffer buffer)
Create an array based on the data buffer.static INDArray
Nd4j. create(DataBuffer data, int... shape)
Create an array based on the data buffer with given shape.static INDArray
Nd4j. create(DataBuffer data, int[] shape, int[] strides, long offset)
Create an array based on the data buffer with given shape, stride and offset.static INDArray
Nd4j. create(DataBuffer data, int[] newShape, int[] newStride, long offset, char ordering)
static INDArray
Nd4j. create(DataBuffer data, int[] shape, long offset)
static INDArray
Nd4j. create(DataBuffer data, long... shape)
static INDArray
Nd4j. create(DataBuffer data, long[] shape, long[] strides, long offset)
static INDArray
Nd4j. create(DataBuffer data, long[] newShape, long[] newStride, long offset, char ordering)
static INDArray
Nd4j. create(DataBuffer data, long[] newShape, long[] newStride, long offset, char ordering, DataType dataType)
Create an array based on the data buffer with given shape, stride, offset and data type.static INDArray
Nd4j. create(DataBuffer data, long[] newShape, long[] newStride, long offset, long ews, char ordering)
Create an array based on the data buffer with given shape, stride and offset.static INDArray
Nd4j. create(DataType dataType, @lombok.NonNull long[] shape, long[] strides, char ordering)
Create an array with given shape, stride and ordering.static INDArray
Nd4j. create(DataType type, long... shape)
Create an array with specified shape and datatype.static INDArray
Nd4j. create(LongShapeDescriptor descriptor)
SeeNd4j.create(LongShapeDescriptor, boolean)
with initialize set to true.static INDArray
Nd4j. create(LongShapeDescriptor descriptor, boolean initialize)
Create an ndarray based on the given description,INDArray
NDArrayFactory. create(boolean[] data, long[] shape, long[] stride, char order, DataType dataType, MemoryWorkspace workspace)
INDArray
NDArrayFactory. create(boolean[] data, long[] shape, long[] stride, DataType dataType, MemoryWorkspace workspace)
INDArray
NDArrayFactory. create(byte[] data, long[] shape, long[] stride, char order, DataType dataType, MemoryWorkspace workspace)
INDArray
NDArrayFactory. create(byte[] data, long[] shape, long[] stride, DataType dataType, MemoryWorkspace workspace)
INDArray
NDArrayFactory. create(double[] data)
Creates a row vector with the dataINDArray
NDArrayFactory. create(double[][] data)
Create an ndarray with the given data layoutINDArray
NDArrayFactory. create(double[][] data, char ordering)
Create a matrix from the given data and orderingINDArray
NDArrayFactory. create(double[] data, char order)
INDArray
NDArrayFactory. create(double[] data, int[] shape)
Create an ndrray with the specified shapeINDArray
NDArrayFactory. create(double[] data, int[] shape, char ordering)
INDArray
NDArrayFactory. create(double[] data, int[] shape, int[] stride, char order, long offset)
INDArray
NDArrayFactory. create(double[] data, int[] shape, int[] stride, long offset)
Creates an ndarray with the specified shapeINDArray
NDArrayFactory. create(double[] data, int[] shape, int[] stride, long offset, char ordering)
INDArray
NDArrayFactory. create(double[] data, int[] shape, long offset)
INDArray
NDArrayFactory. create(double[] data, long[] shape)
INDArray
NDArrayFactory. create(double[] data, long[] shape, char ordering)
INDArray
NDArrayFactory. create(double[] data, long[] shape, long[] stride, char order, DataType dataType, MemoryWorkspace workspace)
INDArray
NDArrayFactory. create(double[] data, long[] shape, long[] stride, long offset)
INDArray
NDArrayFactory. create(double[] data, long[] shape, long[] stride, long offset, char ordering)
INDArray
NDArrayFactory. create(double[] data, long[] shape, long[] stride, DataType dataType, MemoryWorkspace workspace)
INDArray
NDArrayFactory. create(double[] data, long[] shape, long offset, Character order)
INDArray
NDArrayFactory. create(double[] data, long rows, long columns, int[] stride, long offset)
Creates an ndarray with the specified shapeINDArray
NDArrayFactory. create(float[] data)
Creates a row vector with the dataINDArray
NDArrayFactory. create(float[][] floats)
INDArray
NDArrayFactory. create(float[][] data, char ordering)
INDArray
NDArrayFactory. create(float[] data, char order)
INDArray
NDArrayFactory. create(float[] data, int[] shape)
Create an ndrray with the specified shapeINDArray
NDArrayFactory. create(float[] data, int[] shape, char ordering)
INDArray
NDArrayFactory. create(float[] data, int[] shape, int[] stride, char order, long offset)
INDArray
NDArrayFactory. create(float[] data, int[] shape, int[] stride, long offset)
Creates an ndarray with the specified shapeINDArray
NDArrayFactory. create(float[] data, int[] shape, int[] stride, long offset, char ordering)
INDArray
NDArrayFactory. create(float[] data, int[] shape, long offset)
INDArray
NDArrayFactory. create(float[] data, int[] shape, long offset, Character order)
INDArray
NDArrayFactory. create(float[] data, long[] shape)
INDArray
NDArrayFactory. create(float[] data, long[] shape, char ordering)
INDArray
NDArrayFactory. create(float[] data, long[] shape, long[] stride, char order, long offset)
INDArray
NDArrayFactory. create(float[] data, long[] shape, long[] stride, char order, DataType dataType)
INDArray
NDArrayFactory. create(float[] data, long[] shape, long[] stride, char order, DataType dataType, MemoryWorkspace workspace)
INDArray
NDArrayFactory. create(float[] data, long[] shape, long[] stride, long offset)
INDArray
NDArrayFactory. create(float[] data, long[] shape, long[] stride, long offset, char ordering)
INDArray
NDArrayFactory. create(float[] data, long[] shape, long[] stride, DataType dataType, MemoryWorkspace workspace)
INDArray
NDArrayFactory. create(float[] data, long[] shape, long offset, Character order)
INDArray
NDArrayFactory. create(float[] data, long rows, long columns, int[] stride, long offset)
INDArray
NDArrayFactory. create(float[] data, long rows, long columns, int[] stride, long offset, char ordering)
INDArray
NDArrayFactory. create(int[] shape)
Creates an ndarray with the specified shapeINDArray
NDArrayFactory. create(int[] shape, char ordering)
INDArray
NDArrayFactory. create(int[] shape, int[] stride)
Creates an ndarray with the specified shapeINDArray
NDArrayFactory. create(int[] shape, int[] ints1, int[] stride, char order, long offset)
INDArray
NDArrayFactory. create(int[] ints, int[] ints1, int[] stride, long offset)
INDArray
NDArrayFactory. create(int[] shape, int[] stride, long offset)
Creates an ndarray with the specified shapeINDArray
NDArrayFactory. create(int[] shape, int[] stride, long offset, char ordering)
INDArray
NDArrayFactory. create(int[] data, long[] shape, long[] stride, char order, DataType dataType, MemoryWorkspace workspace)
INDArray
NDArrayFactory. create(int[] data, long[] shape, long[] stride, DataType dataType, MemoryWorkspace workspace)
INDArray
NDArrayFactory. create(int[] shape, DataBuffer buffer)
Create an ndarray with the given shape and dataINDArray
NDArrayFactory. create(int[] shape, DataType dataType, MemoryWorkspace workspace)
INDArray
NDArrayFactory. create(long columns)
Creates a row vector with the specified number of columnsINDArray
NDArrayFactory. create(long[] shape)
INDArray
NDArrayFactory. create(long[] shape, char ordering)
INDArray
NDArrayFactory. create(long[] shape, long[] stride)
INDArray
NDArrayFactory. create(long[] shape, long[] stride, long offset)
INDArray
NDArrayFactory. create(long[] data, long[] shape, long[] stride, char order, DataType dataType, MemoryWorkspace workspace)
INDArray
NDArrayFactory. create(long[] data, long[] shape, long[] stride, DataType dataType, MemoryWorkspace workspace)
INDArray
NDArrayFactory. create(long[] shape, long[] stride, long offset, char ordering)
INDArray
NDArrayFactory. create(long rows, long columns)
Creates an ndarray with the specified shapeINDArray
NDArrayFactory. create(long rows, long columns, char ordering)
INDArray
NDArrayFactory. create(long rows, long columns, int[] stride)
Creates an ndarray with the specified shapeINDArray
NDArrayFactory. create(long rows, long columns, int[] stride, long offset)
Creates an ndarray with the specified shapeINDArray
NDArrayFactory. create(long rows, long columns, long[] stride, long offset)
INDArray
NDArrayFactory. create(short[] data, long[] shape, long[] stride, char order, DataType dataType, MemoryWorkspace workspace)
INDArray
NDArrayFactory. create(short[] data, long[] shape, long[] stride, DataType dataType, MemoryWorkspace workspace)
INDArray
NDArrayFactory. create(Collection<String> strings, long[] shape, char order)
INDArray
NDArrayFactory. create(List<INDArray> list, int[] shape)
Creates an ndarray with the specified shapeINDArray
NDArrayFactory. create(List<INDArray> list, int[] shape, char ordering)
INDArray
NDArrayFactory. create(List<INDArray> list, long[] shape)
INDArray
NDArrayFactory. create(List<INDArray> list, long[] shape, char ordering)
INDArray
NDArrayFactory. create(DataBuffer data)
Creates a row vector with the dataINDArray
NDArrayFactory. create(DataBuffer data, int[] shape)
Create an ndrray with the specified shapeINDArray
NDArrayFactory. create(DataBuffer buffer, int[] shape, int[] stride, char order, long offset)
INDArray
NDArrayFactory. create(DataBuffer data, int[] shape, int[] stride, long offset)
Creates an ndarray with the specified shapeINDArray
NDArrayFactory. create(DataBuffer data, int[] newShape, int[] newStride, long offset, char ordering)
INDArray
NDArrayFactory. create(DataBuffer buffer, int[] shape, long offset)
INDArray
NDArrayFactory. create(DataBuffer data, long[] shape)
INDArray
NDArrayFactory. create(DataBuffer data, long[] shape, long[] stride, long offset)
INDArray
NDArrayFactory. create(DataBuffer data, long[] newShape, long[] newStride, long offset, char ordering)
INDArray
NDArrayFactory. create(DataBuffer data, long[] newShape, long[] newStride, long offset, char ordering, DataType dataType)
INDArray
NDArrayFactory. create(DataBuffer data, long[] newShape, long[] newStride, long offset, long ews, char ordering)
INDArray
NDArrayFactory. create(DataBuffer data, long rows, long columns, int[] stride, long offset)
Creates an ndarray with the specified shapeINDArray
NDArrayFactory. create(DataType dataType, long[] shape, char ordering, MemoryWorkspace workspace)
INDArray
NDArrayFactory. create(DataType dataType, long[] shape, long[] strides, char ordering, MemoryWorkspace workspace)
INDArray
NDArrayFactory. create(DataType dataType, long[] shape, long[] paddings, long[] paddingOffsets, char ordering, MemoryWorkspace workspace)
Create an ndArray with padded Bufferstatic INDArray
Nd4j. createArrayFromShapeBuffer(DataBuffer data, Pair<DataBuffer,long[]> shapeInfo)
Create array based in data buffer and shape info,static INDArray
Nd4j. createArrayFromShapeBuffer(DataBuffer data, DataBuffer shapeInfo)
Create array based in data buffer and shape info,static INDArray
Nd4j. createFromArray(boolean... array)
This method creates INDArray from provided jvm arraystatic INDArray
Nd4j. createFromArray(boolean[][] array)
This method creates INDArray from provided jvm arraystatic INDArray
Nd4j. createFromArray(boolean[][][] array)
This method creates INDArray from provided jvm arraystatic INDArray
Nd4j. createFromArray(boolean[][][][] array)
This method creates INDArray from provided jvm arraystatic INDArray
Nd4j. createFromArray(byte... array)
This method creates INDArray from provided jvm arraystatic INDArray
Nd4j. createFromArray(byte[][] array)
This method creates INDArray from provided jvm arraystatic INDArray
Nd4j. createFromArray(byte[][][] array)
This method creates INDArray from provided jvm arraystatic INDArray
Nd4j. createFromArray(byte[][][][] array)
This method creates INDArray from provided jvm arraystatic INDArray
Nd4j. createFromArray(double... array)
This method creates INDArray from provided jvm arraystatic INDArray
Nd4j. createFromArray(double[][] array)
This method creates INDArray from provided jvm arraystatic INDArray
Nd4j. createFromArray(double[][][] array)
This method creates INDArray from provided jvm arraystatic INDArray
Nd4j. createFromArray(double[][][][] array)
This method creates INDArray from provided jvm arraystatic INDArray
Nd4j. createFromArray(float... array)
This method creates INDArray from provided jvm arraystatic INDArray
Nd4j. createFromArray(float[][] array)
This method creates INDArray from provided jvm arraystatic INDArray
Nd4j. createFromArray(float[][][] array)
This method creates INDArray from provided jvm arraystatic INDArray
Nd4j. createFromArray(float[][][][] array)
This method creates INDArray from provided jvm arraystatic INDArray
Nd4j. createFromArray(int... array)
This method creates INDArray from provided jvm arraystatic INDArray
Nd4j. createFromArray(int[][] array)
This method creates INDArray from provided jvm arraystatic INDArray
Nd4j. createFromArray(int[][][] array)
This method creates INDArray from provided jvm arraystatic INDArray
Nd4j. createFromArray(int[][][][] array)
This method creates INDArray from provided jvm arraystatic INDArray
Nd4j. createFromArray(long... array)
This method creates INDArray from provided jvm arraystatic INDArray
Nd4j. createFromArray(long[][] array)
This method creates INDArray from provided jvm arraystatic INDArray
Nd4j. createFromArray(long[][][] array)
This method creates INDArray from provided jvm arraystatic INDArray
Nd4j. createFromArray(long[][][][] array)
This method creates INDArray from provided jvm arraystatic INDArray
Nd4j. createFromArray(short... array)
This method creates INDArray from provided jvm arraystatic INDArray
Nd4j. createFromArray(short[][] array)
This method creates INDArray from provided jvm arraystatic INDArray
Nd4j. createFromArray(short[][][] array)
This method creates INDArray from provided jvm arraystatic INDArray
Nd4j. createFromArray(short[][][][] array)
This method creates INDArray from provided jvm arraystatic INDArray
Nd4j. createFromArray(Boolean[] array)
This method creates INDArray from provided jvm arraystatic INDArray
Nd4j. createFromArray(Boolean[][] array)
This method creates INDArray from provided jvm arraystatic INDArray
Nd4j. createFromArray(Boolean[][][] array)
This method creates INDArray from provided jvm arraystatic INDArray
Nd4j. createFromArray(Boolean[][][][] array)
This method creates INDArray from provided jvm arraystatic INDArray
Nd4j. createFromArray(Byte[] array)
This method creates INDArray from provided jvm arraystatic INDArray
Nd4j. createFromArray(Byte[][] array)
This method creates INDArray from provided jvm arraystatic INDArray
Nd4j. createFromArray(Byte[][][] array)
This method creates INDArray from provided jvm arraystatic INDArray
Nd4j. createFromArray(Byte[][][][] array)
This method creates INDArray from provided jvm arraystatic INDArray
Nd4j. createFromArray(Double[] array)
This method creates INDArray from provided jvm arraystatic INDArray
Nd4j. createFromArray(Double[][] array)
This method creates INDArray from provided jvm arraystatic INDArray
Nd4j. createFromArray(Double[][][] array)
This method creates INDArray from provided jvm arraystatic INDArray
Nd4j. createFromArray(Double[][][][] array)
This method creates INDArray from provided jvm arraystatic INDArray
Nd4j. createFromArray(Float[] array)
This method creates INDArray from provided jvm arraystatic INDArray
Nd4j. createFromArray(Float[][] array)
This method creates INDArray from provided jvm arraystatic INDArray
Nd4j. createFromArray(Float[][][] array)
This method creates INDArray from provided jvm arraystatic INDArray
Nd4j. createFromArray(Float[][][][] array)
This method creates INDArray from provided jvm arraystatic INDArray
Nd4j. createFromArray(Integer[] array)
This method creates INDArray from provided jvm arraystatic INDArray
Nd4j. createFromArray(Integer[][] array)
This method creates INDArray from provided jvm arraystatic INDArray
Nd4j. createFromArray(Integer[][][] array)
This method creates INDArray from provided jvm arraystatic INDArray
Nd4j. createFromArray(Integer[][][][] array)
This method creates INDArray from provided jvm arraystatic INDArray
Nd4j. createFromArray(Long[] array)
This method creates INDArray from provided jvm arraystatic INDArray
Nd4j. createFromArray(Long[][] array)
This method creates INDArray from provided jvm arraystatic INDArray
Nd4j. createFromArray(Long[][][] array)
This method creates INDArray from provided jvm arraystatic INDArray
Nd4j. createFromArray(Long[][][][] array)
This method creates INDArray from provided jvm arraystatic INDArray
Nd4j. createFromArray(Short[] array)
This method creates INDArray from provided jvm arraystatic INDArray
Nd4j. createFromArray(Short[][] array)
This method creates INDArray from provided jvm arraystatic INDArray
Nd4j. createFromArray(Short[][][] array)
This method creates INDArray from provided jvm arraystatic INDArray
Nd4j. createFromArray(Short[][][][] array)
This method creates INDArray from provided jvm arraystatic INDArray
Nd4j. createFromFlatArray(FlatArray array)
static INDArray
Nd4j. createFromNpyFile(@NonNull File file)
Create an INDArray from a given Numpy .npy file.INDArray
NDArrayFactory. createFromNpyFile(File file)
Create from a given numpy file.INDArray
NDArrayFactory. createFromNpyHeaderPointer(org.bytedeco.javacpp.Pointer pointer)
Create from an in memory numpy header.static INDArray
Nd4j. createFromNpyPointer(org.bytedeco.javacpp.Pointer pointer)
Create from an in memory numpy pointerINDArray
NDArrayFactory. createFromNpyPointer(org.bytedeco.javacpp.Pointer pointer)
Create from an in memory numpy pointerstatic INDArray
Nd4j. createNpyFromByteArray(@lombok.NonNull byte[] input)
Create anINDArray
from the given numpy input.
The numpy input follows the format: https://docs.scipy.org/doc/numpy-1.14.0/neps/npy-format.htmlstatic INDArray
Nd4j. createNpyFromInputStream(@NonNull InputStream is)
Create a numpy array based on the passed in input streamstatic INDArray
Nd4j. createUninitialized(int... shape)
static INDArray
Nd4j. createUninitialized(int[] shape, char ordering)
Creates an *uninitialized* array with the specified shape and ordering.
NOTE: The underlying memory (DataBuffer) will not be initialized.static INDArray
Nd4j. createUninitialized(long length)
This method creates an *uninitialized* ndarray of specified length and default ordering.static INDArray
Nd4j. createUninitialized(long... shape)
Creates an *uninitialized* ndarray with the specified shape and default ordering.
NOTE: The underlying memory (DataBuffer) will not be initialized.static INDArray
Nd4j. createUninitialized(long[] shape, char ordering)
Creates an *uninitialized* array with the specified shape and ordering.static INDArray
Nd4j. createUninitialized(DataType type, long... shape)
static INDArray
Nd4j. createUninitialized(DataType type, long[] shape, char ordering)
Creates an *uninitialized* array with the specified data type, shape and ordering.INDArray
NDArrayFactory. createUninitialized(int[] shape, char ordering)
INDArray
NDArrayFactory. createUninitialized(long[] shape, char ordering)
INDArray
NDArrayFactory. createUninitialized(DataType dataType, long[] shape, char ordering, MemoryWorkspace workspace)
static INDArray
Nd4j. createUninitializedDetached(DataType dataType, char ordering, long... shape)
Create an uninitialized ndArray.static INDArray
Nd4j. createUninitializedDetached(DataType dataType, long... shape)
SeeNd4j.createUninitializedDetached(DataType, char, long...)
with default ordering.INDArray
NDArrayFactory. createUninitializedDetached(DataType dataType, char ordering, long... shape)
Create an uninitialized ndArray.static INDArray
Nd4j. cumsum(INDArray compute)
Seecumsum(int)
with Integer.MAX_VALUE for full array reduction.static INDArray
Nd4j. cumsum(INDArray compute, int dimension)
Seecumsum(int)
with Integer.MAX_VALUE for full array reduction.static INDArray
Nd4j. diag(INDArray x)
Creates a new matrix where the values of the given vector are the diagonal values of the matrix if a vector is passed in, if a matrix is returns the kth diagonal in the matrixstatic INDArray
Broadcast. div(INDArray x, INDArray y, INDArray z, int... dimensions)
Broadcast divide op.static INDArray
Nd4j. empty()
This method creates "empty" INDArray with datatype determined byNd4j.dataType()
static INDArray
Nd4j. empty(DataType type)
This method creates "empty" INDArray of the specified datatypeINDArray
NDArrayFactory. empty(DataType type)
static INDArray
Broadcast. eq(INDArray x, INDArray y, INDArray z, int... dimensions)
Broadcast equal to op.static INDArray[]
Nd4j. exec(CustomOp op)
Execute the operation and return the resultstatic INDArray[]
Nd4j. exec(CustomOp op, OpContext context)
Execute the operation and return the resultstatic INDArray
Nd4j. exec(Op op)
Execute the operation and return the resultstatic INDArray
Nd4j. exec(Op op, OpContext context)
static INDArray
Nd4j. expandDims(INDArray input, int dimension)
Expand the array dimensions.INDArray
BaseNDArrayFactory. eye(long n)
Create the identity ndarraystatic INDArray
Nd4j. eye(long n)
Create the identity ndarrayINDArray
NDArrayFactory. eye(long n)
Create the identity ndarraystatic INDArray
Nd4j. fromByteArray(@lombok.NonNull byte[] arr)
Read an ndarray from a byte arraystatic INDArray
Nd4j. gemm(INDArray a, INDArray b, boolean transposeA, boolean transposeB)
matrix multiply: implements op(a)*op(b) where op(x) means transpose x (or not) depending on setting of arguments transposea and transposeb.
so gemm(a,b,false,false) == a.mmul(b), gemm(a,b,true,false) == a.transpose().mmul(b) etc.static INDArray
Nd4j. gemm(INDArray a, INDArray b, INDArray c, boolean transposeA, boolean transposeB, double alpha, double beta)
Matrix multiply: Implements c = alpha*op(a)*op(b) + beta*c where op(X) means transpose X (or not) depending on setting of arguments transposeA and transposeB.
Note that matrix c MUST be fortran order, have zero offset and have c.data().length == c.length().INDArray
BaseBlasWrapper. gemv(double alpha, INDArray a, INDArray x, double beta, INDArray y)
INDArray
BaseBlasWrapper. gemv(float alpha, INDArray a, INDArray x, float beta, INDArray y)
INDArray
BaseBlasWrapper. gemv(Number alpha, INDArray a, INDArray x, double beta, INDArray y)
INDArray
BlasWrapper. gemv(double alpha, INDArray a, INDArray x, double beta, INDArray y)
Deprecated.INDArray
BlasWrapper. gemv(float alpha, INDArray a, INDArray x, float beta, INDArray y)
Deprecated.INDArray
BlasWrapper. gemv(Number alpha, INDArray a, INDArray x, double beta, INDArray y)
************************************************************************ BLAS Level 2INDArray
BaseBlasWrapper. ger(double alpha, INDArray x, INDArray y, INDArray a)
INDArray
BaseBlasWrapper. ger(float alpha, INDArray x, INDArray y, INDArray a)
INDArray
BaseBlasWrapper. ger(Number alpha, INDArray x, INDArray y, INDArray a)
INDArray
BlasWrapper. ger(double alpha, INDArray x, INDArray y, INDArray a)
Deprecated.INDArray
BlasWrapper. ger(float alpha, INDArray x, INDArray y, INDArray a)
Compute A <- alpha * x * y^T + A (general rank-1 update)INDArray
BlasWrapper. ger(Number alpha, INDArray x, INDArray y, INDArray a)
INDArray
BaseBlasWrapper. gesv(INDArray a, int[] ipiv, INDArray b)
INDArray
BlasWrapper. gesv(INDArray a, int[] ipiv, INDArray b)
************************************************************************ LAPACKstatic INDArray
Broadcast. gt(INDArray x, INDArray y, INDArray z, int... dimensions)
Broadcast greater than op.static INDArray
Broadcast. gte(INDArray x, INDArray y, INDArray z, int... dimensions)
Broadcast greater than or equal to op.INDArray
BaseNDArrayFactory. hstack(@NonNull INDArray... arrs)
Concatenates two matrices horizontally.static INDArray
Nd4j. hstack(@NonNull INDArray... arrs)
Concatenates two matrices horizontally.static INDArray
Nd4j. hstack(Collection<INDArray> arrs)
Concatenates two matrices horizontally.INDArray
NDArrayFactory. hstack(INDArray... arrs)
Concatenates two matrices horizontally.static INDArray
Nd4j. linspace(double lower, double upper, long num, @NonNull DataType dataType)
Generate a linearly spaced 1d vector of the specified datatypestatic INDArray
Nd4j. linspace(long lower, long upper, long num)
Generate a linearly spaced vector with default data typestatic INDArray
Nd4j. linspace(long lower, long upper, long num, @NonNull DataType dtype)
Generate a linearly spaced vectorstatic INDArray
Nd4j. linspace(@NonNull DataType dataType, double lower, double step, long num)
Generate a linearly spaced 1d vector of the specified datatypestatic INDArray
Nd4j. linspace(@NonNull DataType dtype, long lower, long num, long step)
Generate a linearly spaced vectorstatic INDArray
Broadcast. lt(INDArray x, INDArray y, INDArray z, int... dimensions)
Broadcast less than op.static INDArray
Broadcast. lte(INDArray x, INDArray y, INDArray z, int... dimensions)
Broadcast less than or equal to op.static INDArray
Nd4j. matmul(INDArray a, INDArray b)
Matrix multiplication/dot product SeeNd4j.matmul(INDArray, INDArray, INDArray, boolean, boolean, boolean)
static INDArray
Nd4j. matmul(INDArray a, INDArray b, boolean transposeA, boolean transposeB, boolean transposeResult)
Matrix multiplication/dot product.
SeeNd4j.matmul(INDArray, INDArray, INDArray, boolean, boolean, boolean)
static INDArray
Nd4j. matmul(INDArray a, INDArray b, INDArray result)
Matrix multiplication/dot product.
SeeNd4j.matmul(INDArray, INDArray, INDArray, boolean, boolean, boolean)
static INDArray
Nd4j. matmul(INDArray a, INDArray b, INDArray result, boolean transposeA, boolean transposeB, boolean transposeResult)
Matrix multiplication/dot product Depending on inputs dimensionality output result might be different.static INDArray
Broadcast. max(INDArray x, INDArray y, INDArray z, int... dimensions)
Broadcast max op.static INDArray
Nd4j. max(INDArray compute)
Seemax(int...)
with Integer.MAX_VALUE for full array reduction.static INDArray
Nd4j. max(INDArray compute, int dimension)
Seemax(int...)
with Integer.MAX_VALUE for full array reduction.static INDArray
Nd4j. mean(INDArray compute)
Seemean(int...)
with Integer.MAX_VALUE for full array reduction.static INDArray
Nd4j. mean(INDArray compute, int dimension)
Seemean(int...)
with Integer.MAX_VALUE for full array reduction.static INDArray[]
Nd4j. meshgrid(@NonNull INDArray x, @NonNull INDArray y)
Meshgrid op.static INDArray
Broadcast. min(INDArray x, INDArray y, INDArray z, int... dimensions)
Broadcast min op.static INDArray
Nd4j. min(INDArray compute)
Seemin(int...)
with Integer.MAX_VALUE for full array reduction.static INDArray
Nd4j. min(INDArray compute, int dimension)
Seemin(int...)
with Integer.MAX_VALUE for full array reduction.static INDArray
Broadcast. mul(INDArray x, INDArray y, INDArray z, int... dimensions)
Broadcast element-wise multiply op.static INDArray
Broadcast. neq(INDArray x, INDArray y, INDArray z, int... dimensions)
Broadcast not equal to op.static INDArray
Nd4j. norm1(INDArray compute)
Seenorm1(int...)
with Integer.MAX_VALUE for full array reduction.static INDArray
Nd4j. norm1(INDArray compute, int dimension)
Seenorm1(int...)
with Integer.MAX_VALUE for full array reduction.static INDArray
Nd4j. norm2(INDArray compute)
Seenorm2(int...)
with Integer.MAX_VALUE for full array reduction.static INDArray
Nd4j. norm2(INDArray compute, int dimension)
Seenorm2(int...)
with Integer.MAX_VALUE for full array reduction.static INDArray
Nd4j. normmax(INDArray compute)
Seenormmax(int...)
with Integer.MAX_VALUE for full array reduction.static INDArray
Nd4j. normmax(INDArray compute, int dimension)
Seenormmax(int...)
with Integer.MAX_VALUE for full array reduction.INDArray
BaseNDArrayFactory. ones(int[] shape)
Create an ndarray of onesINDArray
BaseNDArrayFactory. ones(long columns)
Creates a row vector with the specified number of columnsINDArray
BaseNDArrayFactory. ones(long[] shape)
INDArray
BaseNDArrayFactory. ones(long rows, long columns)
Creates a row vector with the specified number of columnsstatic INDArray
Nd4j. ones(@lombok.NonNull int... shape)
Create an ndarray of onesstatic INDArray
Nd4j. ones(@lombok.NonNull long... shape)
static INDArray
Nd4j. ones(DataType dataType, @lombok.NonNull long... shape)
Creates an array with the specified datatype and shape, with values all set to 1INDArray
NDArrayFactory. ones(int[] shape)
Create an ndarray of onesINDArray
NDArrayFactory. ones(long columns)
Creates a row vector with the specified number of columnsINDArray
NDArrayFactory. ones(long[] shape)
INDArray
NDArrayFactory. ones(long rows, long columns)
Creates a row vector with the specified number of columnsstatic INDArray
Nd4j. onesLike(INDArray arr)
Ones likestatic INDArray
Nd4j. pad(@NonNull INDArray toPad, @lombok.NonNull int... padWidth)
static INDArray
Nd4j. pad(@NonNull INDArray toPad, @lombok.NonNull int[][] padWidth)
static INDArray
Nd4j. pad(@NonNull INDArray toPad, @lombok.NonNull int[][] padWidth, Pad.Mode padMode, double padValue)
static INDArray
Nd4j. pad(@NonNull INDArray toPad, @lombok.NonNull int[] padWidth, Pad.Mode padMode, double padValue)
SeeNd4j.pad(INDArray, INDArray, Mode, double)
, uses padWidth for all dimensions.static INDArray
Nd4j. pad(@NonNull INDArray toPad, @NonNull INDArray padWidth, Pad.Mode padMode, double padValue)
Pad the given ndarray to the size along each dimension.static INDArray
Nd4j. pad(INDArray toPad, INDArray padding)
SeeNd4j.pad(INDArray, INDArray, Mode, double)
with zero padding (zeros for padValue).static INDArray
Nd4j. pile(@NonNull Collection<INDArray> arrays)
This method stacks vertically examples with the same shape, increasing result dimensionality.static INDArray
Nd4j. pile(@NonNull INDArray... arrays)
This method stacks vertically examples with the same shape, increasing result dimensionality.static INDArray
Nd4j. prepend(INDArray arr, int padAmount, double val, int axis)
static INDArray
Nd4j. prod(INDArray compute)
Seeprod(int...)
with Integer.MAX_VALUE for full array reduction.static INDArray
Nd4j. prod(INDArray compute, int dimension)
Seeprod(int...)
with Integer.MAX_VALUE for full array reduction.INDArray
BaseNDArrayFactory. pullRows(INDArray source, int sourceDimension, int[] indexes)
This method produces concatenated array, that consist from tensors, fetched from source array, against some dimension and specified indexesINDArray
BaseNDArrayFactory. pullRows(INDArray source, int sourceDimension, int[] indexes, char order)
This method produces concatenated array, that consist from tensors, fetched from source array, against some dimension and specified indexesstatic INDArray
Nd4j. pullRows(INDArray source, int sourceDimension, @lombok.NonNull int... indexes)
This method produces concatenated array, that consist from tensors, fetched from source array, against some dimension and specified indexesstatic INDArray
Nd4j. pullRows(INDArray source, int sourceDimension, int[] indexes, char order)
This method produces concatenated array, that consist from tensors, fetched from source array, against some dimension and specified indexesstatic INDArray
Nd4j. pullRows(INDArray source, INDArray destination, int sourceDimension, @lombok.NonNull int... indexes)
This method produces concatenated array, that consist from tensors, fetched from source array, against some dimension and specified indexes.INDArray
NDArrayFactory. pullRows(INDArray source, int sourceDimension, int[] indexes)
This method produces concatenated array, that consist from tensors, fetched from source array, against some dimension and specified indexesINDArray
NDArrayFactory. pullRows(INDArray source, int sourceDimension, int[] indexes, char order)
This method produces concatenated array, that consist from tensors, fetched from source array, against some dimension and specified indexesINDArray
NDArrayFactory. pullRows(INDArray source, int sourceDimension, long[] indexes)
INDArray
NDArrayFactory. pullRows(INDArray source, INDArray destination, int sourceDimension, int[] indexes)
* This method produces concatenated array, that consist from tensors, fetched from source array, against some dimension and specified indexes in to the destination arrayINDArray
BaseNDArrayFactory. rand(char order, int[] shape)
Create a random ndarray with the given shape and orderINDArray
BaseNDArrayFactory. rand(char order, long[] shape)
INDArray
BaseNDArrayFactory. rand(char order, long rows, long columns)
Create a random (uniform 0-1) NDArray with the specified shape and orderINDArray
BaseNDArrayFactory. rand(int[] shape)
Create a random ndarray with the given shape using the current time as the seedINDArray
BaseNDArrayFactory. rand(int[] shape, double min, double max, Random rng)
INDArray
BaseNDArrayFactory. rand(int[] shape, float min, float max, Random rng)
Generates a random matrix between min and maxINDArray
BaseNDArrayFactory. rand(int[] shape, long seed)
Create a random ndarray with the given shape using the given rngINDArray
BaseNDArrayFactory. rand(int[] shape, Distribution r)
Create a random ndarray with the given shape using the given rngINDArray
BaseNDArrayFactory. rand(int[] shape, Random r)
Create a random ndarray with the given shape using the given rngINDArray
BaseNDArrayFactory. rand(long[] shape)
INDArray
BaseNDArrayFactory. rand(long[] shape, double min, double max, Random rng)
INDArray
BaseNDArrayFactory. rand(long[] shape, float min, float max, Random rng)
INDArray
BaseNDArrayFactory. rand(long[] shape, long seed)
INDArray
BaseNDArrayFactory. rand(long[] shape, Random r)
INDArray
BaseNDArrayFactory. rand(long rows, long columns)
Create a random ndarray with the given shape using the current time as the seedINDArray
BaseNDArrayFactory. rand(long rows, long columns, double min, double max, Random rng)
INDArray
BaseNDArrayFactory. rand(long rows, long columns, float min, float max, Random rng)
Generates a random matrix between min and maxINDArray
BaseNDArrayFactory. rand(long rows, long columns, long seed)
Create a random ndarray with the given shape using the given rngINDArray
BaseNDArrayFactory. rand(long rows, long columns, Random r)
Create a random ndarray with the given shape using the given rngstatic INDArray
Nd4j. rand(@lombok.NonNull int... shape)
Create a random ndarray with values from a uniform distribution over (0, 1) with the given shapestatic INDArray
Nd4j. rand(@lombok.NonNull long... shape)
SeeNd4j.rand(int[])
static INDArray
Nd4j. rand(char order, @lombok.NonNull int... shape)
Create a random ndarray with the given shape and array order Values are sampled from a uniform distribution over (0, 1)static INDArray
Nd4j. rand(double min, double max, Random rng, @lombok.NonNull long... shape)
Generates a random matrix between min and maxstatic INDArray
Nd4j. rand(int[] shape, double min, double max, Random rng)
static INDArray
Nd4j. rand(int[] shape, long seed)
Deprecated.static INDArray
Nd4j. rand(int[] shape, @NonNull Distribution dist)
Deprecated.static INDArray
Nd4j. rand(int[] shape, Random rng)
Deprecated.static INDArray
Nd4j. rand(int rows, int columns, Random rng)
Create a random ndarray with the given shape using the given rngstatic INDArray
Nd4j. rand(long[] shape, double min, double max, Random rng)
static INDArray
Nd4j. rand(long[] shape, @NonNull Distribution dist)
Deprecated.static INDArray
Nd4j. rand(long seed, @lombok.NonNull long... shape)
Create a random ndarray with values from a uniform distribution over (0, 1) with the given shape using given seedstatic INDArray
Nd4j. rand(@NonNull DataType dataType, @lombok.NonNull int... shape)
Create a random ndarray with the given shape and data type Values are sampled from a uniform distribution over (0, 1)static INDArray
Nd4j. rand(@NonNull DataType dataType, @lombok.NonNull long... shape)
Create a random ndarray with values from a uniform distribution over (0, 1) with the given shape and data typestatic INDArray
Nd4j. rand(@NonNull DataType dataType, char order, @lombok.NonNull int... shape)
Deprecated.static INDArray
Nd4j. rand(@NonNull DataType dataType, char order, @lombok.NonNull long... shape)
Create a random ndarray with the given shape, data type, and array order Values are sampled from a uniform distribution over (0, 1)static INDArray
Nd4j. rand(@NonNull DataType dataType, int[] shape, char order)
Deprecated.use {@link Nd4j#rand(DataType, char, long...))static INDArray
Nd4j. rand(@NonNull Distribution dist, @lombok.NonNull long... shape)
Create a random ndarray with the given shape using the given rngstatic INDArray
Nd4j. rand(INDArray target)
Fill the given ndarray with random numbers drawn from a uniform distributionstatic INDArray
Nd4j. rand(INDArray target, double min, double max, Random rng)
Fill the given ndarray with random numbers drawn from a uniform distribution using the given RandomGeneratorstatic INDArray
Nd4j. rand(INDArray target, long seed)
Fill the given ndarray with random numbers drawn from a uniform distributionstatic INDArray
Nd4j. rand(INDArray target, @NonNull Distribution dist)
Fill the given ndarray with random numbers drawn from the given distributionstatic INDArray
Nd4j. rand(INDArray target, Random rng)
Fill the given ndarray with random numbers drawn from a uniform distribution using the given RandomGeneratorstatic INDArray
Nd4j. rand(Random rng, @lombok.NonNull long... shape)
Create a random ndarray with the given shape using the given RandomGeneratorINDArray
NDArrayFactory. rand(char order, int[] shape)
Create a random ndarray with the given shape, and specified output orderINDArray
NDArrayFactory. rand(char order, long[] shape)
Create a random ndarray with the given shape and specified output orderINDArray
NDArrayFactory. rand(char order, long rows, long columns)
Create a random (uniform 0-1) NDArray with the specified shape and orderINDArray
NDArrayFactory. rand(int[] shape)
Create a random ndarray with the given shape using the current time as the seedINDArray
NDArrayFactory. rand(int[] shape, double min, double max, Random rng)
INDArray
NDArrayFactory. rand(int[] shape, float min, float max, Random rng)
Generates a random matrix between min and maxINDArray
NDArrayFactory. rand(int[] shape, long seed)
Create a random ndarray with the given shape using the given rngINDArray
NDArrayFactory. rand(int[] shape, Distribution r)
Create a random ndarray with the given shape using the given rngINDArray
NDArrayFactory. rand(int[] shape, Random r)
Create a random ndarray with the given shape using the given rngINDArray
NDArrayFactory. rand(long[] shape)
Create a random ndarray with the given shape using the current time as the seedINDArray
NDArrayFactory. rand(long[] shape, double min, double max, Random rng)
INDArray
NDArrayFactory. rand(long[] shape, float min, float max, Random rng)
INDArray
NDArrayFactory. rand(long[] shape, long seed)
INDArray
NDArrayFactory. rand(long[] shape, Random r)
INDArray
NDArrayFactory. rand(long rows, long columns)
Create a random ndarray with the given shape using the current time as the seedINDArray
NDArrayFactory. rand(long rows, long columns, double min, double max, Random rng)
INDArray
NDArrayFactory. rand(long rows, long columns, float min, float max, Random rng)
Generates a random matrix between min and maxINDArray
NDArrayFactory. rand(long rows, long columns, long seed)
Create a random ndarray with the given shape using the given rngINDArray
NDArrayFactory. rand(long rows, long columns, Random r)
Create a random ndarray with the given shape using the given rngINDArray
BaseNDArrayFactory. randn(char order, int[] shape)
Random normal using the current time stamp as the seedINDArray
BaseNDArrayFactory. randn(char order, long[] shape)
INDArray
BaseNDArrayFactory. randn(char order, long rows, long columns)
Generate a random normal N(0,1) with the specified order and shapeINDArray
BaseNDArrayFactory. randn(int[] shape)
Random normal N(0,1) with the specified shape andINDArray
BaseNDArrayFactory. randn(int[] shape, long seed)
Random normal using the specified seedINDArray
BaseNDArrayFactory. randn(int[] shape, Random r)
Random normal using the given rngINDArray
BaseNDArrayFactory. randn(long[] shape)
INDArray
BaseNDArrayFactory. randn(long[] shape, long seed)
INDArray
BaseNDArrayFactory. randn(long[] shape, Random r)
INDArray
BaseNDArrayFactory. randn(long rows, long columns)
Random normal using the current time stamp as the seedINDArray
BaseNDArrayFactory. randn(long rows, long columns, long seed)
Random normal using the specified seedINDArray
BaseNDArrayFactory. randn(long rows, long columns, Random r)
Random normal using the given rngstatic INDArray
Nd4j. randn(@lombok.NonNull int[] shape)
Create a ndarray of the given shape with values from N(0,1)static INDArray
Nd4j. randn(@lombok.NonNull long... shape)
Create a ndarray of the given shape with values from N(0,1).static INDArray
Nd4j. randn(char order, @lombok.NonNull int... shape)
Random normal N(0,1) with the specified shape and array orderstatic INDArray
Nd4j. randn(char order, @lombok.NonNull long... shape)
Random normal N(0,1) with the specified shape and array orderstatic INDArray
Nd4j. randn(double mean, double stddev, long[] shape, Random rng)
static INDArray
Nd4j. randn(double mean, double stddev, INDArray target, Random rng)
static INDArray
Nd4j. randn(int[] shape, Random r)
Deprecated.static INDArray
Nd4j. randn(long[] shape, Random r)
Deprecated.static INDArray
Nd4j. randn(long seed, @lombok.NonNull long[] shape)
Random normal N(0, 1) using the specified seedstatic INDArray
Nd4j. randn(long seed, int[] shape)
Deprecated.static INDArray
Nd4j. randn(@NonNull DataType dataType, @lombok.NonNull int[] shape)
Create a ndarray of the given shape and data type with values from N(0,1)static INDArray
Nd4j. randn(@NonNull DataType dataType, @lombok.NonNull long... shape)
Create a ndarray of the given shape and data type with values from N(0,1)static INDArray
Nd4j. randn(@NonNull DataType dataType, char order, @lombok.NonNull long... shape)
Random normal N(0,1) with the specified shape and array orderstatic INDArray
Nd4j. randn(INDArray target)
Fill the given ndarray with random numbers drawn from a normal distributionstatic INDArray
Nd4j. randn(INDArray target, long seed)
Fill the given ndarray with random numbers drawn from a normal distributionstatic INDArray
Nd4j. randn(INDArray target, Random rng)
Fill the given ndarray with random numbers drawn from a normal distribution utilizing the given random generatorstatic INDArray
Nd4j. randn(Random r, @lombok.NonNull long... shape)
Random normal using the given rngINDArray
NDArrayFactory. randn(char order, int[] shape)
Random normal N(0,1) with the specified shape and orderINDArray
NDArrayFactory. randn(char order, long[] shape)
Random normal N(0,1) with the specified shape and orderINDArray
NDArrayFactory. randn(char order, long rows, long columns)
Random normal N(0,1), with specified output orderINDArray
NDArrayFactory. randn(int[] shape)
Random normal N(0,1) using the current time stamp as the seedINDArray
NDArrayFactory. randn(int[] shape, long seed)
Random normal using the specified seedINDArray
NDArrayFactory. randn(int[] shape, Random r)
Random normal using the given rngINDArray
NDArrayFactory. randn(long[] shape)
Random normal N(0,1) using the current time stamp as the seedINDArray
NDArrayFactory. randn(long[] shape, long seed)
Random normal using the specified seedINDArray
NDArrayFactory. randn(long[] shape, Random r)
INDArray
NDArrayFactory. randn(long rows, long columns)
Random normal (N(0,1)) using the current time stamp as the seedINDArray
NDArrayFactory. randn(long rows, long columns, long seed)
Random normal using the specified seedINDArray
NDArrayFactory. randn(long rows, long columns, Random r)
Random normal using the given rngstatic INDArray
Nd4j. randomBernoulli(double p, @lombok.NonNull long... shape)
Generate a random array according to a binomial distribution with probability p: i.e., values 0 with probability (1-p) or value 1 with probability pstatic INDArray
Nd4j. randomBernoulli(double p, @NonNull INDArray target)
Fill the specified array with values generated according to a binomial distribution with probability p: i.e., values 0 with probability (1-p) or value 1 with probability pstatic INDArray
Nd4j. randomBinomial(int nTrials, double p, @lombok.NonNull long... shape)
Generate an array with random values generated according to a binomial distribution with the specified number of trials and probabilitystatic INDArray
Nd4j. randomBinomial(int nTrials, double p, INDArray target)
Fill the target array with random values generated according to a binomial distribution with the specified number of trials and probabilitystatic INDArray
Nd4j. randomExponential(double lambda, long... shape)
Exponential distribution: P(x) = lambda * exp(-lambda * x)static INDArray
Nd4j. randomExponential(double lambda, INDArray target)
Exponential distribution: P(x) = lambda * exp(-lambda * x)static INDArray
Broadcast. rdiv(INDArray x, INDArray y, INDArray z, int... dimensions)
Broadcast reverse division op.static INDArray
Nd4j. read(DataInputStream dis)
Read in an ndarray from a data input streamstatic INDArray
Nd4j. read(InputStream reader)
Raad an ndarray from an input stream SeeNd4j.read(DataInputStream)
static INDArray
Nd4j. readBinary(File read)
Read a binary ndarray from the given filestatic INDArray
Nd4j. readNpy(@NonNull File file)
Create an INDArray from a given Numpy .npy file.static INDArray
Nd4j. readNpy(@NonNull String path)
Create an INDArray from a given Numpy .npy file.static INDArray
Nd4j. readNumpy(@NonNull InputStream filePath, @NonNull String split)
Read line via input streamsstatic INDArray
Nd4j. readNumpy(@NonNull DataType dataType, @NonNull InputStream filePath, @NonNull String split, @NonNull Charset charset)
Read array from input stream.static INDArray
Nd4j. readNumpy(String filePath)
Read line via input streamsstatic INDArray
Nd4j. readNumpy(String filePath, String split)
Read line via input streamsstatic INDArray
Nd4j. readNumpy(DataType dataType, String filePath)
Read array.
SeeNd4j.readNumpy(DataType, InputStream, String , Charset)
with default split and UTF-8 encoding.static INDArray
Nd4j. readNumpy(DataType dataType, String filePath, String split)
Read array via input stream.static INDArray
Nd4j. readTxt(String filePath)
Deprecated.to be removed in 1.0static INDArray
Nd4j. readTxtString(InputStream ndarray)
Deprecated.To be removed in 1.0static INDArray
Nd4j. repeat(INDArray n, int num)
Create an n x (shape) ndarray where the ndarray is repeated num timesINDArray
BaseNDArrayFactory. reverse(INDArray reverse)
Reverses the passed in matrix such that m[0] becomes m[m.length - 1] etcstatic INDArray
Nd4j. reverse(INDArray reverse)
Reverses the passed in matrix such that m[0] becomes m[m.length - 1] etcINDArray
NDArrayFactory. reverse(INDArray reverse)
Reverses the passed in matrix such that m[0] becomes m[m.length - 1] etcstatic INDArray
Nd4j. rollAxis(INDArray a, int axis)
Roll the specified axis backwards, until it lies in a given position.static INDArray
Nd4j. rollAxis(INDArray a, int axis, int start)
Roll the specified axis backwards, until it lies in a given position.INDArray
BaseNDArrayFactory. rot(INDArray reverse)
Reverses the passed in matrix such that m[0] becomes m[m.length - 1] etcINDArray
NDArrayFactory. rot(INDArray reverse)
Reverses the passed in matrix such that m[0] becomes m[m.length - 1] etcstatic INDArray
Broadcast. rsub(INDArray x, INDArray y, INDArray z, int... dimensions)
Broadcast reverse subtraction op.INDArray
BaseBlasWrapper. scal(double alpha, INDArray x)
INDArray
BaseBlasWrapper. scal(float alpha, INDArray x)
INDArray
BlasWrapper. scal(double alpha, INDArray x)
Deprecated.INDArray
BlasWrapper. scal(float alpha, INDArray x)
Deprecated.INDArray
BaseNDArrayFactory. scalar(double value)
Create a scalar nd array with the specified value and offsetINDArray
BaseNDArrayFactory. scalar(double value, long offset)
Create a scalar nd array with the specified value and offsetINDArray
BaseNDArrayFactory. scalar(float value)
INDArray
BaseNDArrayFactory. scalar(float value, long offset)
Create a scalar nd array with the specified value and offsetINDArray
BaseNDArrayFactory. scalar(int value, long offset)
Create a scalar nd array with the specified value and offsetINDArray
BaseNDArrayFactory. scalar(Number value)
Create a scalar ndarray with the specified offsetINDArray
BaseNDArrayFactory. scalar(DataType dataType)
static INDArray
Nd4j. scalar(boolean value)
Create a scalar NDArray with the specified value and BOOLEAN datatypestatic INDArray
Nd4j. scalar(double value)
Create a scalar nd array with the specified valuestatic INDArray
Nd4j. scalar(float value)
Create a scalar NDArray with the specified value and FLOAT datatypestatic INDArray
Nd4j. scalar(int value)
Create a scalar NDArray with the specified value and INT datatypestatic INDArray
Nd4j. scalar(long value)
Create a scalar NDArray with the specified value and LONG datatypestatic INDArray
Nd4j. scalar(@NonNull String string)
static INDArray
Nd4j. scalar(Number value)
Create a scalar ndarray with the specified valuestatic INDArray
Nd4j. scalar(DataType dataType, Number value)
Create a scalar ndarray with the specified value and datatypeINDArray
NDArrayFactory. scalar(double value)
Create a scalar nd array with the specified value and offsetINDArray
NDArrayFactory. scalar(double value, long offset)
Create a scalar nd array with the specified value and offsetINDArray
NDArrayFactory. scalar(float value)
Create a scalar nd array with the specified value and offsetINDArray
NDArrayFactory. scalar(float value, long offset)
Create a scalar nd array with the specified value and offsetINDArray
NDArrayFactory. scalar(int value, long offset)
INDArray
NDArrayFactory. scalar(Number value)
Create a scalar ndarray with the specified offsetINDArray
NDArrayFactory. scalar(DataType dataType)
Create a scalar nd array with the data type and a default value depending on the data type.static INDArray
Nd4j. sort(INDArray ndarray, boolean ascending)
Sort all elements of an array.static INDArray
Nd4j. sort(INDArray ndarray, int dimension, boolean ascending)
Sort an ndarray along a particular dimension
Note that the input array is modified in-place.INDArray
NDArrayFactory. sort(INDArray x, boolean descending)
INDArray
NDArrayFactory. sort(INDArray x, boolean descending, int... dimensions)
static INDArray
Nd4j. sortColumns(INDArray in, int rowIdx, boolean ascending)
Sort (shuffle) the columns of a 2d array according to the value at a specified row.INDArray
NDArrayFactory. sortCooIndices(INDArray x)
static INDArray
Nd4j. sortRows(INDArray in, int colIdx, boolean ascending)
Sort (shuffle) the rows of a 2d array according to the value at a specified column.static INDArray[]
Nd4j. sortWithIndices(INDArray ndarray, int dimension, boolean ascending)
Sort an ndarray along a particular dimension.
Note that the input array is modified in-place.static INDArray
Nd4j. specialConcat(int dimension, @NonNull INDArray... toConcat)
Concatenate ndarrays along a dimension PLEASE NOTE: This method is special for GPU backend, it works on HOST side only.INDArray
NDArrayFactory. specialConcat(int dimension, INDArray... toConcat)
Concatenate ndarrays along a dimension PLEASE NOTE: This method is special for GPU backend, it works on HOST side only.static INDArray
Nd4j. squeeze(INDArray input, int dimension)
Squeeze : removes a dimension of size 1static INDArray
Nd4j. stack(int axis, @NonNull INDArray... values)
Stack a set of N SDVariables of rank X into one rank X+1 variable.static INDArray
Nd4j. std(INDArray compute)
Seestd(int...)
with Integer.MAX_VALUE for full array reduction.static INDArray
Nd4j. std(INDArray compute, int dimension)
Seestd(int...)
with Integer.MAX_VALUE for full array reduction.static INDArray
Nd4j. stripOnes(INDArray toStrip)
Reshapes an ndarray to remove leading 1sstatic INDArray
Broadcast. sub(INDArray x, INDArray y, INDArray z, int... dimensions)
Broadcast subtraction op.static INDArray
Nd4j. sum(INDArray compute)
Seesum(int...)
with Integer.MAX_VALUE for full array reduction.static INDArray
Nd4j. sum(INDArray compute, int dimension)
Seesum(int...)
with Integer.MAX_VALUE for full array reduction.INDArray
BaseBlasWrapper. swap(INDArray x, INDArray y)
INDArray
BlasWrapper. swap(INDArray x, INDArray y)
Compute x <-> y (swap two matrices)INDArray
BaseBlasWrapper. sysv(char uplo, INDArray a, int[] ipiv, INDArray b)
INDArray
BlasWrapper. sysv(char uplo, INDArray a, int[] ipiv, INDArray b)
static INDArray[]
Nd4j. tear(INDArray tensor, @lombok.NonNull int... dimensions)
This method does the opposite to pile/vstack/hstack - it returns independent TAD copies along given dimensionsINDArray[]
NDArrayFactory. tear(INDArray tensor, int... dimensions)
static INDArray
Nd4j. tensorMmul(INDArray a, INDArray b, int[][] axes)
Tensor matrix multiplication.static INDArray
Nd4j. tensorMmul(INDArray a, INDArray b, INDArray result, int[][] axes)
Tensor matrix multiplication.static INDArray
Nd4j. tile(INDArray tile, @lombok.NonNull int... repeat)
An alias for repmatINDArray
BaseNDArrayFactory. toFlattened(char order, INDArray... matrices)
INDArray
BaseNDArrayFactory. toFlattened(int length, Iterator<? extends INDArray>... matrices)
INDArray
BaseNDArrayFactory. toFlattened(Collection<INDArray> matrices)
Returns a vector with all of the elements in every nd array equal to the sum of the lengths of the ndarraysINDArray
BaseNDArrayFactory. toFlattened(INDArray... matrices)
static INDArray
Nd4j. toFlattened(char order, @NonNull INDArray... matrices)
Create a long row vector of all of the given ndarrays/static INDArray
Nd4j. toFlattened(char order, Collection<INDArray> matrices)
Create a long row vector of all of the given ndarraysstatic INDArray
Nd4j. toFlattened(@NonNull INDArray... matrices)
Create a long row vector of all of the given ndarraysstatic INDArray
Nd4j. toFlattened(Collection<INDArray> matrices)
Create a long row vector of all of the given ndarraysINDArray
NDArrayFactory. toFlattened(char order, Collection<INDArray> matrices)
Returns a flattened ndarray with all elements in each ndarray regardless of dimension.INDArray
NDArrayFactory. toFlattened(char order, INDArray... matrices)
Flatten all of the ndarrays in to one long vectorINDArray
NDArrayFactory. toFlattened(int length, Iterator<? extends INDArray>... matrices)
Returns a flattened ndarray with all of the elements in each ndarray regardless of dimensionINDArray
NDArrayFactory. toFlattened(Collection<INDArray> matrices)
/** Returns a flattened ndarray with all of the elements in each ndarray regardless of dimensionINDArray
NDArrayFactory. toFlattened(INDArray... matrices)
Flatten all of the ndarrays in to one long vectorstatic INDArray
Nd4j. tri(int n)
SeeNd4j.tri(int,int,int)
with m = n, k=0.static INDArray
Nd4j. tri(int n, int k)
SeeNd4j.tri(int,int,int)
with m = n.static INDArray
Nd4j. tri(int n, int m, int k)
Like the scipy function tri.static INDArray
Nd4j. triu(INDArray m, int k)
Upper triangle of an array.INDArray
BaseNDArrayFactory. valueArrayOf(int[] shape, double value)
Creates an ndarray with the specified value as the only value in the ndarrayINDArray
BaseNDArrayFactory. valueArrayOf(long[] shape, double value)
INDArray
BaseNDArrayFactory. valueArrayOf(long rows, long columns, double value)
Creates a row vector with the specified number of columnsstatic INDArray
Nd4j. valueArrayOf(int[] shape, double value)
Creates an ndarray with the specified value as the only value in the ndarray.static INDArray
Nd4j. valueArrayOf(long[] shape, double value)
static INDArray
Nd4j. valueArrayOf(long[] shape, double value, DataType type)
Creates an ndarray with the specified value as the only value in the ndarray.static INDArray
Nd4j. valueArrayOf(long[] shape, float value)
Creates an ndarray with the specified value as the only value in the FLOAT32 datatype NDArray.static INDArray
Nd4j. valueArrayOf(long[] shape, int value)
Creates an ndarray with the specified value as the only value in the INTEGER datatype NDArray.static INDArray
Nd4j. valueArrayOf(long[] shape, long value, DataType type)
static INDArray
Nd4j. valueArrayOf(long num, double value)
Creates a row vector ndarray with the specified value as the only value in the ndarray Some people may know this as np.fullstatic INDArray
Nd4j. valueArrayOf(long rows, long columns, double value)
Creates a row vector with the specified number of columns Some people may know this as np.fullINDArray
NDArrayFactory. valueArrayOf(int[] shape, double value)
Creates an ndarray with the specified value as the only value in the ndarrayINDArray
NDArrayFactory. valueArrayOf(long[] shape, double value)
INDArray
NDArrayFactory. valueArrayOf(long rows, long columns, double value)
Creates a row vector with the specified number of columnsstatic INDArray
Nd4j. var(INDArray compute)
Seevar(int...)
with Integer.MAX_VALUE for full array reduction.static INDArray
Nd4j. var(INDArray compute, int dimension)
Seevar(int...)
with Integer.MAX_VALUE for full array reduction.INDArray
BaseNDArrayFactory. vstack(INDArray... arrs)
Concatenates two matrices vertically.static INDArray
Nd4j. vstack(@NonNull INDArray... arrs)
Concatenates two matrices vertically.static INDArray
Nd4j. vstack(Collection<INDArray> arrs)
Concatenates two matrices vertically.INDArray
NDArrayFactory. vstack(INDArray... arrs)
Concatenates two matrices vertically.static INDArray[]
Nd4j. where(INDArray condition, INDArray x, INDArray y)
Similar to numpy.where operation.INDArray
BaseNDArrayFactory. zeros(int[] shape)
Create an ndarray of zerosINDArray
BaseNDArrayFactory. zeros(long columns)
Creates a row vector with the specified number of columnsINDArray
BaseNDArrayFactory. zeros(long[] shape)
INDArray
BaseNDArrayFactory. zeros(long rows, long columns)
Creates a row vector with the specified number of columnsstatic INDArray
Nd4j. zeros(@lombok.NonNull int... shape)
Create an ndarray of zerosstatic INDArray
Nd4j. zeros(@lombok.NonNull long... shape)
Create an ndarray of zerosstatic INDArray
Nd4j. zeros(int[] shape, char order)
Create an ndarray of zerosstatic INDArray
Nd4j. zeros(int[] shape, int[] stride)
static INDArray
Nd4j. zeros(int[] shape, int[] stride, long offset)
static INDArray
Nd4j. zeros(int[] shape, DataType dataType)
static INDArray
Nd4j. zeros(int columns, char order)
Create a 1D float array in soecified order initialized with zero.static INDArray
Nd4j. zeros(int rows, int columns, char ordering)
Create a 2D array initialized with zeros.static INDArray
Nd4j. zeros(int rows, int columns, int[] stride)
See {@link @see #create(int, int, int[], char)}static INDArray
Nd4j. zeros(int rows, int columns, int[] stride, long offset)
static INDArray
Nd4j. zeros(long[] shape, char order)
static INDArray
Nd4j. zeros(DataType dataType, @lombok.NonNull long... shape)
Creates an array with the specified data tyoe and shape initialized with zero.INDArray
NDArrayFactory. zeros(int[] shape)
Create an ndarray of zerosINDArray
NDArrayFactory. zeros(long columns)
Creates a row vector with the specified number of columnsINDArray
NDArrayFactory. zeros(long[] shape)
INDArray
NDArrayFactory. zeros(long rows, long columns)
Creates a row vector with the specified number of columnsstatic INDArray
Nd4j. zerosLike(INDArray arr)
Empty likeMethods in org.nd4j.linalg.factory that return types with arguments of type INDArray Modifier and Type Method Description static Map<String,INDArray>
Nd4j. createFromNpzFile(File file)
Map<String,INDArray>
NDArrayFactory. createFromNpzFile(File file)
Create a Mapfrom given npz file. Methods in org.nd4j.linalg.factory with parameters of type INDArray Modifier and Type Method Description static INDArray
Nd4j. accumulate(@NonNull INDArray... arrays)
This method sums given arrays and stores them to a new arraystatic INDArray
Nd4j. accumulate(INDArray target, Collection<INDArray> arrays)
This method sums given arrays and stores them to a given target arraystatic INDArray
Nd4j. accumulate(INDArray target, INDArray[] arrays)
This method sums given arrays and stores them to a given target arrayINDArray
NDArrayFactory. accumulate(INDArray target, INDArray... arrays)
This method sums given arrays to targetstatic INDArray
Broadcast. add(INDArray x, INDArray y, INDArray z, int... dimensions)
Broadcast add op.static INDArray
Broadcast. amax(INDArray x, INDArray y, INDArray z, int... dimensions)
Broadcast absolute max op.static INDArray
Broadcast. amin(INDArray x, INDArray y, INDArray z, int... dimensions)
Broadcast absolute min op.static INDArray
Nd4j. append(INDArray arr, int padAmount, double val, int axis)
Append the given array with the specified value size along a particular axis.INDArray
BaseNDArrayFactory. appendBias(INDArray... vectors)
Merge the vectors and append a bias.static INDArray
Nd4j. appendBias(@NonNull INDArray... vectors)
INDArray
NDArrayFactory. appendBias(INDArray... vectors)
static INDArray
Nd4j. argMax(INDArray arr, @lombok.NonNull int... dimension)
Get the maximum values for a dimension.static INDArray
Nd4j. argMin(INDArray arr, @lombok.NonNull int... dimension)
SeeNd4j.argMax(INDArray, int...)
but return minimum values.static void
DataTypeValidation. assertDouble(INDArray d)
static void
DataTypeValidation. assertDouble(INDArray... d)
static void
DataTypeValidation. assertFloat(INDArray d2)
static void
DataTypeValidation. assertFloat(INDArray... d2)
static void
DataTypeValidation. assertSameDataType(INDArray... indArrays)
double
BaseBlasWrapper. asum(INDArray x)
double
BlasWrapper. asum(INDArray x)
Compute || x ||_1 (1-norm, sum of absolute values)INDArray
NDArrayFactory. average(INDArray[] arrays)
This method averages input arrays, and returns averaged arrayINDArray
NDArrayFactory. average(INDArray target, Collection<INDArray> arrays)
This method averages input arrays, and returns averaged arrayINDArray
NDArrayFactory. average(INDArray target, INDArray[] arrays)
This method averages input arrays, and returns averaged arraystatic INDArray
Nd4j. averageAndPropagate(INDArray[] arrays)
This method averages input arrays, and returns averaged array.static INDArray
Nd4j. averageAndPropagate(INDArray target, Collection<INDArray> arrays)
This method averages input arrays, and returns averaged array.INDArray
BaseBlasWrapper. axpy(double da, INDArray dx, INDArray dy)
INDArray
BaseBlasWrapper. axpy(float da, INDArray dx, INDArray dy)
INDArray
BaseBlasWrapper. axpy(Number da, INDArray dx, INDArray dy)
INDArray
BlasWrapper. axpy(double da, INDArray dx, INDArray dy)
Deprecated.INDArray
BlasWrapper. axpy(float da, INDArray dx, INDArray dy)
Deprecated.INDArray
BlasWrapper. axpy(Number da, INDArray dx, INDArray dy)
Compute y <- y + x * alphaINDArray
BaseNDArrayFactory. bilinearProducts(INDArray curr, INDArray in)
Returns a column vector where each entry is the nth bilinear product of the nth slices of the two tensors.INDArray
NDArrayFactory. bilinearProducts(INDArray curr, INDArray in)
Returns a column vector where each entry is the nth bilinear product of the nth slices of the two tensors.static INDArray
Nd4j. choice(@NonNull INDArray source, @NonNull INDArray probs, @NonNull INDArray target, Random rng)
This method samples value from Source array to Target, with probabilites provided in Probs argumentstatic INDArray
Nd4j. choice(INDArray source, INDArray probs, int numSamples)
This method returns new INDArray instance, sampled from Source array with probabilities given in Probs using the default random number generator.static INDArray
Nd4j. choice(INDArray source, INDArray probs, int numSamples, Random rng)
This method returns new INDArray instance, sampled from Source array with probabilities given in Probs.static INDArray
Nd4j. choice(INDArray source, INDArray probs, INDArray target)
This method samples value from Source array to Target,the default random number generator.static void
Nd4j. clearNans(INDArray arr)
Clear nans from an ndarrayINDArray
BaseNDArrayFactory. concat(int dimension, INDArray... toConcat)
concatenate ndarrays along a dimensionstatic INDArray
Nd4j. concat(int dimension, @NonNull INDArray... toConcat)
Concatenate ndarrays along a dimensionINDArray
NDArrayFactory. concat(int dimension, INDArray... toConcat)
Concatneate ndarrays along a dimensionINDArray
NDArrayFactory. convertDataEx(DataTypeEx typeSrc, INDArray source, DataTypeEx typeDst)
static org.bytedeco.javacpp.Pointer
Nd4j. convertToNumpy(INDArray arr)
Converts anINDArray
to a numpy struct.org.bytedeco.javacpp.Pointer
NDArrayFactory. convertToNumpy(INDArray array)
Convert anINDArray
to a numpy array.INDArray
BaseBlasWrapper. copy(INDArray x, INDArray y)
void
BaseNDArrayFactory. copy(INDArray a, INDArray b)
Copy a to bINDArray
BlasWrapper. copy(INDArray x, INDArray y)
Compute y <- x (copy a matrix)static INDArray
Broadcast. copy(INDArray x, INDArray y, INDArray z, int... dimensions)
Broadcast copy op.static void
Nd4j. copy(INDArray a, INDArray b)
Copy a to bvoid
NDArrayFactory. copy(INDArray a, INDArray b)
Copy a to bstatic INDArray
Nd4j. cumsum(INDArray compute)
Seecumsum(int)
with Integer.MAX_VALUE for full array reduction.static INDArray
Nd4j. cumsum(INDArray compute, int dimension)
Seecumsum(int)
with Integer.MAX_VALUE for full array reduction.static INDArray
Nd4j. diag(INDArray x)
Creates a new matrix where the values of the given vector are the diagonal values of the matrix if a vector is passed in, if a matrix is returns the kth diagonal in the matrixstatic INDArray
Broadcast. div(INDArray x, INDArray y, INDArray z, int... dimensions)
Broadcast divide op.double
BaseBlasWrapper. dot(INDArray x, INDArray y)
double
BlasWrapper. dot(INDArray x, INDArray y)
Compute x^T * y (dot product)static INDArray
Broadcast. eq(INDArray x, INDArray y, INDArray z, int... dimensions)
Broadcast equal to op.static INDArray
Nd4j. expandDims(INDArray input, int dimension)
Expand the array dimensions.int
BaseBlasWrapper. geev(char jobvl, char jobvr, INDArray A, INDArray WR, INDArray WI, INDArray VL, INDArray VR)
int
BlasWrapper. geev(char jobvl, char jobvr, INDArray A, INDArray WR, INDArray WI, INDArray VL, INDArray VR)
void
BaseBlasWrapper. gelsd(INDArray A, INDArray B)
void
BlasWrapper. gelsd(INDArray A, INDArray B)
Generalized Least Squares via *GELSD.static INDArray
Nd4j. gemm(INDArray a, INDArray b, boolean transposeA, boolean transposeB)
matrix multiply: implements op(a)*op(b) where op(x) means transpose x (or not) depending on setting of arguments transposea and transposeb.
so gemm(a,b,false,false) == a.mmul(b), gemm(a,b,true,false) == a.transpose().mmul(b) etc.static INDArray
Nd4j. gemm(INDArray a, INDArray b, INDArray c, boolean transposeA, boolean transposeB, double alpha, double beta)
Matrix multiply: Implements c = alpha*op(a)*op(b) + beta*c where op(X) means transpose X (or not) depending on setting of arguments transposeA and transposeB.
Note that matrix c MUST be fortran order, have zero offset and have c.data().length == c.length().INDArray
BaseBlasWrapper. gemv(double alpha, INDArray a, INDArray x, double beta, INDArray y)
INDArray
BaseBlasWrapper. gemv(float alpha, INDArray a, INDArray x, float beta, INDArray y)
INDArray
BaseBlasWrapper. gemv(Number alpha, INDArray a, INDArray x, double beta, INDArray y)
INDArray
BlasWrapper. gemv(double alpha, INDArray a, INDArray x, double beta, INDArray y)
Deprecated.INDArray
BlasWrapper. gemv(float alpha, INDArray a, INDArray x, float beta, INDArray y)
Deprecated.INDArray
BlasWrapper. gemv(Number alpha, INDArray a, INDArray x, double beta, INDArray y)
************************************************************************ BLAS Level 2void
BaseBlasWrapper. geqrf(INDArray A, INDArray tau)
void
BlasWrapper. geqrf(INDArray A, INDArray tau)
INDArray
BaseBlasWrapper. ger(double alpha, INDArray x, INDArray y, INDArray a)
INDArray
BaseBlasWrapper. ger(float alpha, INDArray x, INDArray y, INDArray a)
INDArray
BaseBlasWrapper. ger(Number alpha, INDArray x, INDArray y, INDArray a)
INDArray
BlasWrapper. ger(double alpha, INDArray x, INDArray y, INDArray a)
Deprecated.INDArray
BlasWrapper. ger(float alpha, INDArray x, INDArray y, INDArray a)
Compute A <- alpha * x * y^T + A (general rank-1 update)INDArray
BlasWrapper. ger(Number alpha, INDArray x, INDArray y, INDArray a)
INDArray
BaseBlasWrapper. gesv(INDArray a, int[] ipiv, INDArray b)
INDArray
BlasWrapper. gesv(INDArray a, int[] ipiv, INDArray b)
************************************************************************ LAPACKstatic INDArray
Broadcast. gt(INDArray x, INDArray y, INDArray z, int... dimensions)
Broadcast greater than op.static INDArray
Broadcast. gte(INDArray x, INDArray y, INDArray z, int... dimensions)
Broadcast greater than or equal to op.INDArray
BaseNDArrayFactory. hstack(@NonNull INDArray... arrs)
Concatenates two matrices horizontally.static INDArray
Nd4j. hstack(@NonNull INDArray... arrs)
Concatenates two matrices horizontally.INDArray
NDArrayFactory. hstack(INDArray... arrs)
Concatenates two matrices horizontally.int
BaseBlasWrapper. iamax(INDArray x)
int
BlasWrapper. iamax(INDArray x)
Compute index of element with largest absolute value (index of absolute value maximum)static boolean
NDValidation. isSameType(INDArray[] x)
static boolean
NDValidation. isSameType(INDArray x, INDArray y)
static INDArray
Broadcast. lt(INDArray x, INDArray y, INDArray z, int... dimensions)
Broadcast less than op.static INDArray
Broadcast. lte(INDArray x, INDArray y, INDArray z, int... dimensions)
Broadcast less than or equal to op.static INDArray
Nd4j. matmul(INDArray a, INDArray b)
Matrix multiplication/dot product SeeNd4j.matmul(INDArray, INDArray, INDArray, boolean, boolean, boolean)
static INDArray
Nd4j. matmul(INDArray a, INDArray b, boolean transposeA, boolean transposeB, boolean transposeResult)
Matrix multiplication/dot product.
SeeNd4j.matmul(INDArray, INDArray, INDArray, boolean, boolean, boolean)
static INDArray
Nd4j. matmul(INDArray a, INDArray b, INDArray result)
Matrix multiplication/dot product.
SeeNd4j.matmul(INDArray, INDArray, INDArray, boolean, boolean, boolean)
static INDArray
Nd4j. matmul(INDArray a, INDArray b, INDArray result, boolean transposeA, boolean transposeB, boolean transposeResult)
Matrix multiplication/dot product Depending on inputs dimensionality output result might be different.static INDArray
Broadcast. max(INDArray x, INDArray y, INDArray z, int... dimensions)
Broadcast max op.static INDArray
Nd4j. max(INDArray compute)
Seemax(int...)
with Integer.MAX_VALUE for full array reduction.static INDArray
Nd4j. max(INDArray compute, int dimension)
Seemax(int...)
with Integer.MAX_VALUE for full array reduction.static INDArray
Nd4j. mean(INDArray compute)
Seemean(int...)
with Integer.MAX_VALUE for full array reduction.static INDArray
Nd4j. mean(INDArray compute, int dimension)
Seemean(int...)
with Integer.MAX_VALUE for full array reduction.static INDArray[]
Nd4j. meshgrid(@NonNull INDArray x, @NonNull INDArray y)
Meshgrid op.static INDArray
Broadcast. min(INDArray x, INDArray y, INDArray z, int... dimensions)
Broadcast min op.static INDArray
Nd4j. min(INDArray compute)
Seemin(int...)
with Integer.MAX_VALUE for full array reduction.static INDArray
Nd4j. min(INDArray compute, int dimension)
Seemin(int...)
with Integer.MAX_VALUE for full array reduction.static INDArray
Broadcast. mul(INDArray x, INDArray y, INDArray z, int... dimensions)
Broadcast element-wise multiply op.static INDArray
Broadcast. neq(INDArray x, INDArray y, INDArray z, int... dimensions)
Broadcast not equal to op.static INDArray
Nd4j. norm1(INDArray compute)
Seenorm1(int...)
with Integer.MAX_VALUE for full array reduction.static INDArray
Nd4j. norm1(INDArray compute, int dimension)
Seenorm1(int...)
with Integer.MAX_VALUE for full array reduction.static INDArray
Nd4j. norm2(INDArray compute)
Seenorm2(int...)
with Integer.MAX_VALUE for full array reduction.static INDArray
Nd4j. norm2(INDArray compute, int dimension)
Seenorm2(int...)
with Integer.MAX_VALUE for full array reduction.static INDArray
Nd4j. normmax(INDArray compute)
Seenormmax(int...)
with Integer.MAX_VALUE for full array reduction.static INDArray
Nd4j. normmax(INDArray compute, int dimension)
Seenormmax(int...)
with Integer.MAX_VALUE for full array reduction.double
BaseBlasWrapper. nrm2(INDArray x)
double
BlasWrapper. nrm2(INDArray x)
Compute || x ||_2 (2-norm)static INDArray
Nd4j. onesLike(INDArray arr)
Ones likevoid
BaseBlasWrapper. ormqr(char side, char trans, INDArray A, INDArray tau, INDArray C)
void
BlasWrapper. ormqr(char side, char trans, INDArray A, INDArray tau, INDArray C)
static INDArray
Nd4j. pad(@NonNull INDArray toPad, @lombok.NonNull int... padWidth)
static INDArray
Nd4j. pad(@NonNull INDArray toPad, @lombok.NonNull int[][] padWidth)
static INDArray
Nd4j. pad(@NonNull INDArray toPad, @lombok.NonNull int[][] padWidth, Pad.Mode padMode, double padValue)
static INDArray
Nd4j. pad(@NonNull INDArray toPad, @lombok.NonNull int[] padWidth, Pad.Mode padMode, double padValue)
SeeNd4j.pad(INDArray, INDArray, Mode, double)
, uses padWidth for all dimensions.static INDArray
Nd4j. pad(@NonNull INDArray toPad, @NonNull INDArray padWidth, Pad.Mode padMode, double padValue)
Pad the given ndarray to the size along each dimension.static INDArray
Nd4j. pad(INDArray toPad, INDArray padding)
SeeNd4j.pad(INDArray, INDArray, Mode, double)
with zero padding (zeros for padValue).static INDArray
Nd4j. pile(@NonNull INDArray... arrays)
This method stacks vertically examples with the same shape, increasing result dimensionality.void
BaseBlasWrapper. posv(char uplo, INDArray A, INDArray B)
void
BlasWrapper. posv(char uplo, INDArray A, INDArray B)
static INDArray
Nd4j. prepend(INDArray arr, int padAmount, double val, int axis)
static INDArray
Nd4j. prod(INDArray compute)
Seeprod(int...)
with Integer.MAX_VALUE for full array reduction.static INDArray
Nd4j. prod(INDArray compute, int dimension)
Seeprod(int...)
with Integer.MAX_VALUE for full array reduction.INDArray
BaseNDArrayFactory. pullRows(INDArray source, int sourceDimension, int[] indexes)
This method produces concatenated array, that consist from tensors, fetched from source array, against some dimension and specified indexesINDArray
BaseNDArrayFactory. pullRows(INDArray source, int sourceDimension, int[] indexes, char order)
This method produces concatenated array, that consist from tensors, fetched from source array, against some dimension and specified indexesstatic INDArray
Nd4j. pullRows(INDArray source, int sourceDimension, @lombok.NonNull int... indexes)
This method produces concatenated array, that consist from tensors, fetched from source array, against some dimension and specified indexesstatic INDArray
Nd4j. pullRows(INDArray source, int sourceDimension, int[] indexes, char order)
This method produces concatenated array, that consist from tensors, fetched from source array, against some dimension and specified indexesstatic INDArray
Nd4j. pullRows(INDArray source, INDArray destination, int sourceDimension, @lombok.NonNull int... indexes)
This method produces concatenated array, that consist from tensors, fetched from source array, against some dimension and specified indexes.INDArray
NDArrayFactory. pullRows(INDArray source, int sourceDimension, int[] indexes)
This method produces concatenated array, that consist from tensors, fetched from source array, against some dimension and specified indexesINDArray
NDArrayFactory. pullRows(INDArray source, int sourceDimension, int[] indexes, char order)
This method produces concatenated array, that consist from tensors, fetched from source array, against some dimension and specified indexesINDArray
NDArrayFactory. pullRows(INDArray source, int sourceDimension, long[] indexes)
INDArray
NDArrayFactory. pullRows(INDArray source, INDArray destination, int sourceDimension, int[] indexes)
* This method produces concatenated array, that consist from tensors, fetched from source array, against some dimension and specified indexes in to the destination arraystatic INDArray
Nd4j. rand(INDArray target)
Fill the given ndarray with random numbers drawn from a uniform distributionstatic INDArray
Nd4j. rand(INDArray target, double min, double max, Random rng)
Fill the given ndarray with random numbers drawn from a uniform distribution using the given RandomGeneratorstatic INDArray
Nd4j. rand(INDArray target, long seed)
Fill the given ndarray with random numbers drawn from a uniform distributionstatic INDArray
Nd4j. rand(INDArray target, @NonNull Distribution dist)
Fill the given ndarray with random numbers drawn from the given distributionstatic INDArray
Nd4j. rand(INDArray target, Random rng)
Fill the given ndarray with random numbers drawn from a uniform distribution using the given RandomGeneratorstatic INDArray
Nd4j. randn(double mean, double stddev, INDArray target, Random rng)
static INDArray
Nd4j. randn(INDArray target)
Fill the given ndarray with random numbers drawn from a normal distributionstatic INDArray
Nd4j. randn(INDArray target, long seed)
Fill the given ndarray with random numbers drawn from a normal distributionstatic INDArray
Nd4j. randn(INDArray target, Random rng)
Fill the given ndarray with random numbers drawn from a normal distribution utilizing the given random generatorstatic INDArray
Nd4j. randomBernoulli(double p, @NonNull INDArray target)
Fill the specified array with values generated according to a binomial distribution with probability p: i.e., values 0 with probability (1-p) or value 1 with probability pstatic INDArray
Nd4j. randomBinomial(int nTrials, double p, INDArray target)
Fill the target array with random values generated according to a binomial distribution with the specified number of trials and probabilitystatic INDArray
Nd4j. randomExponential(double lambda, INDArray target)
Exponential distribution: P(x) = lambda * exp(-lambda * x)static INDArray
Broadcast. rdiv(INDArray x, INDArray y, INDArray z, int... dimensions)
Broadcast reverse division op.static INDArray
Nd4j. repeat(INDArray n, int num)
Create an n x (shape) ndarray where the ndarray is repeated num timesINDArray
BaseNDArrayFactory. reverse(INDArray reverse)
Reverses the passed in matrix such that m[0] becomes m[m.length - 1] etcstatic INDArray
Nd4j. reverse(INDArray reverse)
Reverses the passed in matrix such that m[0] becomes m[m.length - 1] etcINDArray
NDArrayFactory. reverse(INDArray reverse)
Reverses the passed in matrix such that m[0] becomes m[m.length - 1] etcstatic INDArray
Nd4j. rollAxis(INDArray a, int axis)
Roll the specified axis backwards, until it lies in a given position.static INDArray
Nd4j. rollAxis(INDArray a, int axis, int start)
Roll the specified axis backwards, until it lies in a given position.INDArray
BaseNDArrayFactory. rot(INDArray reverse)
Reverses the passed in matrix such that m[0] becomes m[m.length - 1] etcINDArray
NDArrayFactory. rot(INDArray reverse)
Reverses the passed in matrix such that m[0] becomes m[m.length - 1] etcvoid
BaseNDArrayFactory. rot90(INDArray toRotate)
Rotate a matrix 90 degreesstatic void
Nd4j. rot90(INDArray toRotate)
Rotate a matrix 90 degreesvoid
NDArrayFactory. rot90(INDArray toRotate)
Rotate a matrix 90 degreesstatic INDArray
Broadcast. rsub(INDArray x, INDArray y, INDArray z, int... dimensions)
Broadcast reverse subtraction op.static void
Nd4j. saveBinary(INDArray arr, File saveTo)
Save an ndarray to the given filevoid
BaseBlasWrapper. saxpy(double alpha, INDArray x, INDArray y)
void
BaseBlasWrapper. saxpy(float alpha, INDArray x, INDArray y)
void
BlasWrapper. saxpy(double alpha, INDArray x, INDArray y)
Deprecated.void
BlasWrapper. saxpy(float alpha, INDArray x, INDArray y)
Deprecated.INDArray
BaseBlasWrapper. scal(double alpha, INDArray x)
INDArray
BaseBlasWrapper. scal(float alpha, INDArray x)
INDArray
BlasWrapper. scal(double alpha, INDArray x)
Deprecated.INDArray
BlasWrapper. scal(float alpha, INDArray x)
Deprecated.static void
Nd4j. scatterUpdate(ScatterUpdate.UpdateOp op, @NonNull INDArray array, @NonNull INDArray indices, @NonNull INDArray updates, int... axis)
Deprecated.static long[]
Nd4j. shape(INDArray arr)
Returns the shape of the ndarraystatic void
Nd4j. shuffle(INDArray toShuffle, @lombok.NonNull int... dimension)
In place shuffle of an ndarray along a specified set of dimensionsstatic void
Nd4j. shuffle(INDArray toShuffle, Random random, @lombok.NonNull int... dimension)
In place shuffle of an ndarray along a specified set of dimensionsvoid
NDArrayFactory. shuffle(INDArray array, Random rnd, int... dimension)
In place shuffle of an ndarray along a specified set of dimensionsstatic INDArray
Nd4j. sort(INDArray ndarray, boolean ascending)
Sort all elements of an array.static INDArray
Nd4j. sort(INDArray ndarray, int dimension, boolean ascending)
Sort an ndarray along a particular dimension
Note that the input array is modified in-place.INDArray
NDArrayFactory. sort(INDArray x, boolean descending)
INDArray
NDArrayFactory. sort(INDArray x, boolean descending, int... dimensions)
static INDArray
Nd4j. sortColumns(INDArray in, int rowIdx, boolean ascending)
Sort (shuffle) the columns of a 2d array according to the value at a specified row.INDArray
NDArrayFactory. sortCooIndices(INDArray x)
static INDArray
Nd4j. sortRows(INDArray in, int colIdx, boolean ascending)
Sort (shuffle) the rows of a 2d array according to the value at a specified column.static INDArray[]
Nd4j. sortWithIndices(INDArray ndarray, int dimension, boolean ascending)
Sort an ndarray along a particular dimension.
Note that the input array is modified in-place.static INDArray
Nd4j. specialConcat(int dimension, @NonNull INDArray... toConcat)
Concatenate ndarrays along a dimension PLEASE NOTE: This method is special for GPU backend, it works on HOST side only.INDArray
NDArrayFactory. specialConcat(int dimension, INDArray... toConcat)
Concatenate ndarrays along a dimension PLEASE NOTE: This method is special for GPU backend, it works on HOST side only.static INDArray
Nd4j. squeeze(INDArray input, int dimension)
Squeeze : removes a dimension of size 1static INDArray
Nd4j. stack(int axis, @NonNull INDArray... values)
Stack a set of N SDVariables of rank X into one rank X+1 variable.static INDArray
Nd4j. std(INDArray compute)
Seestd(int...)
with Integer.MAX_VALUE for full array reduction.static INDArray
Nd4j. std(INDArray compute, int dimension)
Seestd(int...)
with Integer.MAX_VALUE for full array reduction.static INDArray
Nd4j. stripOnes(INDArray toStrip)
Reshapes an ndarray to remove leading 1sstatic INDArray
Broadcast. sub(INDArray x, INDArray y, INDArray z, int... dimensions)
Broadcast subtraction op.static INDArray
Nd4j. sum(INDArray compute)
Seesum(int...)
with Integer.MAX_VALUE for full array reduction.static INDArray
Nd4j. sum(INDArray compute, int dimension)
Seesum(int...)
with Integer.MAX_VALUE for full array reduction.INDArray
BaseBlasWrapper. swap(INDArray x, INDArray y)
INDArray
BlasWrapper. swap(INDArray x, INDArray y)
Compute x <-> y (swap two matrices)int
BaseBlasWrapper. syev(char jobz, char uplo, INDArray a, INDArray w)
int
BlasWrapper. syev(char jobz, char uplo, INDArray a, INDArray w)
int
BaseBlasWrapper. syevd(char jobz, char uplo, INDArray A, INDArray w)
int
BlasWrapper. syevd(char jobz, char uplo, INDArray A, INDArray w)
int
BaseBlasWrapper. syevr(char jobz, char range, char uplo, INDArray a, double vl, double vu, int il, int iu, double abstol, INDArray w, INDArray z, int[] isuppz)
int
BaseBlasWrapper. syevr(char jobz, char range, char uplo, INDArray a, float vl, float vu, int il, int iu, float abstol, INDArray w, INDArray z, int[] isuppz)
int
BaseBlasWrapper. syevr(char jobz, char range, char uplo, INDArray a, float vl, float vu, int il, int iu, Number abstol, INDArray w, INDArray z, int[] isuppz)
int
BlasWrapper. syevr(char jobz, char range, char uplo, INDArray a, double vl, double vu, int il, int iu, double abstol, INDArray w, INDArray z, int[] isuppz)
Deprecated.int
BlasWrapper. syevr(char jobz, char range, char uplo, INDArray a, float vl, float vu, int il, int iu, float abstol, INDArray w, INDArray z, int[] isuppz)
Deprecated.int
BlasWrapper. syevr(char jobz, char range, char uplo, INDArray a, float vl, float vu, int il, int iu, Number abstol, INDArray w, INDArray z, int[] isuppz)
int
BaseBlasWrapper. syevx(char jobz, char range, char uplo, INDArray a, double vl, double vu, int il, int iu, double abstol, INDArray w, INDArray z)
int
BaseBlasWrapper. syevx(char jobz, char range, char uplo, INDArray a, float vl, float vu, int il, int iu, float abstol, INDArray w, INDArray z)
int
BlasWrapper. syevx(char jobz, char range, char uplo, INDArray a, double vl, double vu, int il, int iu, double abstol, INDArray w, INDArray z)
int
BlasWrapper. syevx(char jobz, char range, char uplo, INDArray a, float vl, float vu, int il, int iu, float abstol, INDArray w, INDArray z)
int
BaseBlasWrapper. sygvd(int itype, char jobz, char uplo, INDArray A, INDArray B, INDArray W)
int
BlasWrapper. sygvd(int itype, char jobz, char uplo, INDArray A, INDArray B, INDArray W)
INDArray
BaseBlasWrapper. sysv(char uplo, INDArray a, int[] ipiv, INDArray b)
INDArray
BlasWrapper. sysv(char uplo, INDArray a, int[] ipiv, INDArray b)
static INDArray[]
Nd4j. tear(INDArray tensor, @lombok.NonNull int... dimensions)
This method does the opposite to pile/vstack/hstack - it returns independent TAD copies along given dimensionsINDArray[]
NDArrayFactory. tear(INDArray tensor, int... dimensions)
static INDArray
Nd4j. tensorMmul(INDArray a, INDArray b, int[][] axes)
Tensor matrix multiplication.static INDArray
Nd4j. tensorMmul(INDArray a, INDArray b, INDArray result, int[][] axes)
Tensor matrix multiplication.static INDArray
Nd4j. tile(INDArray tile, @lombok.NonNull int... repeat)
An alias for repmatstatic byte[]
Nd4j. toByteArray(@NonNull INDArray arr)
Convert an ndarray to a byte arrayINDArray
BaseNDArrayFactory. toFlattened(char order, INDArray... matrices)
INDArray
BaseNDArrayFactory. toFlattened(INDArray... matrices)
static INDArray
Nd4j. toFlattened(char order, @NonNull INDArray... matrices)
Create a long row vector of all of the given ndarrays/static INDArray
Nd4j. toFlattened(@NonNull INDArray... matrices)
Create a long row vector of all of the given ndarraysINDArray
NDArrayFactory. toFlattened(char order, INDArray... matrices)
Flatten all of the ndarrays in to one long vectorINDArray
NDArrayFactory. toFlattened(INDArray... matrices)
Flatten all of the ndarrays in to one long vectorstatic byte[]
Nd4j. toNpyByteArray(INDArray input)
Converts anINDArray
to a byte arraystatic INDArray
Nd4j. triu(INDArray m, int k)
Upper triangle of an array.static void
NDValidation. validateBool(String opName, String inputName, INDArray v)
Validate that the operation is being applied on a boolean type INDArraystatic void
NDValidation. validateBool(String opName, INDArray v)
Validate that the operation is being applied on a boolean type INDArraystatic void
NDValidation. validateBool(String opName, INDArray v1, INDArray v2)
Validate that the operation is being applied on boolean INDArraysstatic void
Broadcast. validateBroadcastDims(INDArray x, INDArray y, INDArray z, int... dimensions)
Validate the broadcast dimensions for manual broadcast ops such asBroadcastMulOp
.static void
NDValidation. validateFloatingPoint(String opName, String inputName, INDArray v)
Validate that the operation is being applied on a floating point type INDArraystatic void
NDValidation. validateFloatingPoint(String opName, INDArray v)
Validate that the operation is being applied on an floating point type INDArraystatic void
NDValidation. validateInteger(String opName, String inputName, INDArray v)
Validate that the operation is being applied on an integer type INDArraystatic void
NDValidation. validateInteger(String opName, String inputName, INDArray[] v)
Validate that the operation is being applied on an integer type INDArray []static void
NDValidation. validateInteger(String opName, INDArray v)
Validate that the operation is being applied on an integer type INDArraystatic void
NDValidation. validateNumerical(String opName, String inputName, INDArray v)
Validate that the operation is being applied on a numerical INDArray (not boolean or utf8).static void
NDValidation. validateNumerical(String opName, String inputName, INDArray[] v)
Validate that the operation is being applied on numerical INDArrays (not boolean or utf8).static void
NDValidation. validateNumerical(String opName, INDArray v)
Validate that the operation is being applied on a numerical INDArray (not boolean or utf8).static void
NDValidation. validateNumerical(String opName, INDArray[] v)
Validate that the operation is being applied on numerical INDArrays (not boolean or utf8).static void
NDValidation. validateNumerical(String opName, INDArray v1, INDArray v2)
Validate that the operation is being applied on numerical INDArrays (not boolean or utf8).static void
NDValidation. validateSameType(String opName, boolean numericalOnly, INDArray... vars)
Validate that the operation is being applied on array with the exact same datatypes (which may optionally be restricted to numerical INDArrays only (not boolean or utf8))static void
Broadcast. validateShapesNoDimCase(INDArray x, INDArray y, INDArray z)
static INDArray
Nd4j. var(INDArray compute)
Seevar(int...)
with Integer.MAX_VALUE for full array reduction.static INDArray
Nd4j. var(INDArray compute, int dimension)
Seevar(int...)
with Integer.MAX_VALUE for full array reduction.INDArray
BaseNDArrayFactory. vstack(INDArray... arrs)
Concatenates two matrices vertically.static INDArray
Nd4j. vstack(@NonNull INDArray... arrs)
Concatenates two matrices vertically.INDArray
NDArrayFactory. vstack(INDArray... arrs)
Concatenates two matrices vertically.static INDArray[]
Nd4j. where(INDArray condition, INDArray x, INDArray y)
Similar to numpy.where operation.static void
Nd4j. write(OutputStream writer, INDArray write)
Y Write an ndarray to a writerstatic void
Nd4j. write(INDArray arr, DataOutputStream dataOutputStream)
Write an ndarray to the specified outputstreamstatic void
Nd4j. writeAsNumpy(INDArray arr, File file)
static void
Nd4j. writeAsNumpy(INDArray arr, OutputStream writeTo)
Writes an array to an output streamstatic void
Nd4j. writeTxt(INDArray write, String filePath)
Write NDArray to a text filestatic void
Nd4j. writeTxt(INDArray write, String filePath, int precision)
Deprecated.Defaults to scientific notation with 18 digits after the decimal UseNd4j.writeTxt(INDArray, String)
static void
Nd4j. writeTxt(INDArray write, String filePath, String split)
Deprecated.custom col and higher dimension separators are no longer supported; uses "," UseNd4j.writeTxt(INDArray, String)
static void
Nd4j. writeTxt(INDArray write, String filePath, String split, int precision)
Deprecated.Precision is no longer used.static INDArray
Nd4j. zerosLike(INDArray arr)
Empty likeMethod parameters in org.nd4j.linalg.factory with type arguments of type INDArray Modifier and Type Method Description static INDArray
Nd4j. accumulate(INDArray target, Collection<INDArray> arrays)
This method sums given arrays and stores them to a given target arrayINDArray
NDArrayFactory. average(Collection<INDArray> arrays)
This method averages input arrays, and returns averaged arrayINDArray
NDArrayFactory. average(INDArray target, Collection<INDArray> arrays)
This method averages input arrays, and returns averaged arraystatic INDArray
Nd4j. averageAndPropagate(Collection<INDArray> arrays)
This method averages input arrays, and returns averaged array.static INDArray
Nd4j. averageAndPropagate(INDArray target, Collection<INDArray> arrays)
This method averages input arrays, and returns averaged array.abstract INDArray
BaseNDArrayFactory. create(List<INDArray> list, int[] shape)
Creates an ndarray with the specified shapestatic INDArray
Nd4j. create(List<INDArray> list, int... shape)
Creates an array with the specified shape from a list of arrays.static INDArray
Nd4j. create(List<INDArray> list, long... shape)
INDArray
NDArrayFactory. create(List<INDArray> list, int[] shape)
Creates an ndarray with the specified shapeINDArray
NDArrayFactory. create(List<INDArray> list, int[] shape, char ordering)
INDArray
NDArrayFactory. create(List<INDArray> list, long[] shape)
INDArray
NDArrayFactory. create(List<INDArray> list, long[] shape, char ordering)
static INDArray
Nd4j. hstack(Collection<INDArray> arrs)
Concatenates two matrices horizontally.static INDArray
Nd4j. pile(@NonNull Collection<INDArray> arrays)
This method stacks vertically examples with the same shape, increasing result dimensionality.static void
Nd4j. shuffle(Collection<INDArray> toShuffle, @lombok.NonNull int... dimension)
Symmetric in place shuffle of an ndarray along a specified set of dimensionsstatic void
Nd4j. shuffle(Collection<INDArray> toShuffle, Random rnd, @lombok.NonNull int... dimension)
Symmetric in place shuffle of an ndarray along a specified set of dimensionsstatic void
Nd4j. shuffle(List<INDArray> toShuffle, Random rnd, List<int[]> dimensions)
Symmetric in place shuffle of an ndarray along a variable dimensionsvoid
NDArrayFactory. shuffle(Collection<INDArray> array, Random rnd, int... dimension)
Symmetric in place shuffle of an ndarray along a specified set of dimensions.void
NDArrayFactory. shuffle(List<INDArray> array, Random rnd, List<int[]> dimensions)
Symmetric in place shuffle of an ndarray along a specified set of dimensions.INDArray
BaseNDArrayFactory. toFlattened(Collection<INDArray> matrices)
Returns a vector with all of the elements in every nd array equal to the sum of the lengths of the ndarraysstatic INDArray
Nd4j. toFlattened(char order, Collection<INDArray> matrices)
Create a long row vector of all of the given ndarraysstatic INDArray
Nd4j. toFlattened(Collection<INDArray> matrices)
Create a long row vector of all of the given ndarraysINDArray
NDArrayFactory. toFlattened(char order, Collection<INDArray> matrices)
Returns a flattened ndarray with all elements in each ndarray regardless of dimension.INDArray
NDArrayFactory. toFlattened(Collection<INDArray> matrices)
/** Returns a flattened ndarray with all of the elements in each ndarray regardless of dimensionstatic INDArray
Nd4j. vstack(Collection<INDArray> arrs)
Concatenates two matrices vertically. -
Uses of INDArray in org.nd4j.linalg.factory.ops
Methods in org.nd4j.linalg.factory.ops that return INDArray Modifier and Type Method Description INDArray
NDMath. abs(INDArray x)
Elementwise absolute value operation: out = abs(x)INDArray
NDLoss. absoluteDifference(INDArray label, INDArray predictions, INDArray weights)
Absolute difference loss:sum_i abs( label[i] - predictions[i] )
INDArray
NDLoss. absoluteDifference(INDArray label, INDArray predictions, INDArray weights, LossReduce lossReduce)
Absolute difference loss:sum_i abs( label[i] - predictions[i] )
INDArray
NDMath. acos(INDArray x)
Elementwise acos (arccosine, inverse cosine) operation: out = arccos(x)INDArray
NDMath. acosh(INDArray x)
Elementwise acosh (inverse hyperbolic cosine) function: out = acosh(x)INDArray
NDMath. add(INDArray x, double value)
Scalar add operation, out = in + scalarINDArray
NDMath. add(INDArray x, INDArray y)
Pairwise addition operation, out = x + y
Note: supports broadcasting if x and y have different shapes and are broadcastable.
For example, if X has shape [1,10] and Y has shape [5,10] then op(X,Y) has output shape [5,10]
Broadcast rules are the same as NumPy: https://docs.scipy.org/doc/numpy/user/basics.broadcasting.htmlINDArray
NDImage. adjustContrast(INDArray in, double factor)
Adjusts contrast of RGB or grayscale images.INDArray
NDImage. adjustHue(INDArray in, double delta)
Adjust hue of RGB imageINDArray
NDImage. adjustSaturation(INDArray in, double factor)
Adjust saturation of RGB imagesINDArray
NDBase. all(INDArray x, int... dimensions)
Boolean and array reduction operation, optionally along specified dimensionsINDArray
NDBitwise. and(INDArray x, INDArray y)
Bitwise AND operation.INDArray
NDMath. and(INDArray x, INDArray y)
Boolean AND operation: elementwise (x != 0) && (y != 0)
If x and y arrays have equal shape, the output shape is the same as these inputs.
Note: supports broadcasting if x and y have different shapes and are broadcastable.
Returns an array with values 1 where condition is satisfied, or value 0 otherwise.INDArray
NDBase. any(INDArray x, int... dimensions)
Boolean or array reduction operation, optionally along specified dimensionsINDArray
NDBase. argmax(INDArray in, boolean keepDims, int... dimensions)
Argmax array reduction operation, optionally along specified dimensions.
Output values are the index of the maximum value of each slice along the specified dimension.
Note that if keepDims = true, the output variable has the same rank as the input variable,
with the reduced dimensions having size 1.INDArray
NDBase. argmax(INDArray in, int... dimensions)
Argmax array reduction operation, optionally along specified dimensions.
Output values are the index of the maximum value of each slice along the specified dimension.
Note that if keepDims = true, the output variable has the same rank as the input variable,
with the reduced dimensions having size 1.INDArray
NDBase. argmin(INDArray in, boolean keepDims, int... dimensions)
Argmin array reduction operation, optionally along specified dimensions.
Output values are the index of the minimum value of each slice along the specified dimension.
Note that if keepDims = true, the output variable has the same rank as the input variable,
with the reduced dimensions having size 1.INDArray
NDBase. argmin(INDArray in, int... dimensions)
Argmin array reduction operation, optionally along specified dimensions.
Output values are the index of the minimum value of each slice along the specified dimension.
Note that if keepDims = true, the output variable has the same rank as the input variable,
with the reduced dimensions having size 1.INDArray
NDMath. asin(INDArray x)
Elementwise asin (arcsin, inverse sine) operation: out = arcsin(x)INDArray
NDMath. asinh(INDArray x)
Elementwise asinh (inverse hyperbolic sine) function: out = asinh(x)INDArray
NDBase. assign(INDArray x, INDArray y)
Assign the contents of y to x.
Y must be broadcastable to x or the same shape.INDArray
NDMath. asum(INDArray in, boolean keepDims, int... dimensions)
Absolute sum array reduction operation, optionally along specified dimensions: out = sum(abs(x))INDArray
NDMath. asum(INDArray in, int... dimensions)
Absolute sum array reduction operation, optionally along specified dimensions: out = sum(abs(x))INDArray
NDMath. atan(INDArray x)
Elementwise atan (arctangent, inverse tangent) operation: out = arctangent(x)INDArray
NDMath. atan2(INDArray y, INDArray x)
Elementwise atan (arctangent, inverse tangent) operation: out = atan2(x,y).
Similar to atan(y/x) but sigts of x and y are used to determine the location of the resultINDArray
NDMath. atanh(INDArray x)
Elementwise atanh (inverse hyperbolic tangent) function: out = atanh(x)INDArray
NDCNN. avgPooling2d(INDArray input, Pooling2DConfig Pooling2DConfig)
2D Convolution layer operation - average pooling 2dINDArray
NDCNN. avgPooling3d(INDArray input, Pooling3DConfig Pooling3DConfig)
3D convolution layer operation - average pooling 3dINDArray[]
NDBase. batchMmul(INDArray[] inputsA, INDArray... inputsB)
Matrix multiply a batch of matrices.INDArray[]
NDBase. batchMmul(INDArray[] inputsA, INDArray[] inputsB, boolean transposeA, boolean transposeB)
Matrix multiply a batch of matrices.INDArray
NDNN. batchNorm(INDArray input, INDArray mean, INDArray variance, INDArray gamma, INDArray beta, double epsilon, int... axis)
INDArray
NDCNN. batchToSpace(INDArray x, int[] blocks, int[] croppingTop, int... croppingBottom)
Convolution 2d layer batch to space operation on 4d input.
Reduces input batch dimension by rearranging data into a larger spatial dimensionsINDArray
NDRandom. bernoulli(double p, DataType datatype, long... shape)
Generate a new random INDArray, where values are randomly sampled according to a Bernoulli distribution,
with the specified probability.INDArray
NDNN. biasAdd(INDArray input, INDArray bias, boolean nchw)
Bias addition operation: a special case of addition, typically used with CNN 4D activations and a 1D bias vectorINDArray
NDRandom. binomial(int nTrials, double p, DataType datatype, long... shape)
Generate a new random INDArray, where values are randomly sampled according to a Binomial distribution,
with the specified number of trials and probability.INDArray
NDBitwise. bitRotl(INDArray x, INDArray shift)
Roll integer bits to the left, i.e.INDArray
NDBitwise. bitRotr(INDArray x, INDArray shift)
Roll integer bits to the right, i.e.INDArray
NDBitwise. bitsHammingDistance(INDArray x, INDArray y)
Bitwise Hamming distance reduction over all elements of both input arrays.
For example, if x=01100000 and y=1010000 then the bitwise Hamming distance is 2 (due to differences at positions 0 and 1)
Inputs must satisfy the following constraints:
Must be same types: isSameType(x, y)INDArray
NDBitwise. bitShift(INDArray x, INDArray shift)
Shift integer bits to the left, i.e.INDArray
NDMath. bitShift(INDArray x, INDArray shift)
Bit shift operationINDArray
NDBitwise. bitShiftRight(INDArray x, INDArray shift)
Shift integer bits to the right, i.e.INDArray
NDMath. bitShiftRight(INDArray x, INDArray shift)
Right bit shift operationINDArray
NDMath. bitShiftRotl(INDArray x, INDArray shift)
Cyclic bit shift operationINDArray
NDMath. bitShiftRotr(INDArray x, INDArray shift)
Cyclic right shift operationINDArray
NDBase. castTo(INDArray arg, DataType datatype)
Cast the array to a new datatype - for example, Integer -> FloatINDArray
NDMath. ceil(INDArray x)
Element-wise ceiling function: out = ceil(x).
Rounds each value up to the nearest integer value (if not already an integer)INDArray
NDLinalg. cholesky(INDArray input)
Computes the Cholesky decomposition of one or more square matrices.INDArray
NDMath. clipByAvgNorm(INDArray x, double clipValue, int... dimensions)
Clips tensor values to a maximum average L2-norm.INDArray
NDBase. clipByNorm(INDArray x, double clipValue)
Returns a clipped ndarray such that the input is normalized so that its L2 norm
is <= the specified value.INDArray
NDBase. clipByNorm(INDArray x, INDArray clipValue, INDArray dimensions)
Returns a clipped ndarray such that the input is normalized so that its L2 norm
is <= the specified value.INDArray
NDMath. clipByNorm(INDArray x, double clipValue, int... dimensions)
Clipping by L2 norm, optionally along dimension(s)
if l2Norm(x,dimension) < clipValue, then input is returned unmodifed
Otherwise, out[i] = in[i] * clipValue / l2Norm(in, dimensions) where each value is clipped according
to the corresponding l2Norm along the specified dimensionsINDArray
NDBase. clipByValue(INDArray x, double clipValueMin, double clipValueMax)
Return the clipped ndarray containing values no smaller or larger than the given min and max.INDArray
NDBase. clipByValue(INDArray x, INDArray clipValueMin, INDArray clipValueMax)
Return the clipped ndarray containing values no smaller or larger than the given min and max.INDArray
NDMath. clipByValue(INDArray x, double clipValueMin, double clipValueMax)
Element-wise clipping function:
out[i] = in[i] if in[i] >= clipValueMin and in[i] <= clipValueMax
out[i] = clipValueMin if in[i] < clipValueMin
out[i] = clipValueMax if in[i] > clipValueMaxINDArray
NDCNN. col2Im(INDArray in, Conv2DConfig Conv2DConfig)
col2im operation for use in 2D convolution operations.INDArray
NDBase. concat(int dimension, INDArray... inputs)
Concatenate a set of inputs along the specified dimension.
Note that inputs must have identical rank and identical dimensions, other than the dimension to stack on.
For example, if 2 inputs have shape [a, x, c] and [a, y, c] and dimension = 1, then the output has shape [a, x+y, c]
Inputs must satisfy the following constraints:
Input arrays must all be the same datatype: isSameType(inputs)INDArray
NDMath. confusionMatrix(INDArray labels, INDArray pred, int numClasses)
Compute the 2d confusion matrix of size [numClasses, numClasses] from a pair of labels and predictions, both of
which are represented as integer values.
For example, if labels = [0, 1, 1], predicted = [0, 2, 1], and numClasses=4 then output is:
[1, 0, 0, 0]
[0, 1, 1, 0]
[0, 0, 0, 0]
[0, 0, 0, 0]INDArray
NDMath. confusionMatrix(INDArray labels, INDArray pred, DataType dataType)
Compute the 2d confusion matrix of size [numClasses, numClasses] from a pair of labels and predictions, both of
which are represented as integer values.INDArray
NDMath. confusionMatrix(INDArray labels, INDArray pred, INDArray weights)
Compute the 2d confusion matrix of size [numClasses, numClasses] from a pair of labels and predictions, both of
which are represented as integer values.INDArray
NDMath. confusionMatrix(INDArray labels, INDArray pred, INDArray weights, int numClasses)
Compute the 2d confusion matrix of size [numClasses, numClasses] from a pair of labels and predictions, both of
which are represented as integer values.
For example, if labels = [0, 1, 1], predicted = [0, 2, 1], numClasses = 4, and weights = [1, 2, 3]
[1, 0, 0, 0]
[0, 3, 2, 0]
[0, 0, 0, 0]
[0, 0, 0, 0]INDArray
NDCNN. conv1d(INDArray input, INDArray weights, INDArray bias, Conv1DConfig Conv1DConfig)
Conv1d operation.INDArray
NDCNN. conv1d(INDArray input, INDArray weights, Conv1DConfig Conv1DConfig)
Conv1d operation.INDArray
NDCNN. conv2d(INDArray layerInput, INDArray weights, INDArray bias, Conv2DConfig Conv2DConfig)
2D Convolution operation with optional biasINDArray
NDCNN. conv2d(INDArray layerInput, INDArray weights, Conv2DConfig Conv2DConfig)
2D Convolution operation with optional biasINDArray
NDCNN. conv3d(INDArray input, INDArray weights, INDArray bias, Conv3DConfig Conv3DConfig)
Convolution 3D operation with optional biasINDArray
NDCNN. conv3d(INDArray input, INDArray weights, Conv3DConfig Conv3DConfig)
Convolution 3D operation with optional biasINDArray
NDMath. cos(INDArray x)
Elementwise cosine operation: out = cos(x)INDArray
NDMath. cosh(INDArray x)
Elementwise cosh (hyperbolic cosine) operation: out = cosh(x)INDArray
NDLoss. cosineDistance(INDArray label, INDArray predictions, INDArray weights, int dimension)
Cosine distance loss:1 - cosineSimilarity(x,y)
or1 - sum_i label[i] * prediction[i]
, which is
equivalent to cosine distance when both the predictions and labels are normalized.
Note: This loss function assumes that both the predictions and labels are normalized to have unit l2 norm.
If this is not the case, you should normalize them first by dividing by norm2(String, SDVariable, boolean, int...)
along the cosine distance dimension (with keepDims=true).INDArray
NDLoss. cosineDistance(INDArray label, INDArray predictions, INDArray weights, LossReduce lossReduce, int dimension)
Cosine distance loss:1 - cosineSimilarity(x,y)
or1 - sum_i label[i] * prediction[i]
, which is
equivalent to cosine distance when both the predictions and labels are normalized.
Note: This loss function assumes that both the predictions and labels are normalized to have unit l2 norm.
If this is not the case, you should normalize them first by dividing by norm2(String, SDVariable, boolean, int...)
along the cosine distance dimension (with keepDims=true).INDArray
NDMath. cosineDistance(INDArray x, INDArray y, boolean keepDims, boolean isComplex, int... dimensions)
Cosine distance reduction operation.INDArray
NDMath. cosineDistance(INDArray x, INDArray y, int... dimensions)
Cosine distance reduction operation.INDArray
NDMath. cosineSimilarity(INDArray x, INDArray y, boolean keepDims, boolean isComplex, int... dimensions)
Cosine similarity pairwise reduction operation.INDArray
NDMath. cosineSimilarity(INDArray x, INDArray y, int... dimensions)
Cosine similarity pairwise reduction operation.INDArray
NDMath. countNonZero(INDArray in, boolean keepDims, int... dimensions)
Count non zero array reduction operation, optionally along specified dimensions: out = count(x != 0)INDArray
NDMath. countNonZero(INDArray in, int... dimensions)
Count non zero array reduction operation, optionally along specified dimensions: out = count(x != 0)INDArray
NDMath. countZero(INDArray in, boolean keepDims, int... dimensions)
Count zero array reduction operation, optionally along specified dimensions: out = count(x == 0)INDArray
NDMath. countZero(INDArray in, int... dimensions)
Count zero array reduction operation, optionally along specified dimensions: out = count(x == 0)INDArray
NDBase. create(INDArray shape, DataType dataType)
Return a newly created variable, with the specified shape and data type.INDArray
NDBase. create(INDArray shape, DataType dataType, String order, boolean initialize)
Return a newly created variable, with the specified shape and data type.INDArray
NDBase. createView(INDArray input, INDArray... indices)
Return a newly created variable, with the specified shape and data type.INDArray
NDNN. cReLU(INDArray x)
Concatenates a ReLU which selects only the positive part of the activation with a ReLU which selects only the negative part of the activation.INDArray
NDImage. cropAndResize(INDArray image, INDArray cropBoxes, INDArray boxIndices, INDArray cropOutSize)
Given an input image and some crop boxes, extract out the image subsets and resize them to the specified size.INDArray
NDImage. cropAndResize(INDArray image, INDArray cropBoxes, INDArray boxIndices, INDArray cropOutSize, double extrapolationValue)
Given an input image and some crop boxes, extract out the image subsets and resize them to the specified size.INDArray
NDLinalg. cross(INDArray a, INDArray b)
Computes pairwise cross product.INDArray
NDMath. cross(INDArray a, INDArray b)
Returns the pair-wise cross product of equal size arrays a and b: a x b = ||a||x||b|| sin(theta).
Can take rank 1 or above inputs (of equal shapes), but note that the last dimension must have dimension 3INDArray
NDLoss. ctcLoss(INDArray targetLabels, INDArray logitInput, INDArray targetLabelLengths, INDArray logitInputLengths)
CTC Loss: Connectionist Temporal Classification Loss.INDArray
NDMath. cube(INDArray x)
Element-wise cube function: out = x^3INDArray
NDBase. cumprod(INDArray in, boolean exclusive, boolean reverse, int... axis)
Cumulative product operation.
For input: [ a, b, c], output is:
exclusive=false, reverse=false: [a, a*b, a*b*c]
exclusive=true, reverse=false, [0, a, a*b]
exclusive=false, reverse=true: [a*b*c, b*c, c]
exclusive=true, reverse=true: [b*c, c, 0]INDArray
NDBase. cumprod(INDArray in, int... axis)
Cumulative product operation.
For input: [ a, b, c], output is:
exclusive=false, reverse=false: [a, a*b, a*b*c]
exclusive=true, reverse=false, [0, a, a*b]
exclusive=false, reverse=true: [a*b*c, b*c, c]
exclusive=true, reverse=true: [b*c, c, 0]INDArray
NDBase. cumsum(INDArray in, boolean exclusive, boolean reverse, int... axis)
Cumulative sum operation.
For input: [ a, b, c], output is:
exclusive=false, reverse=false: [a, a+b, a+b+c]
exclusive=true, reverse=false, [0, a, a+b]
exclusive=false, reverse=true: [a+b+c, b+c, c]
exclusive=true, reverse=true: [b+c, c, 0]INDArray
NDBase. cumsum(INDArray in, int... axis)
Cumulative sum operation.
For input: [ a, b, c], output is:
exclusive=false, reverse=false: [a, a+b, a+b+c]
exclusive=true, reverse=false, [0, a, a+b]
exclusive=false, reverse=true: [a+b+c, b+c, c]
exclusive=true, reverse=true: [b+c, c, 0]INDArray
NDCNN. deconv2d(INDArray layerInput, INDArray weights, INDArray bias, DeConv2DConfig DeConv2DConfig)
2D deconvolution operation with optional biasINDArray
NDCNN. deconv2d(INDArray layerInput, INDArray weights, DeConv2DConfig DeConv2DConfig)
2D deconvolution operation with optional biasINDArray
NDCNN. deconv3d(INDArray input, INDArray weights, INDArray bias, DeConv3DConfig DeConv3DConfig)
3D CNN deconvolution operation with or without optional biasINDArray
NDCNN. deconv3d(INDArray input, INDArray weights, DeConv3DConfig DeConv3DConfig)
3D CNN deconvolution operation with or without optional biasINDArray
NDCNN. depthToSpace(INDArray x, int blockSize, DataFormat dataFormat)
Convolution 2d layer batch to space operation on 4d input.
Reduces input channels dimension by rearranging data into a larger spatial dimensions
Example: if input has shape [mb, 8, 2, 2] and block size is 2, then output size is [mb, 8/(2*2), 2*2, 2*2]
= [mb, 2, 4, 4]INDArray
NDCNN. depthWiseConv2d(INDArray layerInput, INDArray depthWeights, INDArray bias, Conv2DConfig Conv2DConfig)
Depth-wise 2D convolution operation with optional biasINDArray
NDCNN. depthWiseConv2d(INDArray layerInput, INDArray depthWeights, Conv2DConfig Conv2DConfig)
Depth-wise 2D convolution operation with optional biasINDArray
NDLinalg. diag(INDArray input)
Calculates diagonal tensor.INDArray
NDMath. diag(INDArray x)
Returns an output variable with diagonal values equal to the specified values; off-diagonal values will be set to 0
For example, if input = [1,2,3], then output is given by:
[ 1, 0, 0]
[ 0, 2, 0]
[ 0, 0, 3]
Higher input ranks are also supported: if input has shape [a,...,R-1] then output[i,...,k,i,...,k] = input[i,...,k].
i.e., for input rank R, output has rank 2RINDArray
NDLinalg. diag_part(INDArray input)
Calculates diagonal tensor.INDArray
NDMath. diagPart(INDArray x)
Extract the diagonal part from the input array.
If input is
[ 1, 0, 0]
[ 0, 2, 0]
[ 0, 0, 3]
then output is [1, 2, 3].
Supports higher dimensions: in general, out[i,...,k] = in[i,...,k,i,...,k]INDArray
NDCNN. dilation2D(INDArray df, INDArray weights, int[] strides, int[] rates, boolean isSameMode)
TODO doc stringINDArray
NDMath. div(INDArray x, double value)
Scalar division operation, out = in / scalarINDArray
NDMath. div(INDArray x, INDArray y)
Pairwise division operation, out = x / y
Note: supports broadcasting if x and y have different shapes and are broadcastable.
For example, if X has shape [1,10] and Y has shape [5,10] then op(X,Y) has output shape [5,10]
Broadcast rules are the same as NumPy: https://docs.scipy.org/doc/numpy/user/basics.broadcasting.htmlINDArray
NDBase. dot(INDArray x, INDArray y, int... dimensions)
Pairwise dot product reduction along dimension
output = sum(i=0 ...INDArray
NDNN. dotProductAttention(INDArray queries, INDArray keys, INDArray values, INDArray mask, boolean scaled)
This operation performs dot product attention on the given timeseries input with the given queries
out = sum(similarity(k_i, q) * v_i)
similarity(k, q) = softmax(k * q) where x * q is the dot product of x and q
Optionally with normalization step:
similarity(k, q) = softmax(k * q / sqrt(size(q))
See also "Attention is all you need" (https://arxiv.org/abs/1706.03762, p.INDArray
NDNN. dropout(INDArray input, double inputRetainProbability)
Dropout operationINDArray
NDNN. dropoutInverted(INDArray input, double p)
Dropout inverted operation.INDArray[]
NDBase. dynamicPartition(INDArray x, INDArray partitions, int numPartitions)
Dynamically partition the input variable values into the specified number of paritions, using the indices.
Example:INDArray
NDBase. dynamicStitch(INDArray[] indices, INDArray... x)
Dynamically merge the specified input arrays into a single array, using the specified indicesINDArray[]
NDLinalg. eig(INDArray input)
Calculates eigen valuesINDArray
NDNN. elu(INDArray x)
Element-wise exponential linear unit (ELU) function:
out = x if x > 0
out = a * (exp(x) - 1) if x <= 0
with constant a = 1.0INDArray
NDMath. embeddingLookup(INDArray x, INDArray indices, PartitionMode PartitionMode)
Looks up ids in a list of embedding tensors.INDArray
NDMath. entropy(INDArray in, boolean keepDims, int... dimensions)
Entropy reduction: -sum(x * log(x))INDArray
NDMath. entropy(INDArray in, int... dimensions)
Entropy reduction: -sum(x * log(x))INDArray
NDBase. eq(INDArray x, double y)
Equals operation: elementwise x == y
Return boolean array with values true where satisfied, or false otherwise.INDArray
NDBase. eq(INDArray x, INDArray y)
Equal to operation: elementwise x == y
If x and y arrays have equal shape, the output shape is the same as these inputs.
Note: supports broadcasting if x and y have different shapes and are broadcastable.
For example, if X has shape [1,10] and Y has shape [5,10] then op(X,Y) has output shape [5,10]
Broadcast rules are the same as NumPy: https://docs.scipy.org/doc/numpy/user/basics.broadcasting.html
Return boolean array with values true where satisfied, or false otherwise.INDArray
NDMath. erf(INDArray x)
Element-wise Gaussian error function - out = erf(in)INDArray
NDMath. erfc(INDArray x)
Element-wise complementary Gaussian error function - out = erfc(in) = 1 - erf(in)INDArray
NDMath. euclideanDistance(INDArray x, INDArray y, boolean keepDims, boolean isComplex, int... dimensions)
Euclidean distance (l2 norm, l2 distance) reduction operation.INDArray
NDMath. euclideanDistance(INDArray x, INDArray y, int... dimensions)
Euclidean distance (l2 norm, l2 distance) reduction operation.INDArray
NDMath. exp(INDArray x)
Elementwise exponent function: out = exp(x) = 2.71828...^xINDArray
NDBase. expandDims(INDArray x, int axis)
Reshape the input by adding a 1 at the specified location.
For example, if input has shape [a, b], then output shape is:
axis = 0: [1, a, b]
axis = 1: [a, 1, b]
axis = 2: [a, b, 1]INDArray
NDMath. expm1(INDArray x)
Elementwise 1.0 - exponent function: out = 1.0 - exp(x) = 1.0 - 2.71828...^xINDArray
NDRandom. exponential(double lambda, DataType datatype, long... shape)
Generate a new random INDArray, where values are randomly sampled according to a exponential distribution:
P(x) = lambda * exp(-lambda * x)
Inputs must satisfy the following constraints:
Must be positive: lambda > 0INDArray
NDCNN. extractImagePatches(INDArray input, int kH, int kW, int sH, int sW, int rH, int rW, boolean sameMode)
Extract image patchesINDArray
NDImage. extractImagePatches(INDArray image, int[] kSizes, int[] strides, int[] rates, boolean sameMode)
Given an input image, extract out image patches (of size kSizes - h x w) and place them in the depth dimension.INDArray
NDMath. eye(int rows)
Generate an identity matrix with the specified number of rows and columns.INDArray
NDMath. eye(int rows, int cols)
As per eye(String, int, int, DataType) but with the default datatype, Eye.DEFAULT_DTYPEINDArray
NDMath. eye(int rows, int cols, DataType dataType, int... dimensions)
Generate an identity matrix with the specified number of rows and columns
Example:INDArray
NDMath. eye(INDArray rows)
As per eye(String, int) but with the number of rows specified as a scalar INDArrayINDArray
NDMath. eye(INDArray rows, INDArray cols)
As per eye(int, int) bit with the number of rows/columns specified as scalar INDArraysINDArray
NDBase. fill(INDArray shape, DataType dataType, double value)
Generate an output variable with the specified (dynamic) shape with all elements set to the specified valueINDArray
NDMath. firstIndex(INDArray in, Condition condition, boolean keepDims, int... dimensions)
First index reduction operation.
Returns a variable that contains the index of the first element that matches the specified condition (for each
slice along the specified dimensions)
Note that if keepDims = true, the output variable has the same rank as the input variable,
with the reduced dimensions having size 1.INDArray
NDMath. firstIndex(INDArray in, Condition condition, int... dimensions)
First index reduction operation.
Returns a variable that contains the index of the first element that matches the specified condition (for each
slice along the specified dimensions)
Note that if keepDims = true, the output variable has the same rank as the input variable,
with the reduced dimensions having size 1.INDArray
NDBase. flatten(INDArray... inputs)
Return a flattened variable with the specified orderingINDArray
NDBase. flatten(INDArray[] inputs, String order)
Return a flattened variable with the specified orderingINDArray
NDMath. floor(INDArray x)
Element-wise floor function: out = floor(x).
Rounds each value down to the nearest integer value (if not already an integer)INDArray
NDMath. floorDiv(INDArray x, INDArray y)
Pairwise floor division operation, out = floor(x / y)
Note: supports broadcasting if x and y have different shapes and are broadcastable.
For example, if X has shape [1,10] and Y has shape [5,10] then op(X,Y) has output shape [5,10]
Broadcast rules are the same as NumPy: https://docs.scipy.org/doc/numpy/user/basics.broadcasting.htmlINDArray
NDMath. floorMod(INDArray x, double value)
Scalar floor modulus operationINDArray
NDMath. floorMod(INDArray x, INDArray y)
Pairwise Modulus division operation
Note: supports broadcasting if x and y have different shapes and are broadcastable.
For example, if X has shape [1,10] and Y has shape [5,10] then op(X,Y) has output shape [5,10]
Broadcast rules are the same as NumPy: https://docs.scipy.org/doc/numpy/user/basics.broadcasting.htmlINDArray
NDBase. gather(INDArray df, int[] indices, int axis)
Gather slices from the input variable where the indices are specified as fixed int[] values.
Output shape is same as input shape, except for axis dimension, which has size equal to indices.length.INDArray
NDBase. gather(INDArray df, INDArray indices, int axis)
Gather slices from the input variable where the indices are specified as dynamic array values.
Output shape is same as input shape, except for axis dimension, which has size equal to indices.length.INDArray
NDBase. gatherNd(INDArray df, INDArray indices)
Gather slices from df with shape specified by indices.INDArray
NDNN. gelu(INDArray x)
GELU activation function - Gaussian Error Linear Units
For more details, see Gaussian Error Linear Units (GELUs) - https://arxiv.org/abs/1606.08415
This method uses the sigmoid approximationINDArray
NDRNN. gru(INDArray x, INDArray hLast, INDArray Wx, INDArray Wh, INDArray biases)
The GRU operation.INDArray[]
NDRNN. gruCell(INDArray x, INDArray hLast, GRUWeights GRUWeights)
The GRU cell.INDArray
NDBase. gt(INDArray x, double y)
Greater than operation: elementwise x > y
Return boolean array with values true where satisfied, or false otherwise.INDArray
NDBase. gt(INDArray x, INDArray y)
Greater than operation: elementwise x > y
If x and y arrays have equal shape, the output shape is the same as these inputs.
Note: supports broadcasting if x and y have different shapes and are broadcastable.
For example, if X has shape [1,10] and Y has shape [5,10] then op(X,Y) has output shape [5,10]
Broadcast rules are the same as NumPy: https://docs.scipy.org/doc/numpy/user/basics.broadcasting.html
Return boolean array with values true where satisfied, or false otherwise.INDArray
NDBase. gte(INDArray x, double y)
Greater than or equals operation: elementwise x >= y
Return boolean array with values true where satisfied, or false otherwise.INDArray
NDBase. gte(INDArray x, INDArray y)
Greater than or equal to operation: elementwise x >= y
If x and y arrays have equal shape, the output shape is the same as these inputs.
Note: supports broadcasting if x and y have different shapes and are broadcastable.
For example, if X has shape [1,10] and Y has shape [5,10] then op(X,Y) has output shape [5,10]
Broadcast rules are the same as NumPy: https://docs.scipy.org/doc/numpy/user/basics.broadcasting.html
Return boolean array with values true where satisfied, or false otherwise.INDArray
NDMath. hammingDistance(INDArray x, INDArray y, boolean keepDims, boolean isComplex, int... dimensions)
Hamming distance reduction operation.INDArray
NDMath. hammingDistance(INDArray x, INDArray y, int... dimensions)
Hamming distance reduction operation.INDArray
NDNN. hardSigmoid(INDArray x)
Element-wise hard sigmoid function:
out[i] = 0 if in[i] <= -2.5
out[1] = 0.2*in[i]+0.5 if -2.5 < in[i] < 2.5
out[i] = 1 if in[i] >= 2.5INDArray
NDNN. hardTanh(INDArray x)
Element-wise hard tanh function:
out[i] = -1 if in[i] <= -1
out[1] = in[i] if -1 < in[i] < 1
out[i] = 1 if in[i] >= 1INDArray
NDNN. hardTanhDerivative(INDArray x)
Derivative (dOut/dIn) of the element-wise hard Tanh function - hardTanh(INDArray)INDArray
NDLoss. hingeLoss(INDArray label, INDArray predictions, INDArray weights)
Hinge loss: a loss function used for training classifiers.
ImplementsL = max(0, 1 - t * predictions)
where t is the label values after internally converting to {-1,1}
from the user specified {0,1}.INDArray
NDLoss. hingeLoss(INDArray label, INDArray predictions, INDArray weights, LossReduce lossReduce)
Hinge loss: a loss function used for training classifiers.
ImplementsL = max(0, 1 - t * predictions)
where t is the label values after internally converting to {-1,1}
from the user specified {0,1}.INDArray
NDImage. hsvToRgb(INDArray input)
Converting image from HSV to RGB formatINDArray
NDLoss. huberLoss(INDArray label, INDArray predictions, INDArray weights, double delta)
Huber loss function, used for robust regression.INDArray
NDLoss. huberLoss(INDArray label, INDArray predictions, INDArray weights, LossReduce lossReduce, double delta)
Huber loss function, used for robust regression.INDArray
NDMath. iamax(INDArray in, boolean keepDims, int... dimensions)
Index of the max absolute value: argmax(abs(in))
see argmax(String, INDArray, boolean, int...)INDArray
NDMath. iamax(INDArray in, int... dimensions)
Index of the max absolute value: argmax(abs(in))
see argmax(String, INDArray, boolean, int...)INDArray
NDMath. iamin(INDArray in, boolean keepDims, int... dimensions)
Index of the min absolute value: argmin(abs(in))
see argmin(String, INDArray, boolean, int...)INDArray
NDMath. iamin(INDArray in, int... dimensions)
Index of the min absolute value: argmin(abs(in))
see argmin(String, INDArray, boolean, int...)INDArray
NDBase. identity(INDArray input)
Elementwise identity operation: out = xINDArray
NDCNN. im2Col(INDArray in, Conv2DConfig Conv2DConfig)
im2col operation for use in 2D convolution operations.INDArray
NDImage. imageResize(INDArray input, INDArray size, boolean preserveAspectRatio, boolean antialias, ImageResizeMethod ImageResizeMethod)
Resize images to size using the specified method.INDArray
NDImage. imageResize(INDArray input, INDArray size, ImageResizeMethod ImageResizeMethod)
Resize images to size using the specified method.INDArray
NDBase. invertPermutation(INDArray input)
Compute the inverse permutation indices for a permutation operation
Example: if input is [2, 0, 1] then output is [1, 2, 0]
The idea is that x.permute(input).permute(invertPermutation(input)) == xINDArray
NDMath. isFinite(INDArray x)
Is finite operation: elementwise isFinite(x)
Returns an array with the same shape/size as the input, with values 1 where condition is satisfied, or
value 0 otherwiseINDArray
NDMath. isInfinite(INDArray x)
Is infinite operation: elementwise isInfinite(x)
Returns an array with the same shape/size as the input, with values 1 where condition is satisfied, or
value 0 otherwiseINDArray
NDMath. isMax(INDArray x)
Is maximum operation: elementwise x == max(x)
Returns an array with the same shape/size as the input, with values 1 where condition is satisfied, or
value 0 otherwiseINDArray
NDMath. isNaN(INDArray x)
Is Not a Number operation: elementwise isNaN(x)
Returns an array with the same shape/size as the input, with values 1 where condition is satisfied, or
value 0 otherwiseINDArray
NDMath. isNonDecreasing(INDArray x)
Is the array non decreasing?
An array is non-decreasing if for every valid i, x[i] <= x[i+1].INDArray
NDBase. isNumericTensor(INDArray x)
Is the director a numeric tensor? In the current version of ND4J/SameDiff, this always returns true/1INDArray
NDMath. isStrictlyIncreasing(INDArray x)
Is the array strictly increasing?
An array is strictly increasing if for every valid i, x[i] < x[i+1].INDArray
NDMath. jaccardDistance(INDArray x, INDArray y, boolean keepDims, boolean isComplex, int... dimensions)
Jaccard similarity reduction operation.INDArray
NDMath. jaccardDistance(INDArray x, INDArray y, int... dimensions)
Jaccard similarity reduction operation.INDArray
NDLoss. l2Loss(INDArray var)
L2 loss: 1/2 * sum(x^2)INDArray
NDMath. lastIndex(INDArray in, Condition condition, boolean keepDims, int... dimensions)
Last index reduction operation.
Returns a variable that contains the index of the last element that matches the specified condition (for each
slice along the specified dimensions)
Note that if keepDims = true, the output variable has the same rank as the input variable,
with the reduced dimensions having size 1.INDArray
NDMath. lastIndex(INDArray in, Condition condition, int... dimensions)
Last index reduction operation.
Returns a variable that contains the index of the last element that matches the specified condition (for each
slice along the specified dimensions)
Note that if keepDims = true, the output variable has the same rank as the input variable,
with the reduced dimensions having size 1.INDArray
NDNN. layerNorm(INDArray input, INDArray gain, boolean channelsFirst, int... dimensions)
Apply Layer Normalization
y = gain * standardize(x) + biasINDArray
NDNN. layerNorm(INDArray input, INDArray gain, INDArray bias, boolean channelsFirst, int... dimensions)
Apply Layer Normalization
y = gain * standardize(x) + biasINDArray
NDNN. leakyRelu(INDArray x, double alpha)
Element-wise leaky ReLU function:
out = x if x >= 0.0
out = alpha * x if x < cutoff
Alpha value is most commonly set to 0.01INDArray
NDNN. leakyReluDerivative(INDArray x, double alpha)
Leaky ReLU derivative: dOut/dIn given input.INDArray
NDBitwise. leftShift(INDArray x, INDArray y)
Bitwise left shift operation.INDArray
NDBitwise. leftShiftCyclic(INDArray x, INDArray y)
Bitwise left cyclical shift operation.INDArray
NDNN. linear(INDArray input, INDArray weights, INDArray bias)
Linear layer operation: out = mmul(in,w) + bias
Note that bias array is optionalINDArray
NDBase. linspace(DataType dataType, double start, double stop, long number)
Create a new 1d array with values evenly spaced between values 'start' and 'stop'
For example, linspace(start=3.0, stop=4.0, number=3) will generate [3.0, 3.5, 4.0]INDArray
NDBase. linspace(INDArray start, INDArray stop, INDArray number, DataType dataType)
Create a new 1d array with values evenly spaced between values 'start' and 'stop'
For example, linspace(start=3.0, stop=4.0, number=3) will generate [3.0, 3.5, 4.0]INDArray[]
NDMath. listDiff(INDArray x, INDArray y)
Calculates difference between inputs X and Y.INDArray
NDCNN. localResponseNormalization(INDArray input, LocalResponseNormalizationConfig LocalResponseNormalizationConfig)
2D convolution layer operation - local response normalizationINDArray
NDMath. log(INDArray x)
Element-wise logarithm function (base e - natural logarithm): out = log(x)INDArray
NDMath. log(INDArray x, double base)
Element-wise logarithm function (with specified base): out = log_{base}(x)INDArray
NDMath. log1p(INDArray x)
Elementwise natural logarithm function: out = log_e (1 + x)INDArray
NDLinalg. logdet(INDArray input)
Calculates log of determinant.INDArray
NDMath. logEntropy(INDArray in, boolean keepDims, int... dimensions)
Log entropy reduction: log(-sum(x * log(x)))INDArray
NDMath. logEntropy(INDArray in, int... dimensions)
Log entropy reduction: log(-sum(x * log(x)))INDArray
NDLoss. logLoss(INDArray label, INDArray predictions)
Log loss, i.e., binary cross entropy loss, usually used for binary multi-label classification.INDArray
NDLoss. logLoss(INDArray label, INDArray predictions, INDArray weights, LossReduce lossReduce, double epsilon)
Log loss, i.e., binary cross entropy loss, usually used for binary multi-label classification.INDArray
NDRandom. logNormal(double mean, double stddev, DataType datatype, long... shape)
Generate a new random INDArray, where values are randomly sampled according to a Log Normal distribution,
i.e.,log(x) ~ N(mean, stdev)
INDArray
NDLoss. logPoisson(INDArray label, INDArray predictions, INDArray weights, boolean full)
Log poisson loss: a loss function used for training classifiers.
ImplementsL = exp(c) - z * c
where c is log(predictions) and z is labels.INDArray
NDLoss. logPoisson(INDArray label, INDArray predictions, INDArray weights, LossReduce lossReduce, boolean full)
Log poisson loss: a loss function used for training classifiers.
ImplementsL = exp(c) - z * c
where c is log(predictions) and z is labels.INDArray
NDNN. logSigmoid(INDArray x)
Element-wise sigmoid function: out[i] = log(sigmoid(in[i]))INDArray
NDNN. logSoftmax(INDArray x)
Log softmax activationINDArray
NDNN. logSoftmax(INDArray x, int dimension)
Log softmax activationINDArray
NDMath. logSumExp(INDArray input, int... dimensions)
Log-sum-exp reduction (optionally along dimension).
Computes log(sum(exp(x))INDArray
NDRNN. lstmblock(INDArray maxTSLength, INDArray x, INDArray cLast, INDArray yLast, LSTMWeights LSTMWeights, LSTMConfiguration LSTMConfiguration)
The LSTM blockINDArray
NDRNN. lstmblock(INDArray x, LSTMWeights LSTMWeights, LSTMConfiguration LSTMConfiguration)
The LSTM blockINDArray[]
NDRNN. lstmCell(INDArray x, INDArray cLast, INDArray yLast, LSTMWeights LSTMWeights, LSTMConfiguration LSTMConfiguration)
The LSTM cell.INDArray[]
NDRNN. lstmLayer(INDArray x, INDArray cLast, INDArray yLast, INDArray maxTSLength, LSTMLayerWeights LSTMLayerWeights, LSTMLayerConfig LSTMLayerConfig)
Long Short-Term Memory layer - Hochreiter 1997.
SUPPORTS following data formats:
for unidirectional:
TNS: shapes [timeLength, numExamples, inOutSize]
NST: shapes [numExamples, inOutSize, timeLength]
NTS: shapes [numExamples, timeLength, inOutSize]
for bidirectional:
T2NS: shapes [timeLength, 2, numExamples, inOutSize] (for ONNX)
SUPPORTS following direction modes:
FWD: forward
BWD: backward
BIDIR_SUM: bidirectional sum
BIDIR_CONCAT: bidirectional concat
BIDIR_EXTRA_DIM: bidirectional extra output dim (in conjunction with format dataFormat - T2NS)
You may use different gate configurations:
specify gate/cell/out aplha/beta and numbers of activations for gate/cell/out described in activations enum
("RELU","SIGMOID","AFFINE","LEAKY_RELU","THRESHHOLD_RELU","SCALED_TAHN","HARD_SIGMOID","ELU","SOFTSIGN","SOFTPLUS")
Also this layer supports MKLDNN (DNNL) and cuDNN accelerationINDArray[]
NDRNN. lstmLayer(INDArray x, LSTMLayerWeights LSTMLayerWeights, LSTMLayerConfig LSTMLayerConfig)
Long Short-Term Memory layer - Hochreiter 1997.
SUPPORTS following data formats:
for unidirectional:
TNS: shapes [timeLength, numExamples, inOutSize]
NST: shapes [numExamples, inOutSize, timeLength]
NTS: shapes [numExamples, timeLength, inOutSize]
for bidirectional:
T2NS: shapes [timeLength, 2, numExamples, inOutSize] (for ONNX)
SUPPORTS following direction modes:
FWD: forward
BWD: backward
BIDIR_SUM: bidirectional sum
BIDIR_CONCAT: bidirectional concat
BIDIR_EXTRA_DIM: bidirectional extra output dim (in conjunction with format dataFormat - T2NS)
You may use different gate configurations:
specify gate/cell/out aplha/beta and numbers of activations for gate/cell/out described in activations enum
("RELU","SIGMOID","AFFINE","LEAKY_RELU","THRESHHOLD_RELU","SCALED_TAHN","HARD_SIGMOID","ELU","SOFTSIGN","SOFTPLUS")
Also this layer supports MKLDNN (DNNL) and cuDNN accelerationINDArray
NDLinalg. lstsq(INDArray matrix, INDArray rhs, double l2_reguralizer)
Solver for linear squares problems.INDArray
NDLinalg. lstsq(INDArray matrix, INDArray rhs, double l2_reguralizer, boolean fast)
Solver for linear squares problems.INDArray
NDBase. lt(INDArray x, double y)
Less than operation: elementwise x < y
Return boolean array with values true where satisfied, or false otherwise.INDArray
NDBase. lt(INDArray x, INDArray y)
Less than operation: elementwise x < y
If x and y arrays have equal shape, the output shape is the same as these inputs.
Note: supports broadcasting if x and y have different shapes and are broadcastable.
For example, if X has shape [1,10] and Y has shape [5,10] then op(X,Y) has output shape [5,10]
Broadcast rules are the same as NumPy: https://docs.scipy.org/doc/numpy/user/basics.broadcasting.html
Return boolean array with values true where satisfied, or false otherwise.INDArray
NDBase. lte(INDArray x, double y)
Less than or equals operation: elementwise x <= y
Return boolean array with values true where satisfied, or false otherwise.INDArray
NDBase. lte(INDArray x, INDArray y)
Less than or equal to operation: elementwise x <= y
If x and y arrays have equal shape, the output shape is the same as these inputs.
Note: supports broadcasting if x and y have different shapes and are broadcastable.
For example, if X has shape [1,10] and Y has shape [5,10] then op(X,Y) has output shape [5,10]
Broadcast rules are the same as NumPy: https://docs.scipy.org/doc/numpy/user/basics.broadcasting.html
Return boolean array with values true where satisfied, or false otherwise.INDArray
NDLinalg. lu(INDArray input)
Computes LU decomposition.INDArray
NDMath. manhattanDistance(INDArray x, INDArray y, boolean keepDims, boolean isComplex, int... dimensions)
Manhattan distance (l1 norm, l1 distance) reduction operation.INDArray
NDMath. manhattanDistance(INDArray x, INDArray y, int... dimensions)
Manhattan distance (l1 norm, l1 distance) reduction operation.INDArray
NDBase. matchCondition(INDArray in, Condition condition)
Returns a boolean mask of equal shape to the input, where the condition is satisfied - value 1 where satisfied, 0 otherwiseINDArray
NDBase. matchConditionCount(INDArray in, Condition condition)
Returns a count of the number of elements that satisfy the conditionINDArray
NDBase. matchConditionCount(INDArray in, Condition condition, boolean keepDim, int... dimensions)
Returns a count of the number of elements that satisfy the condition (for each slice along the specified dimensions)
Note that if keepDims = true, the output variable has the same rank as the input variable,
with the reduced dimensions having size 1.INDArray
NDBase. matchConditionCount(INDArray in, Condition condition, int... dimensions)
Returns a count of the number of elements that satisfy the condition (for each slice along the specified dimensions)
Note that if keepDims = true, the output variable has the same rank as the input variable,
with the reduced dimensions having size 1.INDArray
NDLinalg. matmul(INDArray a, INDArray b)
Performs matrix mutiplication on input tensors.INDArray[]
NDLinalg. matrixBandPart(INDArray input, int minLower, int maxUpper)
Copy a tensor setting outside a central band in each innermost matrix.INDArray
NDLinalg. matrixDeterminant(INDArray input)
Calculates matrix determinant.INDArray
NDMath. matrixDeterminant(INDArray in)
Matrix determinant op.INDArray
NDLinalg. matrixInverse(INDArray input)
Inverts a matrixINDArray
NDMath. matrixInverse(INDArray in)
Matrix inverse op.INDArray
NDBase. max(INDArray x, boolean keepDims, int... dimensions)
Max array reduction operation, optionally along specified dimensions
Note that if keepDims = true, the output variable has the same rank as the input variable,
with the reduced dimensions having size 1.INDArray
NDBase. max(INDArray x, int... dimensions)
Max array reduction operation, optionally along specified dimensions
Note that if keepDims = true, the output variable has the same rank as the input variable,
with the reduced dimensions having size 1.INDArray
NDBase. max(INDArray first, INDArray second)
Element-wise maximum operation: out[i] = max(first[i], second[i])
Note: supports broadcasting if x and y have different shapes and are broadcastable.
For example, if X has shape [1,10] and Y has shape [5,10] then op(X,Y) has output shape [5,10]
Broadcast rules are the same as NumPy: https://docs.scipy.org/doc/numpy/user/basics.broadcasting.htmlINDArray
NDMath. max(INDArray x, INDArray y)
Pairwise max operation, out = max(x, y)
Note: supports broadcasting if x and y have different shapes and are broadcastable.
For example, if X has shape [1,10] and Y has shape [5,10] then op(X,Y) has output shape [5,10]
Broadcast rules are the same as NumPy: https://docs.scipy.org/doc/numpy/user/basics.broadcasting.htmlINDArray
NDCNN. maxPooling2d(INDArray input, Pooling2DConfig Pooling2DConfig)
2D Convolution layer operation - max pooling 2dINDArray
NDCNN. maxPooling3d(INDArray input, Pooling3DConfig Pooling3DConfig)
3D convolution layer operation - max pooling 3d operation.INDArray[]
NDCNN. maxPoolWithArgmax(INDArray input, Pooling2DConfig Pooling2DConfig)
2D Convolution layer operation - Max pooling on the input and outputs both max values and indicesINDArray
NDBase. mean(INDArray x, boolean keepDims, int... dimensions)
Mean (average) array reduction operation, optionally along specified dimensions
Note that if keepDims = true, the output variable has the same rank as the input variable,
with the reduced dimensions having size 1.INDArray
NDBase. mean(INDArray x, int... dimensions)
Mean (average) array reduction operation, optionally along specified dimensions
Note that if keepDims = true, the output variable has the same rank as the input variable,
with the reduced dimensions having size 1.INDArray
NDBase. mean(INDArray x, INDArray dimensions)
Mean (average) array reduction operation, optionally along specified dimensions
Note that if keepDims = true, the output variable has the same rank as the input variable,
with the reduced dimensions having size 1.INDArray
NDBase. mean(INDArray x, INDArray dimensions, boolean keepDims)
Mean (average) array reduction operation, optionally along specified dimensions
Note that if keepDims = true, the output variable has the same rank as the input variable,
with the reduced dimensions having size 1.INDArray
NDMath. mean(INDArray in, boolean keepDims, int... dimensions)
Mean array reduction operation, optionally along specified dimensions: out = mean(abs(x))INDArray
NDMath. mean(INDArray in, int... dimensions)
Mean array reduction operation, optionally along specified dimensions: out = mean(abs(x))INDArray
NDMath. mean(INDArray in, INDArray dimensions)
Mean array reduction operation, optionally along specified dimensions: out = mean(abs(x))INDArray
NDMath. mean(INDArray in, INDArray dimensions, boolean keepDims)
Mean array reduction operation, optionally along specified dimensions: out = mean(abs(x))INDArray
NDLoss. meanPairwiseSquaredError(INDArray label, INDArray predictions, INDArray weights)
Mean pairwise squared error.
MPWSE loss calculates the difference between pairs of consecutive elements in the predictions and labels arrays.
For example, if predictions = [p0, p1, p2] and labels are [l0, l1, l2] then MPWSE is:
[((p0-p1) - (l0-l1))^2 + ((p0-p2) - (l0-l2))^2 + ((p1-p2) - (l1-l2))^2] / 3
INDArray
NDLoss. meanPairwiseSquaredError(INDArray label, INDArray predictions, INDArray weights, LossReduce lossReduce)
Mean pairwise squared error.
MPWSE loss calculates the difference between pairs of consecutive elements in the predictions and labels arrays.
For example, if predictions = [p0, p1, p2] and labels are [l0, l1, l2] then MPWSE is:
[((p0-p1) - (l0-l1))^2 + ((p0-p2) - (l0-l2))^2 + ((p1-p2) - (l1-l2))^2] / 3
INDArray
NDLoss. meanSquaredError(INDArray label, INDArray predictions, INDArray weights)
Mean squared error loss function.INDArray
NDLoss. meanSquaredError(INDArray label, INDArray predictions, INDArray weights, LossReduce lossReduce)
Mean squared error loss function.INDArray
NDBase. merge(INDArray x, INDArray y)
The merge operation is a control operation that forwards the either of the inputs to the output, when
the first of them becomes available.INDArray
NDMath. mergeAdd(INDArray... inputs)
Merge add function: merges an arbitrary number of equal shaped arrays using element-wise addition:
out = sum_i in[i]INDArray
NDMath. mergeAvg(INDArray... inputs)
Merge average function: merges an arbitrary number of equal shaped arrays using element-wise mean operation:
out = mean_i in[i]INDArray
NDMath. mergeMax(INDArray... inputs)
Merge max function: merges an arbitrary number of equal shaped arrays using element-wise maximum operation:
out = max_i in[i]INDArray
NDMath. mergeMaxIndex(INDArray... x)
Return array of max elements indices with along tensor dimensionsINDArray
NDMath. mergeMaxIndex(INDArray[] x, DataType dataType)
Return array of max elements indices with along tensor dimensionsINDArray[]
NDMath. meshgrid(INDArray[] inputs, boolean cartesian)
Broadcasts parameters for evaluation on an N-D grid.INDArray
NDBase. min(INDArray x, boolean keepDims, int... dimensions)
Minimum array reduction operation, optionally along specified dimensions.INDArray
NDBase. min(INDArray x, int... dimensions)
Minimum array reduction operation, optionally along specified dimensions.INDArray
NDBase. min(INDArray first, INDArray second)
Element-wise minimum operation: out[i] = min(first[i], second[i])
Note: supports broadcasting if x and y have different shapes and are broadcastable.
For example, if X has shape [1,10] and Y has shape [5,10] then op(X,Y) has output shape [5,10]
Broadcast rules are the same as NumPy: https://docs.scipy.org/doc/numpy/user/basics.broadcasting.htmlINDArray
NDMath. min(INDArray x, INDArray y)
Pairwise max operation, out = min(x, y)
Note: supports broadcasting if x and y have different shapes and are broadcastable.
For example, if X has shape [1,10] and Y has shape [5,10] then op(X,Y) has output shape [5,10]
Broadcast rules are the same as NumPy: https://docs.scipy.org/doc/numpy/user/basics.broadcasting.htmlINDArray
NDBase. minMax(int datatype, int minOrMax)
Return a scalar array reflecting the min or max value for a given data type.INDArray
NDBase. mmul(INDArray x, INDArray y)
Matrix multiplication: out = mmul(x,y)
Supports specifying transpose argument to perform operation such as mmul(a^T, b), etc.INDArray
NDBase. mmul(INDArray x, INDArray y, boolean transposeX, boolean transposeY, boolean transposeZ)
Matrix multiplication: out = mmul(x,y)
Supports specifying transpose argument to perform operation such as mmul(a^T, b), etc.INDArray
NDLinalg. mmul(INDArray x, INDArray y)
Matrix multiplication: out = mmul(x,y)
Supports specifying transpose argument to perform operation such as mmul(a^T, b), etc.INDArray
NDLinalg. mmul(INDArray x, INDArray y, boolean transposeX, boolean transposeY, boolean transposeZ)
Matrix multiplication: out = mmul(x,y)
Supports specifying transpose argument to perform operation such as mmul(a^T, b), etc.INDArray
NDMath. mod(INDArray x, INDArray y)
Pairwise modulus (remainder) operation, out = x % y
Note: supports broadcasting if x and y have different shapes and are broadcastable.
For example, if X has shape [1,10] and Y has shape [5,10] then op(X,Y) has output shape [5,10]
Broadcast rules are the same as NumPy: https://docs.scipy.org/doc/numpy/user/basics.broadcasting.htmlINDArray[]
NDMath. moments(INDArray input, int[] axes, boolean keepDims)
Calculate the mean and (population) variance for the input variable, for the specified axisINDArray[]
NDMath. moments(INDArray input, INDArray axes, boolean keepDims)
Calculate the mean and (population) variance for the input variable, for the specified axisINDArray
NDMath. mul(INDArray x, double value)
Scalar multiplication operation, out = in * scalarINDArray
NDMath. mul(INDArray x, INDArray y)
Pairwise multiplication operation, out = x * y
Note: supports broadcasting if x and y have different shapes and are broadcastable.
For example, if X has shape [1,10] and Y has shape [5,10] then op(X,Y) has output shape [5,10]
Broadcast rules are the same as NumPy: https://docs.scipy.org/doc/numpy/user/basics.broadcasting.htmlINDArray
NDNN. multiHeadDotProductAttention(INDArray queries, INDArray keys, INDArray values, INDArray Wq, INDArray Wk, INDArray Wv, INDArray Wo, INDArray mask, boolean scaled)
This performs multi-headed dot product attention on the given timeseries input
out = concat(head_1, head_2, ..., head_n) * Wo
head_i = dot_product_attention(Wq_i*q, Wk_i*k, Wv_i*v)
Optionally with normalization when calculating the attention for each head.
See also "Attention is all you need" (https://arxiv.org/abs/1706.03762, pp.INDArray
NDMath. neg(INDArray x)
Elementwise negative operation: out = -xINDArray
NDBase. neq(INDArray x, double y)
Not equals operation: elementwise x != y
Return boolean array with values true where satisfied, or false otherwise.INDArray
NDBase. neq(INDArray x, INDArray y)
Not equal to operation: elementwise x != y
If x and y arrays have equal shape, the output shape is the same as these inputs.
Note: supports broadcasting if x and y have different shapes and are broadcastable.
For example, if X has shape [1,10] and Y has shape [5,10] then op(X,Y) has output shape [5,10]
Broadcast rules are the same as NumPy: https://docs.scipy.org/doc/numpy/user/basics.broadcasting.html
Return boolean array with values true where satisfied, or false otherwise.INDArray
NDImage. nonMaxSuppression(INDArray boxes, INDArray scores, int maxOutSize, double iouThreshold, double scoreThreshold)
Greedily selects a subset of bounding boxes in descending order of scoreINDArray
NDBase. norm1(INDArray x, boolean keepDims, int... dimensions)
Norm1 (L1 norm) reduction operation: The output contains the L1 norm for each tensor/subset along the specified dimensions:
out = sum_i abs(x[i])
Note that if keepDims = true, the output variable has the same rank as the input variable,
with the reduced dimensions having size 1.INDArray
NDBase. norm1(INDArray x, int... dimensions)
Norm1 (L1 norm) reduction operation: The output contains the L1 norm for each tensor/subset along the specified dimensions:
out = sum_i abs(x[i])
Note that if keepDims = true, the output variable has the same rank as the input variable,
with the reduced dimensions having size 1.INDArray
NDMath. norm1(INDArray in, boolean keepDims, int... dimensions)
Mean array reduction operation, optionally along specified dimensions: out = mean(abs(x))INDArray
NDMath. norm1(INDArray in, int... dimensions)
Mean array reduction operation, optionally along specified dimensions: out = mean(abs(x))INDArray
NDMath. norm1(INDArray in, INDArray dimensions)
Sum of absolute differences.INDArray
NDMath. norm1(INDArray in, INDArray dimensions, boolean keepDims)
Sum of absolute differences.INDArray
NDBase. norm2(INDArray x, boolean keepDims, int... dimensions)
Norm2 (L2 norm) reduction operation: The output contains the L2 norm for each tensor/subset along the specified dimensions:
out = sqrt(sum_i x[i]^2)
Note that if keepDims = true, the output variable has the same rank as the input variable,
with the reduced dimensions having size 1.INDArray
NDBase. norm2(INDArray x, int... dimensions)
Norm2 (L2 norm) reduction operation: The output contains the L2 norm for each tensor/subset along the specified dimensions:
out = sqrt(sum_i x[i]^2)
Note that if keepDims = true, the output variable has the same rank as the input variable,
with the reduced dimensions having size 1.INDArray
NDMath. norm2(INDArray in, boolean keepDims, int... dimensions)
Euclidean norm: euclidean distance of a vector from the originINDArray
NDMath. norm2(INDArray in, int... dimensions)
Euclidean norm: euclidean distance of a vector from the originINDArray
NDMath. norm2(INDArray in, INDArray dimensions)
Euclidean norm: euclidean distance of a vector from the originINDArray
NDMath. norm2(INDArray in, INDArray dimensions, boolean keepDims)
Euclidean norm: euclidean distance of a vector from the originINDArray
NDRandom. normal(double mean, double stddev, DataType datatype, long... shape)
Generate a new random INDArray, where values are randomly sampled according to a Gaussian (normal) distribution,
N(mean, stdev)INDArray[]
NDMath. normalizeMoments(INDArray counts, INDArray means, INDArray variances, double shift)
Calculate the mean and variance from the sufficient statisticsINDArray
NDRandom. normalTruncated(double mean, double stddev, DataType datatype, long... shape)
Generate a new random INDArray, where values are randomly sampled according to a Gaussian (normal) distribution,
N(mean, stdev).INDArray
NDBase. normmax(INDArray x, boolean keepDims, int... dimensions)
Max norm (infinity norm) reduction operation: The output contains the max norm for each tensor/subset along the
specified dimensions:
out = max(abs(x[i]))
Note that if keepDims = true, the output variable has the same rank as the input variable,
with the reduced dimensions having size 1.INDArray
NDBase. normmax(INDArray x, int... dimensions)
Max norm (infinity norm) reduction operation: The output contains the max norm for each tensor/subset along the
specified dimensions:
out = max(abs(x[i]))
Note that if keepDims = true, the output variable has the same rank as the input variable,
with the reduced dimensions having size 1.INDArray
NDMath. normMax(INDArray in, boolean keepDims, int... dimensions)
Differences between max absolute valueINDArray
NDMath. normMax(INDArray in, int... dimensions)
Differences between max absolute valueINDArray
NDMath. normMax(INDArray in, INDArray dimensions)
Differences between max absolute valueINDArray
NDMath. normMax(INDArray in, INDArray dimensions, boolean keepDims)
Differences between max absolute valueINDArray
NDBase. oneHot(INDArray indices, int depth)
Convert the array to a one-hot array with values 0 and 1 for each entry
If input has shape [ a, ..., n] then output has shape [ a, ..., n, depth],
with out[i, ..., j, in[i,...,j]] = 1 with other values being set to 0
see oneHot(SDVariable, int, int, double, double)INDArray
NDBase. oneHot(INDArray indices, int depth, int axis, double on, double off)
Convert the array to a one-hot array with values and for each entry
If input has shape [ a, ..., n] then output has shape [ a, ..., n, depth],
with {out[i, ..., j, in[i,...,j]] with other values being set toINDArray
NDBase. oneHot(INDArray indices, int depth, int axis, double on, double off, DataType dataType)
Convert the array to a one-hot array with values and for each entry
If input has shape [ a, ..., n] then output has shape [ a, ..., n, depth],
with {out[i, ..., j, in[i,...,j]] with other values being set toINDArray
NDBase. onesLike(INDArray input)
Return a variable of all 1s, with the same shape as the input variable.INDArray
NDBase. onesLike(INDArray input, DataType dataType)
As per onesLike(String, SDVariable) but the output datatype may be specifiedINDArray
NDBitwise. or(INDArray x, INDArray y)
Bitwise OR operation.INDArray
NDMath. or(INDArray x, INDArray y)
Boolean OR operation: elementwise (x != 0) || (y != 0)
If x and y arrays have equal shape, the output shape is the same as these inputs.
Note: supports broadcasting if x and y have different shapes and are broadcastable.
Returns an array with values 1 where condition is satisfied, or value 0 otherwise.INDArray
NDImage. pad(INDArray input, INDArray padding, Mode Mode, double padValue)
Pads an image according to the given padding typeINDArray
NDNN. pad(INDArray input, INDArray padding, double constant)
Padding operationINDArray
NDNN. pad(INDArray input, INDArray padding, PadMode PadMode, double constant)
Padding operationINDArray
NDBase. permute(INDArray x, int... dimensions)
Array permutation operation: permute the dimensions according to the specified permutation indices.
Example: if input has shape [a,b,c] and dimensions = [2,0,1] the output has shape [c,a,b]INDArray
NDBase. permute(INDArray x, INDArray dimensions)
Array permutation operation: permute the dimensions according to the specified permutation indices.
Example: if input has shape [a,b,c] and dimensions = [2,0,1] the output has shape [c,a,b]INDArray
NDMath. pow(INDArray x, double value)
Element-wise power function: out = x^valueINDArray
NDMath. pow(INDArray x, INDArray y)
Element-wise (broadcastable) power function: out = x[i]^y[i]INDArray
NDNN. preciseGelu(INDArray x)
GELU activation function - Gaussian Error Linear Units
For more details, see Gaussian Error Linear Units (GELUs) - https://arxiv.org/abs/1606.08415
This method uses the precise methodINDArray
NDNN. prelu(INDArray input, INDArray alpha, int... sharedAxes)
PReLU (Parameterized Rectified Linear Unit) operation.INDArray
NDBase. prod(INDArray x, boolean keepDims, int... dimensions)
Product array reduction operation, optionally along specified dimensions
Note that if keepDims = true, the output variable has the same rank as the input variable,
with the reduced dimensions having size 1.INDArray
NDBase. prod(INDArray x, int... dimensions)
Product array reduction operation, optionally along specified dimensions
Note that if keepDims = true, the output variable has the same rank as the input variable,
with the reduced dimensions having size 1.INDArray
NDBase. prod(INDArray x, INDArray dimensions)
Product array reduction operation, optionally along specified dimensions
Note that if keepDims = true, the output variable has the same rank as the input variable,
with the reduced dimensions having size 1.INDArray
NDBase. prod(INDArray x, INDArray dimensions, boolean keepDims)
Product array reduction operation, optionally along specified dimensions
Note that if keepDims = true, the output variable has the same rank as the input variable,
with the reduced dimensions having size 1.INDArray
NDMath. prod(INDArray in, boolean keepDims, int... dimensions)
The max of an array along each dimensionINDArray
NDMath. prod(INDArray in, int... dimensions)
The max of an array along each dimensionINDArray
NDMath. prod(INDArray in, INDArray dimensions)
The product of an array long each dimensionINDArray
NDMath. prod(INDArray in, INDArray dimensions, boolean keepDims)
The product of an array long each dimensionINDArray[]
NDLinalg. qr(INDArray input)
Computes the QR decompositions of input matrix.INDArray[]
NDLinalg. qr(INDArray input, boolean full)
Computes the QR decompositions of input matrix.INDArray
NDImage. randomCrop(INDArray input, INDArray shape)
Randomly crops imageINDArray
NDBase. range(double from, double to, double step, DataType dataType)
Create a new variable with a 1d array, where the values start at from and increment by step
up to (but not including) limit.
For example, range(1.0, 3.0, 0.5) will return [1.0, 1.5, 2.0, 2.5]INDArray
NDBase. range(INDArray from, INDArray to, INDArray step, DataType dataType)
Create a new variable with a 1d array, where the values start at from and increment by step
up to (but not including) limit.
For example, range(1.0, 3.0, 0.5) will return [1.0, 1.5, 2.0, 2.5]INDArray
NDBase. rank(INDArray in)
Returns the rank (number of dimensions, i.e., length(shape)) of the specified INDArray as a 0D scalar variableINDArray
NDMath. rationalTanh(INDArray x)
Rational Tanh Approximation elementwise function, as described in the paper:
Compact Convolutional Neural Network Cascade for Face Detection
This is a faster Tanh approximationINDArray
NDMath. rdiv(INDArray x, double value)
Scalar reverse division operation, out = scalar / inINDArray
NDMath. rdiv(INDArray x, INDArray y)
Pairwise reverse division operation, out = y / x
Note: supports broadcasting if x and y have different shapes and are broadcastable.
For example, if X has shape [1,10] and Y has shape [5,10] then op(X,Y) has output shape [5,10]
Broadcast rules are the same as NumPy: https://docs.scipy.org/doc/numpy/user/basics.broadcasting.htmlINDArray
NDMath. reciprocal(INDArray x)
Element-wise reciprocal (inverse) function: out[i] = 1 / in[i]INDArray
NDMath. rectifiedTanh(INDArray x)
Rectified tanh operation: max(0, tanh(in))INDArray
NDMath. reduceAMax(INDArray in, boolean keepDims, int... dimensions)
Absolute max array reduction operation, optionally along specified dimensions: out = max(abs(x))INDArray
NDMath. reduceAMax(INDArray in, int... dimensions)
Absolute max array reduction operation, optionally along specified dimensions: out = max(abs(x))INDArray
NDMath. reduceAMax(INDArray in, INDArray dimensions)
Absolute max array reduction operation, optionally along specified dimensions: out = max(abs(x))INDArray
NDMath. reduceAMax(INDArray in, INDArray dimensions, boolean keepDims)
Absolute max array reduction operation, optionally along specified dimensions: out = max(abs(x))INDArray
NDMath. reduceAmean(INDArray in, boolean keepDims, int... dimensions)
Absolute mean array reduction operation, optionally along specified dimensions: out = mean(abs(x))INDArray
NDMath. reduceAmean(INDArray in, int... dimensions)
Absolute mean array reduction operation, optionally along specified dimensions: out = mean(abs(x))INDArray
NDMath. reduceAmean(INDArray in, INDArray dimensions)
Absolute mean array reduction operation, optionally along specified dimensions: out = mean(abs(x))INDArray
NDMath. reduceAmean(INDArray in, INDArray dimensions, boolean keepDims)
Absolute mean array reduction operation, optionally along specified dimensions: out = mean(abs(x))INDArray
NDMath. reduceAmin(INDArray in, boolean keepDims, int... dimensions)
Absolute min array reduction operation, optionally along specified dimensions: out = min(abs(x))INDArray
NDMath. reduceAmin(INDArray in, int... dimensions)
Absolute min array reduction operation, optionally along specified dimensions: out = min(abs(x))INDArray
NDMath. reduceAmin(INDArray in, INDArray dimensions)
Absolute min array reduction operation, optionally along specified dimensions: out = min(abs(x))INDArray
NDMath. reduceAmin(INDArray in, INDArray dimensions, boolean keepDims)
Absolute min array reduction operation, optionally along specified dimensions: out = min(abs(x))INDArray
NDMath. reduceMax(INDArray in, boolean keepDims, int... dimensions)
The max of an array along each dimensionINDArray
NDMath. reduceMax(INDArray in, int... dimensions)
The max of an array along each dimensionINDArray
NDMath. reduceMax(INDArray in, INDArray dimensions)
The max of an array long each dimensionINDArray
NDMath. reduceMax(INDArray in, INDArray dimensions, boolean keepDims)
The max of an array long each dimensionINDArray
NDMath. reduceMin(INDArray in, boolean keepDims, int... dimensions)
The minimum of an array along each dimensionINDArray
NDMath. reduceMin(INDArray in, int... dimensions)
The minimum of an array along each dimensionINDArray
NDMath. reduceMin(INDArray in, INDArray dimensions)
The minimum of an array long each dimensionINDArray
NDMath. reduceMin(INDArray in, INDArray dimensions, boolean keepDims)
The minimum of an array long each dimensionINDArray
NDNN. relu(INDArray x, double cutoff)
Element-wise rectified linear function with specified cutoff:
out[i] = in[i] if in[i] >= cutoff
out[i] = 0 otherwiseINDArray
NDNN. relu6(INDArray x, double cutoff)
Element-wise "rectified linear 6" function with specified cutoff:
out[i] = min(max(in, cutoff), 6)INDArray
NDNN. reluLayer(INDArray input, INDArray weights, INDArray bias)
ReLU (Rectified Linear Unit) layer operation: out = relu(mmul(in,w) + bias)
Note that bias array is optionalINDArray
NDBase. repeat(INDArray input, INDArray repeats, int axis)
A tensor with the shape of input minus the specified axis with elements repeated along the specified axis.INDArray
NDBase. replaceWhere(INDArray update, double value, Condition condition)
Element-wise replace where condition:
out[i] = value if condition(update[i]) is satisfied, or
out[i] = update[i] if condition(update[i]) is NOT satisfiedINDArray
NDBase. replaceWhere(INDArray update, INDArray from, Condition condition)
Element-wise replace where condition:
out[i] = from[i] if condition(update[i]) is satisfied, or
out[i] = update[i] if condition(update[i]) is NOT satisfiedINDArray
NDBase. reshape(INDArray x, long... shape)
Reshape the input variable to the specified (fixed) shape.INDArray
NDBase. reshape(INDArray x, INDArray shape)
Reshape the input variable to the specified (fixed) shape.INDArray
NDImage. resizeBiCubic(INDArray input, INDArray size, boolean alignCorners, boolean alignPixelCenters)
Resize images to size using the specified method.INDArray
NDImage. resizeBiLinear(INDArray input, int height, int width, boolean alignCorners, boolean halfPixelCenters)
Resize images to size using the specified method.INDArray
NDBase. reverse(INDArray x, int... dimensions)
Reverse the values of an array for the specified dimensions
If input is:
[ 1, 2, 3]
[ 4, 5, 6]
then
reverse(in, 0):
[3, 2, 1]
[6, 5, 4]
reverse(in, 1):
[4, 5, 6]
[1, 2 3]INDArray
NDBase. reverseSequence(INDArray x, INDArray seq_lengths)
Reverse sequence op: for each slice along dimension seqDimension, the first seqLength values are reversedINDArray
NDBase. reverseSequence(INDArray x, INDArray seq_lengths, int seqDim, int batchDim)
Reverse sequence op: for each slice along dimension seqDimension, the first seqLength values are reversedINDArray
NDImage. rgbToHsv(INDArray input)
Converting array from HSV to RGB formatINDArray
NDImage. rgbToYiq(INDArray input)
Converting array from RGB to YIQ formatINDArray
NDImage. rgbToYuv(INDArray input)
Converting array from RGB to YUV formatINDArray
NDBitwise. rightShift(INDArray x, INDArray y)
Bitwise right shift operation.INDArray
NDBitwise. rightShiftCyclic(INDArray x, INDArray y)
Bitwise right cyclical shift operation.INDArray
NDMath. round(INDArray x)
Element-wise round function: out = round(x).
Rounds (up or down depending on value) to the nearest integer value.INDArray
NDMath. rsqrt(INDArray x)
Element-wise reciprocal (inverse) of square root: out = 1.0 / sqrt(x)INDArray
NDMath. rsub(INDArray x, double value)
Scalar reverse subtraction operation, out = scalar - inINDArray
NDMath. rsub(INDArray x, INDArray y)
Pairwise reverse subtraction operation, out = y - x
Note: supports broadcasting if x and y have different shapes and are broadcastable.
For example, if X has shape [1,10] and Y has shape [5,10] then op(X,Y) has output shape [5,10]
Broadcast rules are the same as NumPy: https://docs.scipy.org/doc/numpy/user/basics.broadcasting.htmlINDArray
NDBase. scalarFloorMod(INDArray in, double value)
Element-wise scalar floor modulus operation: out = floorMod(in, value).
i.e., returns the remainder after division by 'value'INDArray
NDBase. scalarMax(INDArray in, double value)
Element-wise scalar maximum operation: out = max(in, value)INDArray
NDBase. scalarMin(INDArray in, double value)
Element-wise scalar minimum operation: out = min(in, value)INDArray
NDBase. scalarSet(INDArray in, double set)
Return a variable with equal shape to the input, but all elements set to value 'set'INDArray
NDBase. scatterAdd(INDArray ref, INDArray indices, INDArray updates)
Scatter addition operation.
If indices is rank 0 (a scalar), then out[index, ...] = out[index, ...] + op(updates[...])
If indices is rank 1 (a vector), then for each position i, out[indices[i], ...] = out[indices[i], ...] + op(updates[i, ...])
If indices is rank 2+, then for each position (i,...,k), out[indices[i], ..., indices[k], ...] = out[indices[i], ..., indices[k], ...] + op(updates[i, ..., k, ...])
Note that if multiple indices refer to the same location, the contributions from each is handled correctly.INDArray
NDBase. scatterDiv(INDArray ref, INDArray indices, INDArray updates)
Scatter division operation.
If indices is rank 0 (a scalar), then out[index, ...] = out[index, ...] + op(updates[...])
If indices is rank 1 (a vector), then for each position i, out[indices[i], ...] = out[indices[i], ...] + op(updates[i, ...])
If indices is rank 2+, then for each position (i,...,k), out[indices[i], ..., indices[k], ...] = out[indices[i], ..., indices[k], ...] + op(updates[i, ..., k, ...])
Note that if multiple indices refer to the same location, the contributions from each is handled correctly.INDArray
NDBase. scatterMax(INDArray ref, INDArray indices, INDArray updates)
Scatter max operation.
If indices is rank 0 (a scalar), then out[index, ...] = out[index, ...] + op(updates[...])
If indices is rank 1 (a vector), then for each position i, out[indices[i], ...] = out[indices[i], ...] + op(updates[i, ...])
If indices is rank 2+, then for each position (i,...,k), out[indices[i], ..., indices[k], ...] = out[indices[i], ..., indices[k], ...] + op(updates[i, ..., k, ...])
Note that if multiple indices refer to the same location, the contributions from each is handled correctly.INDArray
NDBase. scatterMin(INDArray ref, INDArray indices, INDArray updates)
Scatter min operation.
If indices is rank 0 (a scalar), then out[index, ...] = out[index, ...] + op(updates[...])
If indices is rank 1 (a vector), then for each position i, out[indices[i], ...] = out[indices[i], ...] + op(updates[i, ...])
If indices is rank 2+, then for each position (i,...,k), out[indices[i], ..., indices[k], ...] = out[indices[i], ..., indices[k], ...] + op(updates[i, ..., k, ...])
Note that if multiple indices refer to the same location, the contributions from each is handled correctly.INDArray
NDBase. scatterMul(INDArray ref, INDArray indices, INDArray updates)
Scatter multiplication operation.
If indices is rank 0 (a scalar), then out[index, ...] = out[index, ...] + op(updates[...])
If indices is rank 1 (a vector), then for each position i, out[indices[i], ...] = out[indices[i], ...] + op(updates[i, ...])
If indices is rank 2+, then for each position (i,...,k), out[indices[i], ..., indices[k], ...] = out[indices[i], ..., indices[k], ...] + op(updates[i, ..., k, ...])
Note that if multiple indices refer to the same location, the contributions from each is handled correctly.INDArray
NDBase. scatterSub(INDArray ref, INDArray indices, INDArray updates)
Scatter subtraction operation.
If indices is rank 0 (a scalar), then out[index, ...] = out[index, ...] + op(updates[...])
If indices is rank 1 (a vector), then for each position i, out[indices[i], ...] = out[indices[i], ...] + op(updates[i, ...])
If indices is rank 2+, then for each position (i,...,k), out[indices[i], ..., indices[k], ...] = out[indices[i], ..., indices[k], ...] + op(updates[i, ..., k, ...])
Note that if multiple indices refer to the same location, the contributions from each is handled correctly.INDArray
NDBase. scatterUpdate(INDArray ref, INDArray indices, INDArray updates)
Scatter update operation.
If indices is rank 0 (a scalar), then out[index, ...] = out[index, ...] + op(updates[...])
If indices is rank 1 (a vector), then for each position i, out[indices[i], ...] = out[indices[i], ...] + op(updates[i, ...])
If indices is rank 2+, then for each position (i,...,k), out[indices[i], ..., indices[k], ...] = out[indices[i], ..., indices[k], ...] + op(updates[i, ..., k, ...])
Note that if multiple indices refer to the same location, the contributions from each is handled correctly.INDArray
NDBase. segmentMax(INDArray data, INDArray segmentIds)
Segment max operation.
If data = [3, 6, 1, 4, 9, 2, 8]
segmentIds = [0, 0, 1, 1, 1, 2, 2]
then output = [6, 9, 8] = [op(3,6), op(1,4,9), op(2,8)]
Note that the segment IDs must be sorted from smallest to largest segment.
See {unsortedSegment (String, SDVariable, SDVariable, int) ops
for the same op without this sorted requirementINDArray
NDBase. segmentMean(INDArray data, INDArray segmentIds)
Segment mean operation.
If data = [3, 6, 1, 4, 9, 2, 8]
segmentIds = [0, 0, 1, 1, 1, 2, 2]
then output = [6, 9, 8] = [op(3,6), op(1,4,9), op(2,8)]
Note that the segment IDs must be sorted from smallest to largest segment.
See {unsortedSegment (String, SDVariable, SDVariable, int) ops
for the same op without this sorted requirementINDArray
NDBase. segmentMin(INDArray data, INDArray segmentIds)
Segment min operation.
If data = [3, 6, 1, 4, 9, 2, 8]
segmentIds = [0, 0, 1, 1, 1, 2, 2]
then output = [6, 9, 8] = [op(3,6), op(1,4,9), op(2,8)]
Note that the segment IDs must be sorted from smallest to largest segment.
See {unsortedSegment (String, SDVariable, SDVariable, int) ops
for the same op without this sorted requirementINDArray
NDBase. segmentProd(INDArray data, INDArray segmentIds)
Segment product operation.
If data = [3, 6, 1, 4, 9, 2, 8]
segmentIds = [0, 0, 1, 1, 1, 2, 2]
then output = [6, 9, 8] = [op(3,6), op(1,4,9), op(2,8)]
Note that the segment IDs must be sorted from smallest to largest segment.
See {unsortedSegment (String, SDVariable, SDVariable, int) ops
for the same op without this sorted requirementINDArray
NDBase. segmentSum(INDArray data, INDArray segmentIds)
Segment sum operation.
If data = [3, 6, 1, 4, 9, 2, 8]
segmentIds = [0, 0, 1, 1, 1, 2, 2]
then output = [6, 9, 8] = [op(3,6), op(1,4,9), op(2,8)]
Note that the segment IDs must be sorted from smallest to largest segment.
See {unsortedSegment (String, SDVariable, SDVariable, int) ops
for the same op without this sorted requirementINDArray
NDNN. selu(INDArray x)
Element-wise SeLU function - Scaled exponential Lineal Unit: see Self-Normalizing Neural Networks
out[i] = scale * alpha * (exp(in[i])-1) if in[i]>0, or 0 if in[i] <= 0
Uses default scale and alpha values.INDArray
NDCNN. separableConv2d(INDArray layerInput, INDArray depthWeights, INDArray pointWeights, INDArray bias, Conv2DConfig Conv2DConfig)
Separable 2D convolution operation with optional biasINDArray
NDCNN. separableConv2d(INDArray layerInput, INDArray depthWeights, INDArray pointWeights, Conv2DConfig Conv2DConfig)
Separable 2D convolution operation with optional biasINDArray
NDBase. sequenceMask(INDArray lengths, int maxLen, DataType dataType)
Generate a sequence mask (with values 0 or 1) based on the specified lengths
Specifically, out[i, ..., k, j] = (j < lengths[i, ..., k] ? 1.0 : 0.0)INDArray
NDBase. sequenceMask(INDArray lengths, DataType dataType)
see sequenceMask(String, SDVariable, SDVariable, DataType)INDArray
NDBase. sequenceMask(INDArray lengths, INDArray maxLen, DataType dataType)
Generate a sequence mask (with values 0 or 1) based on the specified lengths
Specifically, out[i, ..., k, j] = (j < lengths[i, ..., k] ? 1.0 : 0.0)INDArray
NDMath. setDiag(INDArray in, INDArray diag)
Set the diagonal value to the specified values
If input is
[ a, b, c]
[ d, e, f]
[ g, h, i]
and diag = [ 1, 2, 3] then output is
[ 1, b, c]
[ d, 2, f]
[ g, h, 3]INDArray[]
NDBase. setShape(INDArray input, INDArray shape)
Sets an inplace shape on the passed in input.INDArray
NDMath. shannonEntropy(INDArray in, boolean keepDims, int... dimensions)
Shannon Entropy reduction: -sum(x * log2(x))INDArray
NDMath. shannonEntropy(INDArray in, int... dimensions)
Shannon Entropy reduction: -sum(x * log2(x))INDArray
NDMath. shannonEntropy(INDArray in, INDArray dimensions)
Shannon Entropy reduction: -sum(x * log2(x))INDArray
NDMath. shannonEntropy(INDArray in, INDArray dimensions, boolean keepDims)
Shannon Entropy reduction: -sum(x * log2(x))INDArray
NDBase. shape(INDArray input)
Returns the shape of the specified INDArray as a 1D INDArrayINDArray
NDNN. sigmoid(INDArray x)
Element-wise sigmoid function: out[i] = 1.0/(1+exp(-in[i]))INDArray
NDLoss. sigmoidCrossEntropy(INDArray label, INDArray predictionLogits, INDArray weights)
Sigmoid cross entropy: applies the sigmoid activation function on the input logits (input "pre-sigmoid preductions")
and implements the binary cross entropy loss function.INDArray
NDLoss. sigmoidCrossEntropy(INDArray label, INDArray predictionLogits, INDArray weights, LossReduce lossReduce, double labelSmoothing)
Sigmoid cross entropy: applies the sigmoid activation function on the input logits (input "pre-sigmoid preductions")
and implements the binary cross entropy loss function.INDArray
NDNN. sigmoidDerivative(INDArray x, INDArray wrt)
Element-wise sigmoid function derivative: dL/dIn given input and dL/dOutINDArray
NDMath. sign(INDArray x)
Element-wise sign (signum) function:
out = -1 if in < 0
out = 0 if in = 0
out = 1 if in > 0INDArray
NDMath. sin(INDArray x)
Elementwise sine operation: out = sin(x)INDArray
NDMath. sinh(INDArray x)
Elementwise sinh (hyperbolic sine) operation: out = sinh(x)INDArray
NDBase. size(INDArray in)
Returns the size (number of elements, i.e., prod(shape)) of the specified INDArray as a 0D scalar variableINDArray
NDBase. sizeAt(INDArray in, int dimension)
Returns a rank 0 (scalar) variable for the size of the specified dimension.
For example, if X has shape [10,20,30] then sizeAt(X,1)=20.INDArray
NDBase. slice(INDArray input, int[] begin, int... size)
Get a subset of the specified input, by specifying the first element and the size of the array.
For example, if input is:
[a, b, c]
[d, e, f]
then slice(input, begin=[0,1], size=[2,1] will return:
[b]
[e]
Note that for each dimension i, begin[i] + size[i] <= input.size(i)INDArray
NDBase. slice(INDArray input, INDArray begin, INDArray size)
Get a subset of the specified input, by specifying the first element and the size of the array.
For example, if input is:
[a, b, c]
[d, e, f]
then slice(input, begin=[0,1], size=[2,1] will return:
[b]
[e]
Note that for each dimension i, begin[i] + size[i] <= input.size(i)INDArray
NDNN. softmax(INDArray x)
Softmax activation, along the specified dimensionINDArray
NDNN. softmax(INDArray x, int dimension)
Softmax activation, along the specified dimensionINDArray
NDLoss. softmaxCrossEntropy(INDArray oneHotLabels, INDArray logitPredictions, INDArray weights)
Applies the softmax activation function to the input, then implement multi-class cross entropy:
-sum_classes label[i] * log(p[c])
wherep = softmax(logits)
If LossReduce#NONE is used, returned shape is [numExamples] out for [numExamples, numClasses] predicitons/labels;
otherwise, the output is a scalar.INDArray
NDLoss. softmaxCrossEntropy(INDArray oneHotLabels, INDArray logitPredictions, INDArray weights, LossReduce lossReduce, double labelSmoothing)
Applies the softmax activation function to the input, then implement multi-class cross entropy:
-sum_classes label[i] * log(p[c])
wherep = softmax(logits)
If LossReduce#NONE is used, returned shape is [numExamples] out for [numExamples, numClasses] predicitons/labels;
otherwise, the output is a scalar.INDArray
NDNN. softmaxDerivative(INDArray x, INDArray wrt, int dimension)
Softmax derivative functionINDArray
NDNN. softplus(INDArray x)
Element-wise softplus function: out = log(exp(x) + 1)INDArray
NDNN. softsign(INDArray x)
Element-wise softsign function: out = x / (abs(x) + 1)INDArray
NDNN. softsignDerivative(INDArray x)
Element-wise derivative (dOut/dIn) of the softsign function softsign(INDArray)INDArray
NDLinalg. solve(INDArray matrix, INDArray rhs)
Solver for systems of linear equations.INDArray
NDLinalg. solve(INDArray matrix, INDArray rhs, boolean adjoint)
Solver for systems of linear equations.INDArray
NDCNN. spaceToBatch(INDArray x, int[] blocks, int[] paddingTop, int... paddingBottom)
Convolution 2d layer space to batch operation on 4d input.
Increases input batch dimension by rearranging data from spatial dimensions into batch dimensionINDArray
NDCNN. spaceToDepth(INDArray x, int blockSize, DataFormat dataFormat)
Convolution 2d layer space to depth operation on 4d input.
Increases input channels (reduced spatial dimensions) by rearranging data into a larger channels dimension
Example: if input has shape [mb, 2, 4, 4] and block size is 2, then output size is [mb, 8/(2*2), 2*2, 2*2]
= [mb, 2, 4, 4]INDArray
NDLoss. sparseSoftmaxCrossEntropy(INDArray logits, INDArray labels)
As per softmaxCrossEntropy(String, SDVariable, SDVariable, LossReduce) but the labels variable
is represented as an integer array instead of the equivalent one-hot array.
i.e., if logits are rank N, then labels have rank N-1INDArray
NDBase. sparseToDense(INDArray indices, INDArray shape, INDArray values)
Create a dense matrix equivalent of a sparse matrix based on the given input.INDArray
NDBase. sparseToDense(INDArray indices, INDArray shape, INDArray values, INDArray defaultValue)
Create a dense matrix equivalent of a sparse matrix based on the given input.INDArray[]
NDBase. split(INDArray input, int numSplit, int splitDim)
Split a value in to a list of ndarrays.INDArray[]
NDBase. split(INDArray input, INDArray numSplit, int splitDim)
Split a value in to a list of ndarrays.INDArray[]
NDBase. splitV(INDArray input, INDArray sizes, int numSplit, int splitDim)
Split a value in to a list of ndarrays with varying sizes
according to the sizes parameter.INDArray
NDMath. sqrt(INDArray x)
Element-wise square root function: out = sqrt(x)INDArray
NDMath. square(INDArray x)
Element-wise square function: out = x^2INDArray
NDMath. squaredDifference(INDArray x, INDArray y)
Pairwise squared difference operation.
Note: supports broadcasting if x and y have different shapes and are broadcastable.
For example, if X has shape [1,10] and Y has shape [5,10] then op(X,Y) has output shape [5,10]
Broadcast rules are the same as NumPy: https://docs.scipy.org/doc/numpy/user/basics.broadcasting.htmlINDArray
NDBase. squaredNorm(INDArray x, boolean keepDims, int... dimensions)
Squared L2 norm: see norm2(String, SDVariable, boolean, int...)
Note that if keepDims = true, the output variable has the same rank as the input variable,
with the reduced dimensions having size 1.INDArray
NDBase. squaredNorm(INDArray x, int... dimensions)
Squared L2 norm: see norm2(String, SDVariable, boolean, int...)
Note that if keepDims = true, the output variable has the same rank as the input variable,
with the reduced dimensions having size 1.INDArray
NDMath. squaredNorm(INDArray in, boolean keepDims, int... dimensions)
Sum of squared differences.INDArray
NDMath. squaredNorm(INDArray in, int... dimensions)
Sum of squared differences.INDArray
NDMath. squaredNorm(INDArray in, INDArray dimensions)
Sum of squared differences.INDArray
NDMath. squaredNorm(INDArray in, INDArray dimensions, boolean keepDims)
Sum of squared differences.INDArray
NDBase. squeeze(INDArray x, int axis)
Remove a single dimension of size 1.
For example, if input has shape [a,b,1,c] then squeeze(input, 2) returns an array of shape [a,b,c]INDArray
NDRNN. sru(INDArray x, INDArray initialC, INDArray mask, SRUWeights SRUWeights)
The SRU layer.INDArray
NDRNN. sru(INDArray x, INDArray initialC, SRUWeights SRUWeights)
The SRU layer.INDArray
NDRNN. sruCell(INDArray x, INDArray cLast, SRUWeights SRUWeights)
The SRU layer.INDArray
NDBase. stack(int axis, INDArray... values)
Stack a set of N INDArray of rank X into one rank X+1 variable.
If inputs have shape [a,b,c] then output has shape:
axis = 0: [N,a,b,c]
axis = 1: [a,N,b,c]
axis = 2: [a,b,N,c]
axis = 3: [a,b,c,N]
see unstack(String[], SDVariable, int, int)INDArray
NDBase. standardDeviation(INDArray x, boolean biasCorrected, boolean keepDims, int... dimensions)
Standard deviation array reduction operation, optionally along specified dimensions
Note that if keepDims = true, the output variable has the same rank as the input variable,
with the reduced dimensions having size 1.INDArray
NDBase. standardDeviation(INDArray x, boolean biasCorrected, int... dimensions)
Standard deviation array reduction operation, optionally along specified dimensions
Note that if keepDims = true, the output variable has the same rank as the input variable,
with the reduced dimensions having size 1.INDArray
NDMath. standardize(INDArray x, int... dimensions)
Standardize input variable along given axisINDArray
NDMath. step(INDArray x, double value)
Elementwise step function:
out(x) = 1 if x >= cutoff
out(x) = 0 otherwiseINDArray
NDBase. stridedSlice(INDArray in, long[] begin, long[] end, long... strides)
Get a subset of the specified input, by specifying the first element, last element, and the strides.
For example, if input is:
[a, b, c]
[d, e, f]
[g, h, i]
then stridedSlice(input, begin=[0,1], end=[2,2], strides=[2,1], all masks = 0) will return:
[b, c]
[h, i]INDArray
NDBase. stridedSlice(INDArray in, long[] begin, long[] end, long[] strides, int beginMask, int endMask, int ellipsisMask, int newAxisMask, int shrinkAxisMask)
Get a subset of the specified input, by specifying the first element, last element, and the strides.
For example, if input is:
[a, b, c]
[d, e, f]
[g, h, i]
then stridedSlice(input, begin=[0,1], end=[2,2], strides=[2,1], all masks = 0) will return:
[b, c]
[h, i]INDArray
NDBase. stridedSlice(INDArray in, INDArray begin, INDArray end, INDArray strides)
Get a subset of the specified input, by specifying the first element, last element, and the strides.
For example, if input is:
[a, b, c]
[d, e, f]
[g, h, i]
then stridedSlice(input, begin=[0,1], end=[2,2], strides=[2,1], all masks = 0) will return:
[b, c]
[h, i]INDArray
NDBase. stridedSlice(INDArray in, INDArray begin, INDArray end, INDArray strides, int beginMask, int endMask, int ellipsisMask, int newAxisMask, int shrinkAxisMask)
Get a subset of the specified input, by specifying the first element, last element, and the strides.
For example, if input is:
[a, b, c]
[d, e, f]
[g, h, i]
then stridedSlice(input, begin=[0,1], end=[2,2], strides=[2,1], all masks = 0) will return:
[b, c]
[h, i]INDArray
NDMath. sub(INDArray x, double value)
Scalar subtraction operation, out = in - scalarINDArray
NDMath. sub(INDArray x, INDArray y)
Pairwise subtraction operation, out = x - y
Note: supports broadcasting if x and y have different shapes and are broadcastable.
For example, if X has shape [1,10] and Y has shape [5,10] then op(X,Y) has output shape [5,10]
Broadcast rules are the same as NumPy: https://docs.scipy.org/doc/numpy/user/basics.broadcasting.htmlINDArray
NDBase. sum(INDArray x, boolean keepDims, int... dimensions)
Sum array reduction operation, optionally along specified dimensions.
Note that if keepDims = true, the output variable has the same rank as the input variable,
with the reduced dimensions having size 1.INDArray
NDBase. sum(INDArray x, int... dimensions)
Sum array reduction operation, optionally along specified dimensions.
Note that if keepDims = true, the output variable has the same rank as the input variable,
with the reduced dimensions having size 1.INDArray
NDMath. sum(INDArray in, boolean keepDims, int... dimensions)
Sum of an array, optionally along specified dimensions: out = sum(x))INDArray
NDMath. sum(INDArray in, int... dimensions)
Sum of an array, optionally along specified dimensions: out = sum(x))INDArray
NDMath. sum(INDArray in, INDArray dimensions)
Sum of an array, optionally along specified dimensions: out = sum(x))INDArray
NDMath. sum(INDArray in, INDArray dimensions, boolean keepDims)
Sum of an array, optionally along specified dimensions: out = sum(x))INDArray
NDLinalg. svd(INDArray input, boolean fullUV, boolean computeUV)
Calculates singular value decomposition.INDArray
NDLinalg. svd(INDArray input, boolean fullUV, boolean computeUV, int switchNum)
Calculates singular value decomposition.INDArray
NDNN. swish(INDArray x)
Element-wise "swish" function: out = x * sigmoid(b*x) with b=1.0
See: https://arxiv.org/abs/1710.05941INDArray[]
NDBase. switchOp(INDArray x, INDArray predicate)
Switch operation
Predicate - if false, values are output to left (first) branch/output; if true, to right (second) branch/outputINDArray
NDMath. tan(INDArray x)
Elementwise tangent operation: out = tan(x)INDArray
NDMath. tanh(INDArray x)
Elementwise tanh (hyperbolic tangent) operation: out = tanh(x)INDArray
NDNN. tanh(INDArray x)
Elementwise tanh (hyperbolic tangent) operation: out = tanh(x)INDArray
NDBase. tensorMmul(INDArray x, INDArray y, int[] dimensionsX, int... dimensionsY)
//TODO: Ops must be documented.INDArray
NDBase. tensorMmul(INDArray x, INDArray y, int[] dimensionsX, int[] dimensionsY, boolean transposeX, boolean transposeY, boolean transposeZ)
//TODO: Ops must be documented.INDArray
NDBase. tile(INDArray x, int... repeat)
see tile(String, SDVariable, int...)INDArray
NDBase. tile(INDArray x, INDArray repeat)
Repeat (tile) the input tensor the specified number of times.
For example, if input is
[1, 2]
[3, 4]
and repeat is [2, 3]
then output is
[1, 2, 1, 2, 1, 2]
[3, 4, 3, 4, 3, 4]
[1, 2, 1, 2, 1, 2]
[3, 4, 3, 4, 3, 4]INDArray[]
NDNN. topK(INDArray input, double k, boolean sorted)
Find values and indices for the largest k entries along the last dimension.INDArray
NDMath. trace(INDArray in)
Matrix trace operation
For rank 2 matrices, the output is a scalar with the trace - i.e., sum of the main diagonal.
For higher rank inputs, output[a,b,c] = trace(in[a,b,c,:,:])INDArray
NDBase. transpose(INDArray x)
Matrix transpose operation: If input has shape [a,b] output has shape [b,a]INDArray
NDLinalg. tri(int row, int column)
An array with ones at and below the given diagonal and zeros elsewhere.INDArray
NDLinalg. tri(DataType dataType, int row, int column, int diagonal)
An array with ones at and below the given diagonal and zeros elsewhere.INDArray
NDLinalg. triangularSolve(INDArray matrix, INDArray rhs, boolean lower, boolean adjoint)
Solver for systems of linear questions.INDArray
NDLinalg. triu(INDArray input)
Upper triangle of an array.INDArray
NDLinalg. triu(INDArray input, int diag)
Upper triangle of an array.INDArray
NDRandom. uniform(double min, double max, DataType datatype, long... shape)
Generate a new random INDArray, where values are randomly sampled according to a uniform distribution,
U(min,max)INDArray
NDBase. unsortedSegmentMax(INDArray data, INDArray segmentIds, int numSegments)
Unsorted segment max operation.INDArray
NDBase. unsortedSegmentMax(INDArray data, INDArray segmentIds, INDArray numSegments)
Unsorted segment max operation.INDArray
NDBase. unsortedSegmentMean(INDArray data, INDArray segmentIds, int numSegments)
Unsorted segment mean operation.INDArray
NDBase. unsortedSegmentMean(INDArray data, INDArray segmentIds, INDArray numSegments)
Unsorted segment mean operation.INDArray
NDBase. unsortedSegmentMin(INDArray data, INDArray segmentIds, int numSegments)
Unsorted segment min operation.INDArray
NDBase. unsortedSegmentMin(INDArray data, INDArray segmentIds, INDArray numSegments)
Unsorted segment min operation.INDArray
NDBase. unsortedSegmentProd(INDArray data, INDArray segmentIds, int numSegments)
Unsorted segment product operation.INDArray
NDBase. unsortedSegmentProd(INDArray data, INDArray segmentIds, INDArray numSegments)
Unsorted segment product operation.INDArray
NDBase. unsortedSegmentSqrtN(INDArray data, INDArray segmentIds, int numSegments)
Unsorted segment sqrtN operation.INDArray
NDBase. unsortedSegmentSqrtN(INDArray data, INDArray segmentIds, INDArray numSegments)
Unsorted segment sqrtN operation.INDArray
NDBase. unsortedSegmentSum(INDArray data, INDArray segmentIds, int numSegments)
Unsorted segment sum operation.INDArray
NDBase. unsortedSegmentSum(INDArray data, INDArray segmentIds, INDArray numSegments)
Unsorted segment sum operation.INDArray[]
NDBase. unstack(INDArray value, int axis, int num)
Unstack a variable of rank X into N rank X-1 variables by taking slices along the specified axis.
If input has shape [a,b,c] then output has shape:
axis = 0: [b,c]
axis = 1: [a,c]
axis = 2: [a,b]INDArray
NDCNN. upsampling2d(INDArray input, int scale)
Upsampling layer for 2D inputs.
scale is used for both height and width dimensions.INDArray
NDCNN. upsampling2d(INDArray input, int scaleH, int scaleW, boolean nchw)
2D Convolution layer operation - Upsampling 2dINDArray
NDCNN. upsampling3d(INDArray input, boolean ncdhw, int scaleD, int scaleH, int scaleW)
3D Convolution layer operation - Upsampling 3dINDArray
NDBase. variance(INDArray x, boolean biasCorrected, boolean keepDims, int... dimensions)
Variance array reduction operation, optionally along specified dimensions
Note that if keepDims = true, the output variable has the same rank as the input variable,
with the reduced dimensions having size 1.INDArray
NDBase. variance(INDArray x, boolean biasCorrected, int... dimensions)
Variance array reduction operation, optionally along specified dimensions
Note that if keepDims = true, the output variable has the same rank as the input variable,
with the reduced dimensions having size 1.INDArray
NDBase. where(INDArray condition)
Returns elements that are true from the given condition array
Note that if keepDims = true, the output variable has the same rank as the input variable,
with the reduced dimensions having size 1.INDArray
NDBase. where(INDArray x, INDArray condition)
Similar to numpy where, takes elements from x or y depending on whether the condition at a given element is true or false
Note that if keepDims = true, the output variable has the same rank as the input variable,
with the reduced dimensions having size 1.INDArray
NDBase. where(INDArray x, INDArray y, INDArray condition)
Similar to numpy where, takes elements from x or y depending on whether the condition at a given element is true or false
Note that if keepDims = true, the output variable has the same rank as the input variable,
with the reduced dimensions having size 1.INDArray
NDBase. whereNumpy(INDArray x, INDArray y, INDArray condition)
As implemented in numpy, Return elements chosen from x or y depending on condition.
Note that if keepDims = true, the output variable has the same rank as the input variable,
with the reduced dimensions having size 1.INDArray
NDBitwise. xor(INDArray x, INDArray y)
Bitwise XOR operation (exclusive OR).INDArray
NDMath. xor(INDArray x, INDArray y)
Boolean XOR (exclusive OR) operation: elementwise (x != 0) XOR (y != 0)
If x and y arrays have equal shape, the output shape is the same as these inputs.
Note: supports broadcasting if x and y have different shapes and are broadcastable.
Returns an array with values 1 where condition is satisfied, or value 0 otherwise.INDArray
NDImage. yiqToRgb(INDArray input)
Converting image from YIQ to RGB formatINDArray
NDImage. yuvToRgb(INDArray input)
Converting image from YUV to RGB formatINDArray
NDMath. zeroFraction(INDArray input)
Full array zero fraction array reduction operation, optionally along specified dimensions: out = (count(x == 0) / length(x))INDArray
NDBase. zerosLike(INDArray input)
Return a variable of all 0s, with the same shape as the input variable.Methods in org.nd4j.linalg.factory.ops with parameters of type INDArray Modifier and Type Method Description INDArray
NDMath. abs(INDArray x)
Elementwise absolute value operation: out = abs(x)INDArray
NDLoss. absoluteDifference(INDArray label, INDArray predictions, INDArray weights)
Absolute difference loss:sum_i abs( label[i] - predictions[i] )
INDArray
NDLoss. absoluteDifference(INDArray label, INDArray predictions, INDArray weights, LossReduce lossReduce)
Absolute difference loss:sum_i abs( label[i] - predictions[i] )
INDArray
NDMath. acos(INDArray x)
Elementwise acos (arccosine, inverse cosine) operation: out = arccos(x)INDArray
NDMath. acosh(INDArray x)
Elementwise acosh (inverse hyperbolic cosine) function: out = acosh(x)INDArray
NDMath. add(INDArray x, double value)
Scalar add operation, out = in + scalarINDArray
NDMath. add(INDArray x, INDArray y)
Pairwise addition operation, out = x + y
Note: supports broadcasting if x and y have different shapes and are broadcastable.
For example, if X has shape [1,10] and Y has shape [5,10] then op(X,Y) has output shape [5,10]
Broadcast rules are the same as NumPy: https://docs.scipy.org/doc/numpy/user/basics.broadcasting.htmlINDArray
NDImage. adjustContrast(INDArray in, double factor)
Adjusts contrast of RGB or grayscale images.INDArray
NDImage. adjustHue(INDArray in, double delta)
Adjust hue of RGB imageINDArray
NDImage. adjustSaturation(INDArray in, double factor)
Adjust saturation of RGB imagesINDArray
NDBase. all(INDArray x, int... dimensions)
Boolean and array reduction operation, optionally along specified dimensionsINDArray
NDBitwise. and(INDArray x, INDArray y)
Bitwise AND operation.INDArray
NDMath. and(INDArray x, INDArray y)
Boolean AND operation: elementwise (x != 0) && (y != 0)
If x and y arrays have equal shape, the output shape is the same as these inputs.
Note: supports broadcasting if x and y have different shapes and are broadcastable.
Returns an array with values 1 where condition is satisfied, or value 0 otherwise.INDArray
NDBase. any(INDArray x, int... dimensions)
Boolean or array reduction operation, optionally along specified dimensionsINDArray
NDBase. argmax(INDArray in, boolean keepDims, int... dimensions)
Argmax array reduction operation, optionally along specified dimensions.
Output values are the index of the maximum value of each slice along the specified dimension.
Note that if keepDims = true, the output variable has the same rank as the input variable,
with the reduced dimensions having size 1.INDArray
NDBase. argmax(INDArray in, int... dimensions)
Argmax array reduction operation, optionally along specified dimensions.
Output values are the index of the maximum value of each slice along the specified dimension.
Note that if keepDims = true, the output variable has the same rank as the input variable,
with the reduced dimensions having size 1.INDArray
NDBase. argmin(INDArray in, boolean keepDims, int... dimensions)
Argmin array reduction operation, optionally along specified dimensions.
Output values are the index of the minimum value of each slice along the specified dimension.
Note that if keepDims = true, the output variable has the same rank as the input variable,
with the reduced dimensions having size 1.INDArray
NDBase. argmin(INDArray in, int... dimensions)
Argmin array reduction operation, optionally along specified dimensions.
Output values are the index of the minimum value of each slice along the specified dimension.
Note that if keepDims = true, the output variable has the same rank as the input variable,
with the reduced dimensions having size 1.INDArray
NDMath. asin(INDArray x)
Elementwise asin (arcsin, inverse sine) operation: out = arcsin(x)INDArray
NDMath. asinh(INDArray x)
Elementwise asinh (inverse hyperbolic sine) function: out = asinh(x)INDArray
NDBase. assign(INDArray x, INDArray y)
Assign the contents of y to x.
Y must be broadcastable to x or the same shape.INDArray
NDMath. asum(INDArray in, boolean keepDims, int... dimensions)
Absolute sum array reduction operation, optionally along specified dimensions: out = sum(abs(x))INDArray
NDMath. asum(INDArray in, int... dimensions)
Absolute sum array reduction operation, optionally along specified dimensions: out = sum(abs(x))INDArray
NDMath. atan(INDArray x)
Elementwise atan (arctangent, inverse tangent) operation: out = arctangent(x)INDArray
NDMath. atan2(INDArray y, INDArray x)
Elementwise atan (arctangent, inverse tangent) operation: out = atan2(x,y).
Similar to atan(y/x) but sigts of x and y are used to determine the location of the resultINDArray
NDMath. atanh(INDArray x)
Elementwise atanh (inverse hyperbolic tangent) function: out = atanh(x)INDArray
NDCNN. avgPooling2d(INDArray input, Pooling2DConfig Pooling2DConfig)
2D Convolution layer operation - average pooling 2dINDArray
NDCNN. avgPooling3d(INDArray input, Pooling3DConfig Pooling3DConfig)
3D convolution layer operation - average pooling 3dINDArray[]
NDBase. batchMmul(INDArray[] inputsA, INDArray... inputsB)
Matrix multiply a batch of matrices.INDArray[]
NDBase. batchMmul(INDArray[] inputsA, INDArray[] inputsB, boolean transposeA, boolean transposeB)
Matrix multiply a batch of matrices.INDArray
NDNN. batchNorm(INDArray input, INDArray mean, INDArray variance, INDArray gamma, INDArray beta, double epsilon, int... axis)
INDArray
NDCNN. batchToSpace(INDArray x, int[] blocks, int[] croppingTop, int... croppingBottom)
Convolution 2d layer batch to space operation on 4d input.
Reduces input batch dimension by rearranging data into a larger spatial dimensionsINDArray
NDNN. biasAdd(INDArray input, INDArray bias, boolean nchw)
Bias addition operation: a special case of addition, typically used with CNN 4D activations and a 1D bias vectorINDArray
NDBitwise. bitRotl(INDArray x, INDArray shift)
Roll integer bits to the left, i.e.INDArray
NDBitwise. bitRotr(INDArray x, INDArray shift)
Roll integer bits to the right, i.e.INDArray
NDBitwise. bitsHammingDistance(INDArray x, INDArray y)
Bitwise Hamming distance reduction over all elements of both input arrays.
For example, if x=01100000 and y=1010000 then the bitwise Hamming distance is 2 (due to differences at positions 0 and 1)
Inputs must satisfy the following constraints:
Must be same types: isSameType(x, y)INDArray
NDBitwise. bitShift(INDArray x, INDArray shift)
Shift integer bits to the left, i.e.INDArray
NDMath. bitShift(INDArray x, INDArray shift)
Bit shift operationINDArray
NDBitwise. bitShiftRight(INDArray x, INDArray shift)
Shift integer bits to the right, i.e.INDArray
NDMath. bitShiftRight(INDArray x, INDArray shift)
Right bit shift operationINDArray
NDMath. bitShiftRotl(INDArray x, INDArray shift)
Cyclic bit shift operationINDArray
NDMath. bitShiftRotr(INDArray x, INDArray shift)
Cyclic right shift operationINDArray
NDBase. castTo(INDArray arg, DataType datatype)
Cast the array to a new datatype - for example, Integer -> FloatINDArray
NDMath. ceil(INDArray x)
Element-wise ceiling function: out = ceil(x).
Rounds each value up to the nearest integer value (if not already an integer)INDArray
NDLinalg. cholesky(INDArray input)
Computes the Cholesky decomposition of one or more square matrices.INDArray
NDMath. clipByAvgNorm(INDArray x, double clipValue, int... dimensions)
Clips tensor values to a maximum average L2-norm.INDArray
NDBase. clipByNorm(INDArray x, double clipValue)
Returns a clipped ndarray such that the input is normalized so that its L2 norm
is <= the specified value.INDArray
NDBase. clipByNorm(INDArray x, INDArray clipValue, INDArray dimensions)
Returns a clipped ndarray such that the input is normalized so that its L2 norm
is <= the specified value.INDArray
NDMath. clipByNorm(INDArray x, double clipValue, int... dimensions)
Clipping by L2 norm, optionally along dimension(s)
if l2Norm(x,dimension) < clipValue, then input is returned unmodifed
Otherwise, out[i] = in[i] * clipValue / l2Norm(in, dimensions) where each value is clipped according
to the corresponding l2Norm along the specified dimensionsINDArray
NDBase. clipByValue(INDArray x, double clipValueMin, double clipValueMax)
Return the clipped ndarray containing values no smaller or larger than the given min and max.INDArray
NDBase. clipByValue(INDArray x, INDArray clipValueMin, INDArray clipValueMax)
Return the clipped ndarray containing values no smaller or larger than the given min and max.INDArray
NDMath. clipByValue(INDArray x, double clipValueMin, double clipValueMax)
Element-wise clipping function:
out[i] = in[i] if in[i] >= clipValueMin and in[i] <= clipValueMax
out[i] = clipValueMin if in[i] < clipValueMin
out[i] = clipValueMax if in[i] > clipValueMaxINDArray
NDCNN. col2Im(INDArray in, Conv2DConfig Conv2DConfig)
col2im operation for use in 2D convolution operations.INDArray
NDBase. concat(int dimension, INDArray... inputs)
Concatenate a set of inputs along the specified dimension.
Note that inputs must have identical rank and identical dimensions, other than the dimension to stack on.
For example, if 2 inputs have shape [a, x, c] and [a, y, c] and dimension = 1, then the output has shape [a, x+y, c]
Inputs must satisfy the following constraints:
Input arrays must all be the same datatype: isSameType(inputs)INDArray
NDMath. confusionMatrix(INDArray labels, INDArray pred, int numClasses)
Compute the 2d confusion matrix of size [numClasses, numClasses] from a pair of labels and predictions, both of
which are represented as integer values.
For example, if labels = [0, 1, 1], predicted = [0, 2, 1], and numClasses=4 then output is:
[1, 0, 0, 0]
[0, 1, 1, 0]
[0, 0, 0, 0]
[0, 0, 0, 0]INDArray
NDMath. confusionMatrix(INDArray labels, INDArray pred, DataType dataType)
Compute the 2d confusion matrix of size [numClasses, numClasses] from a pair of labels and predictions, both of
which are represented as integer values.INDArray
NDMath. confusionMatrix(INDArray labels, INDArray pred, INDArray weights)
Compute the 2d confusion matrix of size [numClasses, numClasses] from a pair of labels and predictions, both of
which are represented as integer values.INDArray
NDMath. confusionMatrix(INDArray labels, INDArray pred, INDArray weights, int numClasses)
Compute the 2d confusion matrix of size [numClasses, numClasses] from a pair of labels and predictions, both of
which are represented as integer values.
For example, if labels = [0, 1, 1], predicted = [0, 2, 1], numClasses = 4, and weights = [1, 2, 3]
[1, 0, 0, 0]
[0, 3, 2, 0]
[0, 0, 0, 0]
[0, 0, 0, 0]INDArray
NDCNN. conv1d(INDArray input, INDArray weights, INDArray bias, Conv1DConfig Conv1DConfig)
Conv1d operation.INDArray
NDCNN. conv1d(INDArray input, INDArray weights, Conv1DConfig Conv1DConfig)
Conv1d operation.INDArray
NDCNN. conv2d(INDArray layerInput, INDArray weights, INDArray bias, Conv2DConfig Conv2DConfig)
2D Convolution operation with optional biasINDArray
NDCNN. conv2d(INDArray layerInput, INDArray weights, Conv2DConfig Conv2DConfig)
2D Convolution operation with optional biasINDArray
NDCNN. conv3d(INDArray input, INDArray weights, INDArray bias, Conv3DConfig Conv3DConfig)
Convolution 3D operation with optional biasINDArray
NDCNN. conv3d(INDArray input, INDArray weights, Conv3DConfig Conv3DConfig)
Convolution 3D operation with optional biasINDArray
NDMath. cos(INDArray x)
Elementwise cosine operation: out = cos(x)INDArray
NDMath. cosh(INDArray x)
Elementwise cosh (hyperbolic cosine) operation: out = cosh(x)INDArray
NDLoss. cosineDistance(INDArray label, INDArray predictions, INDArray weights, int dimension)
Cosine distance loss:1 - cosineSimilarity(x,y)
or1 - sum_i label[i] * prediction[i]
, which is
equivalent to cosine distance when both the predictions and labels are normalized.
Note: This loss function assumes that both the predictions and labels are normalized to have unit l2 norm.
If this is not the case, you should normalize them first by dividing by norm2(String, SDVariable, boolean, int...)
along the cosine distance dimension (with keepDims=true).INDArray
NDLoss. cosineDistance(INDArray label, INDArray predictions, INDArray weights, LossReduce lossReduce, int dimension)
Cosine distance loss:1 - cosineSimilarity(x,y)
or1 - sum_i label[i] * prediction[i]
, which is
equivalent to cosine distance when both the predictions and labels are normalized.
Note: This loss function assumes that both the predictions and labels are normalized to have unit l2 norm.
If this is not the case, you should normalize them first by dividing by norm2(String, SDVariable, boolean, int...)
along the cosine distance dimension (with keepDims=true).INDArray
NDMath. cosineDistance(INDArray x, INDArray y, boolean keepDims, boolean isComplex, int... dimensions)
Cosine distance reduction operation.INDArray
NDMath. cosineDistance(INDArray x, INDArray y, int... dimensions)
Cosine distance reduction operation.INDArray
NDMath. cosineSimilarity(INDArray x, INDArray y, boolean keepDims, boolean isComplex, int... dimensions)
Cosine similarity pairwise reduction operation.INDArray
NDMath. cosineSimilarity(INDArray x, INDArray y, int... dimensions)
Cosine similarity pairwise reduction operation.INDArray
NDMath. countNonZero(INDArray in, boolean keepDims, int... dimensions)
Count non zero array reduction operation, optionally along specified dimensions: out = count(x != 0)INDArray
NDMath. countNonZero(INDArray in, int... dimensions)
Count non zero array reduction operation, optionally along specified dimensions: out = count(x != 0)INDArray
NDMath. countZero(INDArray in, boolean keepDims, int... dimensions)
Count zero array reduction operation, optionally along specified dimensions: out = count(x == 0)INDArray
NDMath. countZero(INDArray in, int... dimensions)
Count zero array reduction operation, optionally along specified dimensions: out = count(x == 0)INDArray
NDBase. create(INDArray shape, DataType dataType)
Return a newly created variable, with the specified shape and data type.INDArray
NDBase. create(INDArray shape, DataType dataType, String order, boolean initialize)
Return a newly created variable, with the specified shape and data type.INDArray
NDBase. createView(INDArray input, INDArray... indices)
Return a newly created variable, with the specified shape and data type.INDArray
NDNN. cReLU(INDArray x)
Concatenates a ReLU which selects only the positive part of the activation with a ReLU which selects only the negative part of the activation.INDArray
NDImage. cropAndResize(INDArray image, INDArray cropBoxes, INDArray boxIndices, INDArray cropOutSize)
Given an input image and some crop boxes, extract out the image subsets and resize them to the specified size.INDArray
NDImage. cropAndResize(INDArray image, INDArray cropBoxes, INDArray boxIndices, INDArray cropOutSize, double extrapolationValue)
Given an input image and some crop boxes, extract out the image subsets and resize them to the specified size.INDArray
NDLinalg. cross(INDArray a, INDArray b)
Computes pairwise cross product.INDArray
NDMath. cross(INDArray a, INDArray b)
Returns the pair-wise cross product of equal size arrays a and b: a x b = ||a||x||b|| sin(theta).
Can take rank 1 or above inputs (of equal shapes), but note that the last dimension must have dimension 3INDArray
NDLoss. ctcLoss(INDArray targetLabels, INDArray logitInput, INDArray targetLabelLengths, INDArray logitInputLengths)
CTC Loss: Connectionist Temporal Classification Loss.INDArray
NDMath. cube(INDArray x)
Element-wise cube function: out = x^3INDArray
NDBase. cumprod(INDArray in, boolean exclusive, boolean reverse, int... axis)
Cumulative product operation.
For input: [ a, b, c], output is:
exclusive=false, reverse=false: [a, a*b, a*b*c]
exclusive=true, reverse=false, [0, a, a*b]
exclusive=false, reverse=true: [a*b*c, b*c, c]
exclusive=true, reverse=true: [b*c, c, 0]INDArray
NDBase. cumprod(INDArray in, int... axis)
Cumulative product operation.
For input: [ a, b, c], output is:
exclusive=false, reverse=false: [a, a*b, a*b*c]
exclusive=true, reverse=false, [0, a, a*b]
exclusive=false, reverse=true: [a*b*c, b*c, c]
exclusive=true, reverse=true: [b*c, c, 0]INDArray
NDBase. cumsum(INDArray in, boolean exclusive, boolean reverse, int... axis)
Cumulative sum operation.
For input: [ a, b, c], output is:
exclusive=false, reverse=false: [a, a+b, a+b+c]
exclusive=true, reverse=false, [0, a, a+b]
exclusive=false, reverse=true: [a+b+c, b+c, c]
exclusive=true, reverse=true: [b+c, c, 0]INDArray
NDBase. cumsum(INDArray in, int... axis)
Cumulative sum operation.
For input: [ a, b, c], output is:
exclusive=false, reverse=false: [a, a+b, a+b+c]
exclusive=true, reverse=false, [0, a, a+b]
exclusive=false, reverse=true: [a+b+c, b+c, c]
exclusive=true, reverse=true: [b+c, c, 0]INDArray
NDCNN. deconv2d(INDArray layerInput, INDArray weights, INDArray bias, DeConv2DConfig DeConv2DConfig)
2D deconvolution operation with optional biasINDArray
NDCNN. deconv2d(INDArray layerInput, INDArray weights, DeConv2DConfig DeConv2DConfig)
2D deconvolution operation with optional biasINDArray
NDCNN. deconv3d(INDArray input, INDArray weights, INDArray bias, DeConv3DConfig DeConv3DConfig)
3D CNN deconvolution operation with or without optional biasINDArray
NDCNN. deconv3d(INDArray input, INDArray weights, DeConv3DConfig DeConv3DConfig)
3D CNN deconvolution operation with or without optional biasINDArray
NDCNN. depthToSpace(INDArray x, int blockSize, DataFormat dataFormat)
Convolution 2d layer batch to space operation on 4d input.
Reduces input channels dimension by rearranging data into a larger spatial dimensions
Example: if input has shape [mb, 8, 2, 2] and block size is 2, then output size is [mb, 8/(2*2), 2*2, 2*2]
= [mb, 2, 4, 4]INDArray
NDCNN. depthWiseConv2d(INDArray layerInput, INDArray depthWeights, INDArray bias, Conv2DConfig Conv2DConfig)
Depth-wise 2D convolution operation with optional biasINDArray
NDCNN. depthWiseConv2d(INDArray layerInput, INDArray depthWeights, Conv2DConfig Conv2DConfig)
Depth-wise 2D convolution operation with optional biasINDArray
NDLinalg. diag(INDArray input)
Calculates diagonal tensor.INDArray
NDMath. diag(INDArray x)
Returns an output variable with diagonal values equal to the specified values; off-diagonal values will be set to 0
For example, if input = [1,2,3], then output is given by:
[ 1, 0, 0]
[ 0, 2, 0]
[ 0, 0, 3]
Higher input ranks are also supported: if input has shape [a,...,R-1] then output[i,...,k,i,...,k] = input[i,...,k].
i.e., for input rank R, output has rank 2RINDArray
NDLinalg. diag_part(INDArray input)
Calculates diagonal tensor.INDArray
NDMath. diagPart(INDArray x)
Extract the diagonal part from the input array.
If input is
[ 1, 0, 0]
[ 0, 2, 0]
[ 0, 0, 3]
then output is [1, 2, 3].
Supports higher dimensions: in general, out[i,...,k] = in[i,...,k,i,...,k]INDArray
NDCNN. dilation2D(INDArray df, INDArray weights, int[] strides, int[] rates, boolean isSameMode)
TODO doc stringINDArray
NDMath. div(INDArray x, double value)
Scalar division operation, out = in / scalarINDArray
NDMath. div(INDArray x, INDArray y)
Pairwise division operation, out = x / y
Note: supports broadcasting if x and y have different shapes and are broadcastable.
For example, if X has shape [1,10] and Y has shape [5,10] then op(X,Y) has output shape [5,10]
Broadcast rules are the same as NumPy: https://docs.scipy.org/doc/numpy/user/basics.broadcasting.htmlINDArray
NDBase. dot(INDArray x, INDArray y, int... dimensions)
Pairwise dot product reduction along dimension
output = sum(i=0 ...INDArray
NDNN. dotProductAttention(INDArray queries, INDArray keys, INDArray values, INDArray mask, boolean scaled)
This operation performs dot product attention on the given timeseries input with the given queries
out = sum(similarity(k_i, q) * v_i)
similarity(k, q) = softmax(k * q) where x * q is the dot product of x and q
Optionally with normalization step:
similarity(k, q) = softmax(k * q / sqrt(size(q))
See also "Attention is all you need" (https://arxiv.org/abs/1706.03762, p.INDArray
NDNN. dropout(INDArray input, double inputRetainProbability)
Dropout operationINDArray
NDNN. dropoutInverted(INDArray input, double p)
Dropout inverted operation.INDArray[]
NDBase. dynamicPartition(INDArray x, INDArray partitions, int numPartitions)
Dynamically partition the input variable values into the specified number of paritions, using the indices.
Example:INDArray
NDBase. dynamicStitch(INDArray[] indices, INDArray... x)
Dynamically merge the specified input arrays into a single array, using the specified indicesINDArray[]
NDLinalg. eig(INDArray input)
Calculates eigen valuesINDArray
NDNN. elu(INDArray x)
Element-wise exponential linear unit (ELU) function:
out = x if x > 0
out = a * (exp(x) - 1) if x <= 0
with constant a = 1.0INDArray
NDMath. embeddingLookup(INDArray x, INDArray indices, PartitionMode PartitionMode)
Looks up ids in a list of embedding tensors.INDArray
NDMath. entropy(INDArray in, boolean keepDims, int... dimensions)
Entropy reduction: -sum(x * log(x))INDArray
NDMath. entropy(INDArray in, int... dimensions)
Entropy reduction: -sum(x * log(x))INDArray
NDBase. eq(INDArray x, double y)
Equals operation: elementwise x == y
Return boolean array with values true where satisfied, or false otherwise.INDArray
NDBase. eq(INDArray x, INDArray y)
Equal to operation: elementwise x == y
If x and y arrays have equal shape, the output shape is the same as these inputs.
Note: supports broadcasting if x and y have different shapes and are broadcastable.
For example, if X has shape [1,10] and Y has shape [5,10] then op(X,Y) has output shape [5,10]
Broadcast rules are the same as NumPy: https://docs.scipy.org/doc/numpy/user/basics.broadcasting.html
Return boolean array with values true where satisfied, or false otherwise.INDArray
NDMath. erf(INDArray x)
Element-wise Gaussian error function - out = erf(in)INDArray
NDMath. erfc(INDArray x)
Element-wise complementary Gaussian error function - out = erfc(in) = 1 - erf(in)INDArray
NDMath. euclideanDistance(INDArray x, INDArray y, boolean keepDims, boolean isComplex, int... dimensions)
Euclidean distance (l2 norm, l2 distance) reduction operation.INDArray
NDMath. euclideanDistance(INDArray x, INDArray y, int... dimensions)
Euclidean distance (l2 norm, l2 distance) reduction operation.INDArray
NDMath. exp(INDArray x)
Elementwise exponent function: out = exp(x) = 2.71828...^xINDArray
NDBase. expandDims(INDArray x, int axis)
Reshape the input by adding a 1 at the specified location.
For example, if input has shape [a, b], then output shape is:
axis = 0: [1, a, b]
axis = 1: [a, 1, b]
axis = 2: [a, b, 1]INDArray
NDMath. expm1(INDArray x)
Elementwise 1.0 - exponent function: out = 1.0 - exp(x) = 1.0 - 2.71828...^xINDArray
NDCNN. extractImagePatches(INDArray input, int kH, int kW, int sH, int sW, int rH, int rW, boolean sameMode)
Extract image patchesINDArray
NDImage. extractImagePatches(INDArray image, int[] kSizes, int[] strides, int[] rates, boolean sameMode)
Given an input image, extract out image patches (of size kSizes - h x w) and place them in the depth dimension.INDArray
NDMath. eye(INDArray rows)
As per eye(String, int) but with the number of rows specified as a scalar INDArrayINDArray
NDMath. eye(INDArray rows, INDArray cols)
As per eye(int, int) bit with the number of rows/columns specified as scalar INDArraysINDArray
NDBase. fill(INDArray shape, DataType dataType, double value)
Generate an output variable with the specified (dynamic) shape with all elements set to the specified valueINDArray
NDMath. firstIndex(INDArray in, Condition condition, boolean keepDims, int... dimensions)
First index reduction operation.
Returns a variable that contains the index of the first element that matches the specified condition (for each
slice along the specified dimensions)
Note that if keepDims = true, the output variable has the same rank as the input variable,
with the reduced dimensions having size 1.INDArray
NDMath. firstIndex(INDArray in, Condition condition, int... dimensions)
First index reduction operation.
Returns a variable that contains the index of the first element that matches the specified condition (for each
slice along the specified dimensions)
Note that if keepDims = true, the output variable has the same rank as the input variable,
with the reduced dimensions having size 1.INDArray
NDBase. flatten(INDArray... inputs)
Return a flattened variable with the specified orderingINDArray
NDBase. flatten(INDArray[] inputs, String order)
Return a flattened variable with the specified orderingINDArray
NDMath. floor(INDArray x)
Element-wise floor function: out = floor(x).
Rounds each value down to the nearest integer value (if not already an integer)INDArray
NDMath. floorDiv(INDArray x, INDArray y)
Pairwise floor division operation, out = floor(x / y)
Note: supports broadcasting if x and y have different shapes and are broadcastable.
For example, if X has shape [1,10] and Y has shape [5,10] then op(X,Y) has output shape [5,10]
Broadcast rules are the same as NumPy: https://docs.scipy.org/doc/numpy/user/basics.broadcasting.htmlINDArray
NDMath. floorMod(INDArray x, double value)
Scalar floor modulus operationINDArray
NDMath. floorMod(INDArray x, INDArray y)
Pairwise Modulus division operation
Note: supports broadcasting if x and y have different shapes and are broadcastable.
For example, if X has shape [1,10] and Y has shape [5,10] then op(X,Y) has output shape [5,10]
Broadcast rules are the same as NumPy: https://docs.scipy.org/doc/numpy/user/basics.broadcasting.htmlINDArray
NDBase. gather(INDArray df, int[] indices, int axis)
Gather slices from the input variable where the indices are specified as fixed int[] values.
Output shape is same as input shape, except for axis dimension, which has size equal to indices.length.INDArray
NDBase. gather(INDArray df, INDArray indices, int axis)
Gather slices from the input variable where the indices are specified as dynamic array values.
Output shape is same as input shape, except for axis dimension, which has size equal to indices.length.INDArray
NDBase. gatherNd(INDArray df, INDArray indices)
Gather slices from df with shape specified by indices.INDArray
NDNN. gelu(INDArray x)
GELU activation function - Gaussian Error Linear Units
For more details, see Gaussian Error Linear Units (GELUs) - https://arxiv.org/abs/1606.08415
This method uses the sigmoid approximationINDArray
NDRNN. gru(INDArray x, INDArray hLast, INDArray Wx, INDArray Wh, INDArray biases)
The GRU operation.INDArray[]
NDRNN. gruCell(INDArray x, INDArray hLast, GRUWeights GRUWeights)
The GRU cell.INDArray
NDBase. gt(INDArray x, double y)
Greater than operation: elementwise x > y
Return boolean array with values true where satisfied, or false otherwise.INDArray
NDBase. gt(INDArray x, INDArray y)
Greater than operation: elementwise x > y
If x and y arrays have equal shape, the output shape is the same as these inputs.
Note: supports broadcasting if x and y have different shapes and are broadcastable.
For example, if X has shape [1,10] and Y has shape [5,10] then op(X,Y) has output shape [5,10]
Broadcast rules are the same as NumPy: https://docs.scipy.org/doc/numpy/user/basics.broadcasting.html
Return boolean array with values true where satisfied, or false otherwise.INDArray
NDBase. gte(INDArray x, double y)
Greater than or equals operation: elementwise x >= y
Return boolean array with values true where satisfied, or false otherwise.INDArray
NDBase. gte(INDArray x, INDArray y)
Greater than or equal to operation: elementwise x >= y
If x and y arrays have equal shape, the output shape is the same as these inputs.
Note: supports broadcasting if x and y have different shapes and are broadcastable.
For example, if X has shape [1,10] and Y has shape [5,10] then op(X,Y) has output shape [5,10]
Broadcast rules are the same as NumPy: https://docs.scipy.org/doc/numpy/user/basics.broadcasting.html
Return boolean array with values true where satisfied, or false otherwise.INDArray
NDMath. hammingDistance(INDArray x, INDArray y, boolean keepDims, boolean isComplex, int... dimensions)
Hamming distance reduction operation.INDArray
NDMath. hammingDistance(INDArray x, INDArray y, int... dimensions)
Hamming distance reduction operation.INDArray
NDNN. hardSigmoid(INDArray x)
Element-wise hard sigmoid function:
out[i] = 0 if in[i] <= -2.5
out[1] = 0.2*in[i]+0.5 if -2.5 < in[i] < 2.5
out[i] = 1 if in[i] >= 2.5INDArray
NDNN. hardTanh(INDArray x)
Element-wise hard tanh function:
out[i] = -1 if in[i] <= -1
out[1] = in[i] if -1 < in[i] < 1
out[i] = 1 if in[i] >= 1INDArray
NDNN. hardTanhDerivative(INDArray x)
Derivative (dOut/dIn) of the element-wise hard Tanh function - hardTanh(INDArray)INDArray
NDLoss. hingeLoss(INDArray label, INDArray predictions, INDArray weights)
Hinge loss: a loss function used for training classifiers.
ImplementsL = max(0, 1 - t * predictions)
where t is the label values after internally converting to {-1,1}
from the user specified {0,1}.INDArray
NDLoss. hingeLoss(INDArray label, INDArray predictions, INDArray weights, LossReduce lossReduce)
Hinge loss: a loss function used for training classifiers.
ImplementsL = max(0, 1 - t * predictions)
where t is the label values after internally converting to {-1,1}
from the user specified {0,1}.INDArray
NDImage. hsvToRgb(INDArray input)
Converting image from HSV to RGB formatINDArray
NDLoss. huberLoss(INDArray label, INDArray predictions, INDArray weights, double delta)
Huber loss function, used for robust regression.INDArray
NDLoss. huberLoss(INDArray label, INDArray predictions, INDArray weights, LossReduce lossReduce, double delta)
Huber loss function, used for robust regression.INDArray
NDMath. iamax(INDArray in, boolean keepDims, int... dimensions)
Index of the max absolute value: argmax(abs(in))
see argmax(String, INDArray, boolean, int...)INDArray
NDMath. iamax(INDArray in, int... dimensions)
Index of the max absolute value: argmax(abs(in))
see argmax(String, INDArray, boolean, int...)INDArray
NDMath. iamin(INDArray in, boolean keepDims, int... dimensions)
Index of the min absolute value: argmin(abs(in))
see argmin(String, INDArray, boolean, int...)INDArray
NDMath. iamin(INDArray in, int... dimensions)
Index of the min absolute value: argmin(abs(in))
see argmin(String, INDArray, boolean, int...)INDArray
NDBase. identity(INDArray input)
Elementwise identity operation: out = xINDArray
NDCNN. im2Col(INDArray in, Conv2DConfig Conv2DConfig)
im2col operation for use in 2D convolution operations.INDArray
NDImage. imageResize(INDArray input, INDArray size, boolean preserveAspectRatio, boolean antialias, ImageResizeMethod ImageResizeMethod)
Resize images to size using the specified method.INDArray
NDImage. imageResize(INDArray input, INDArray size, ImageResizeMethod ImageResizeMethod)
Resize images to size using the specified method.INDArray
NDBase. invertPermutation(INDArray input)
Compute the inverse permutation indices for a permutation operation
Example: if input is [2, 0, 1] then output is [1, 2, 0]
The idea is that x.permute(input).permute(invertPermutation(input)) == xINDArray
NDMath. isFinite(INDArray x)
Is finite operation: elementwise isFinite(x)
Returns an array with the same shape/size as the input, with values 1 where condition is satisfied, or
value 0 otherwiseINDArray
NDMath. isInfinite(INDArray x)
Is infinite operation: elementwise isInfinite(x)
Returns an array with the same shape/size as the input, with values 1 where condition is satisfied, or
value 0 otherwiseINDArray
NDMath. isMax(INDArray x)
Is maximum operation: elementwise x == max(x)
Returns an array with the same shape/size as the input, with values 1 where condition is satisfied, or
value 0 otherwiseINDArray
NDMath. isNaN(INDArray x)
Is Not a Number operation: elementwise isNaN(x)
Returns an array with the same shape/size as the input, with values 1 where condition is satisfied, or
value 0 otherwiseINDArray
NDMath. isNonDecreasing(INDArray x)
Is the array non decreasing?
An array is non-decreasing if for every valid i, x[i] <= x[i+1].INDArray
NDBase. isNumericTensor(INDArray x)
Is the director a numeric tensor? In the current version of ND4J/SameDiff, this always returns true/1INDArray
NDMath. isStrictlyIncreasing(INDArray x)
Is the array strictly increasing?
An array is strictly increasing if for every valid i, x[i] < x[i+1].INDArray
NDMath. jaccardDistance(INDArray x, INDArray y, boolean keepDims, boolean isComplex, int... dimensions)
Jaccard similarity reduction operation.INDArray
NDMath. jaccardDistance(INDArray x, INDArray y, int... dimensions)
Jaccard similarity reduction operation.INDArray
NDLoss. l2Loss(INDArray var)
L2 loss: 1/2 * sum(x^2)INDArray
NDMath. lastIndex(INDArray in, Condition condition, boolean keepDims, int... dimensions)
Last index reduction operation.
Returns a variable that contains the index of the last element that matches the specified condition (for each
slice along the specified dimensions)
Note that if keepDims = true, the output variable has the same rank as the input variable,
with the reduced dimensions having size 1.INDArray
NDMath. lastIndex(INDArray in, Condition condition, int... dimensions)
Last index reduction operation.
Returns a variable that contains the index of the last element that matches the specified condition (for each
slice along the specified dimensions)
Note that if keepDims = true, the output variable has the same rank as the input variable,
with the reduced dimensions having size 1.INDArray
NDNN. layerNorm(INDArray input, INDArray gain, boolean channelsFirst, int... dimensions)
Apply Layer Normalization
y = gain * standardize(x) + biasINDArray
NDNN. layerNorm(INDArray input, INDArray gain, INDArray bias, boolean channelsFirst, int... dimensions)
Apply Layer Normalization
y = gain * standardize(x) + biasINDArray
NDNN. leakyRelu(INDArray x, double alpha)
Element-wise leaky ReLU function:
out = x if x >= 0.0
out = alpha * x if x < cutoff
Alpha value is most commonly set to 0.01INDArray
NDNN. leakyReluDerivative(INDArray x, double alpha)
Leaky ReLU derivative: dOut/dIn given input.INDArray
NDBitwise. leftShift(INDArray x, INDArray y)
Bitwise left shift operation.INDArray
NDBitwise. leftShiftCyclic(INDArray x, INDArray y)
Bitwise left cyclical shift operation.INDArray
NDNN. linear(INDArray input, INDArray weights, INDArray bias)
Linear layer operation: out = mmul(in,w) + bias
Note that bias array is optionalINDArray
NDBase. linspace(INDArray start, INDArray stop, INDArray number, DataType dataType)
Create a new 1d array with values evenly spaced between values 'start' and 'stop'
For example, linspace(start=3.0, stop=4.0, number=3) will generate [3.0, 3.5, 4.0]INDArray[]
NDMath. listDiff(INDArray x, INDArray y)
Calculates difference between inputs X and Y.INDArray
NDCNN. localResponseNormalization(INDArray input, LocalResponseNormalizationConfig LocalResponseNormalizationConfig)
2D convolution layer operation - local response normalizationINDArray
NDMath. log(INDArray x)
Element-wise logarithm function (base e - natural logarithm): out = log(x)INDArray
NDMath. log(INDArray x, double base)
Element-wise logarithm function (with specified base): out = log_{base}(x)INDArray
NDMath. log1p(INDArray x)
Elementwise natural logarithm function: out = log_e (1 + x)INDArray
NDLinalg. logdet(INDArray input)
Calculates log of determinant.INDArray
NDMath. logEntropy(INDArray in, boolean keepDims, int... dimensions)
Log entropy reduction: log(-sum(x * log(x)))INDArray
NDMath. logEntropy(INDArray in, int... dimensions)
Log entropy reduction: log(-sum(x * log(x)))INDArray
NDLoss. logLoss(INDArray label, INDArray predictions)
Log loss, i.e., binary cross entropy loss, usually used for binary multi-label classification.INDArray
NDLoss. logLoss(INDArray label, INDArray predictions, INDArray weights, LossReduce lossReduce, double epsilon)
Log loss, i.e., binary cross entropy loss, usually used for binary multi-label classification.INDArray
NDLoss. logPoisson(INDArray label, INDArray predictions, INDArray weights, boolean full)
Log poisson loss: a loss function used for training classifiers.
ImplementsL = exp(c) - z * c
where c is log(predictions) and z is labels.INDArray
NDLoss. logPoisson(INDArray label, INDArray predictions, INDArray weights, LossReduce lossReduce, boolean full)
Log poisson loss: a loss function used for training classifiers.
ImplementsL = exp(c) - z * c
where c is log(predictions) and z is labels.INDArray
NDNN. logSigmoid(INDArray x)
Element-wise sigmoid function: out[i] = log(sigmoid(in[i]))INDArray
NDNN. logSoftmax(INDArray x)
Log softmax activationINDArray
NDNN. logSoftmax(INDArray x, int dimension)
Log softmax activationINDArray
NDMath. logSumExp(INDArray input, int... dimensions)
Log-sum-exp reduction (optionally along dimension).
Computes log(sum(exp(x))INDArray
NDRNN. lstmblock(INDArray maxTSLength, INDArray x, INDArray cLast, INDArray yLast, LSTMWeights LSTMWeights, LSTMConfiguration LSTMConfiguration)
The LSTM blockINDArray
NDRNN. lstmblock(INDArray x, LSTMWeights LSTMWeights, LSTMConfiguration LSTMConfiguration)
The LSTM blockINDArray[]
NDRNN. lstmCell(INDArray x, INDArray cLast, INDArray yLast, LSTMWeights LSTMWeights, LSTMConfiguration LSTMConfiguration)
The LSTM cell.INDArray[]
NDRNN. lstmLayer(INDArray x, INDArray cLast, INDArray yLast, INDArray maxTSLength, LSTMLayerWeights LSTMLayerWeights, LSTMLayerConfig LSTMLayerConfig)
Long Short-Term Memory layer - Hochreiter 1997.
SUPPORTS following data formats:
for unidirectional:
TNS: shapes [timeLength, numExamples, inOutSize]
NST: shapes [numExamples, inOutSize, timeLength]
NTS: shapes [numExamples, timeLength, inOutSize]
for bidirectional:
T2NS: shapes [timeLength, 2, numExamples, inOutSize] (for ONNX)
SUPPORTS following direction modes:
FWD: forward
BWD: backward
BIDIR_SUM: bidirectional sum
BIDIR_CONCAT: bidirectional concat
BIDIR_EXTRA_DIM: bidirectional extra output dim (in conjunction with format dataFormat - T2NS)
You may use different gate configurations:
specify gate/cell/out aplha/beta and numbers of activations for gate/cell/out described in activations enum
("RELU","SIGMOID","AFFINE","LEAKY_RELU","THRESHHOLD_RELU","SCALED_TAHN","HARD_SIGMOID","ELU","SOFTSIGN","SOFTPLUS")
Also this layer supports MKLDNN (DNNL) and cuDNN accelerationINDArray[]
NDRNN. lstmLayer(INDArray x, LSTMLayerWeights LSTMLayerWeights, LSTMLayerConfig LSTMLayerConfig)
Long Short-Term Memory layer - Hochreiter 1997.
SUPPORTS following data formats:
for unidirectional:
TNS: shapes [timeLength, numExamples, inOutSize]
NST: shapes [numExamples, inOutSize, timeLength]
NTS: shapes [numExamples, timeLength, inOutSize]
for bidirectional:
T2NS: shapes [timeLength, 2, numExamples, inOutSize] (for ONNX)
SUPPORTS following direction modes:
FWD: forward
BWD: backward
BIDIR_SUM: bidirectional sum
BIDIR_CONCAT: bidirectional concat
BIDIR_EXTRA_DIM: bidirectional extra output dim (in conjunction with format dataFormat - T2NS)
You may use different gate configurations:
specify gate/cell/out aplha/beta and numbers of activations for gate/cell/out described in activations enum
("RELU","SIGMOID","AFFINE","LEAKY_RELU","THRESHHOLD_RELU","SCALED_TAHN","HARD_SIGMOID","ELU","SOFTSIGN","SOFTPLUS")
Also this layer supports MKLDNN (DNNL) and cuDNN accelerationINDArray
NDLinalg. lstsq(INDArray matrix, INDArray rhs, double l2_reguralizer)
Solver for linear squares problems.INDArray
NDLinalg. lstsq(INDArray matrix, INDArray rhs, double l2_reguralizer, boolean fast)
Solver for linear squares problems.INDArray
NDBase. lt(INDArray x, double y)
Less than operation: elementwise x < y
Return boolean array with values true where satisfied, or false otherwise.INDArray
NDBase. lt(INDArray x, INDArray y)
Less than operation: elementwise x < y
If x and y arrays have equal shape, the output shape is the same as these inputs.
Note: supports broadcasting if x and y have different shapes and are broadcastable.
For example, if X has shape [1,10] and Y has shape [5,10] then op(X,Y) has output shape [5,10]
Broadcast rules are the same as NumPy: https://docs.scipy.org/doc/numpy/user/basics.broadcasting.html
Return boolean array with values true where satisfied, or false otherwise.INDArray
NDBase. lte(INDArray x, double y)
Less than or equals operation: elementwise x <= y
Return boolean array with values true where satisfied, or false otherwise.INDArray
NDBase. lte(INDArray x, INDArray y)
Less than or equal to operation: elementwise x <= y
If x and y arrays have equal shape, the output shape is the same as these inputs.
Note: supports broadcasting if x and y have different shapes and are broadcastable.
For example, if X has shape [1,10] and Y has shape [5,10] then op(X,Y) has output shape [5,10]
Broadcast rules are the same as NumPy: https://docs.scipy.org/doc/numpy/user/basics.broadcasting.html
Return boolean array with values true where satisfied, or false otherwise.INDArray
NDLinalg. lu(INDArray input)
Computes LU decomposition.INDArray
NDMath. manhattanDistance(INDArray x, INDArray y, boolean keepDims, boolean isComplex, int... dimensions)
Manhattan distance (l1 norm, l1 distance) reduction operation.INDArray
NDMath. manhattanDistance(INDArray x, INDArray y, int... dimensions)
Manhattan distance (l1 norm, l1 distance) reduction operation.INDArray
NDBase. matchCondition(INDArray in, Condition condition)
Returns a boolean mask of equal shape to the input, where the condition is satisfied - value 1 where satisfied, 0 otherwiseINDArray
NDBase. matchConditionCount(INDArray in, Condition condition)
Returns a count of the number of elements that satisfy the conditionINDArray
NDBase. matchConditionCount(INDArray in, Condition condition, boolean keepDim, int... dimensions)
Returns a count of the number of elements that satisfy the condition (for each slice along the specified dimensions)
Note that if keepDims = true, the output variable has the same rank as the input variable,
with the reduced dimensions having size 1.INDArray
NDBase. matchConditionCount(INDArray in, Condition condition, int... dimensions)
Returns a count of the number of elements that satisfy the condition (for each slice along the specified dimensions)
Note that if keepDims = true, the output variable has the same rank as the input variable,
with the reduced dimensions having size 1.INDArray
NDLinalg. matmul(INDArray a, INDArray b)
Performs matrix mutiplication on input tensors.INDArray[]
NDLinalg. matrixBandPart(INDArray input, int minLower, int maxUpper)
Copy a tensor setting outside a central band in each innermost matrix.INDArray
NDLinalg. matrixDeterminant(INDArray input)
Calculates matrix determinant.INDArray
NDMath. matrixDeterminant(INDArray in)
Matrix determinant op.INDArray
NDLinalg. matrixInverse(INDArray input)
Inverts a matrixINDArray
NDMath. matrixInverse(INDArray in)
Matrix inverse op.INDArray
NDBase. max(INDArray x, boolean keepDims, int... dimensions)
Max array reduction operation, optionally along specified dimensions
Note that if keepDims = true, the output variable has the same rank as the input variable,
with the reduced dimensions having size 1.INDArray
NDBase. max(INDArray x, int... dimensions)
Max array reduction operation, optionally along specified dimensions
Note that if keepDims = true, the output variable has the same rank as the input variable,
with the reduced dimensions having size 1.INDArray
NDBase. max(INDArray first, INDArray second)
Element-wise maximum operation: out[i] = max(first[i], second[i])
Note: supports broadcasting if x and y have different shapes and are broadcastable.
For example, if X has shape [1,10] and Y has shape [5,10] then op(X,Y) has output shape [5,10]
Broadcast rules are the same as NumPy: https://docs.scipy.org/doc/numpy/user/basics.broadcasting.htmlINDArray
NDMath. max(INDArray x, INDArray y)
Pairwise max operation, out = max(x, y)
Note: supports broadcasting if x and y have different shapes and are broadcastable.
For example, if X has shape [1,10] and Y has shape [5,10] then op(X,Y) has output shape [5,10]
Broadcast rules are the same as NumPy: https://docs.scipy.org/doc/numpy/user/basics.broadcasting.htmlINDArray
NDCNN. maxPooling2d(INDArray input, Pooling2DConfig Pooling2DConfig)
2D Convolution layer operation - max pooling 2dINDArray
NDCNN. maxPooling3d(INDArray input, Pooling3DConfig Pooling3DConfig)
3D convolution layer operation - max pooling 3d operation.INDArray[]
NDCNN. maxPoolWithArgmax(INDArray input, Pooling2DConfig Pooling2DConfig)
2D Convolution layer operation - Max pooling on the input and outputs both max values and indicesINDArray
NDBase. mean(INDArray x, boolean keepDims, int... dimensions)
Mean (average) array reduction operation, optionally along specified dimensions
Note that if keepDims = true, the output variable has the same rank as the input variable,
with the reduced dimensions having size 1.INDArray
NDBase. mean(INDArray x, int... dimensions)
Mean (average) array reduction operation, optionally along specified dimensions
Note that if keepDims = true, the output variable has the same rank as the input variable,
with the reduced dimensions having size 1.INDArray
NDBase. mean(INDArray x, INDArray dimensions)
Mean (average) array reduction operation, optionally along specified dimensions
Note that if keepDims = true, the output variable has the same rank as the input variable,
with the reduced dimensions having size 1.INDArray
NDBase. mean(INDArray x, INDArray dimensions, boolean keepDims)
Mean (average) array reduction operation, optionally along specified dimensions
Note that if keepDims = true, the output variable has the same rank as the input variable,
with the reduced dimensions having size 1.INDArray
NDMath. mean(INDArray in, boolean keepDims, int... dimensions)
Mean array reduction operation, optionally along specified dimensions: out = mean(abs(x))INDArray
NDMath. mean(INDArray in, int... dimensions)
Mean array reduction operation, optionally along specified dimensions: out = mean(abs(x))INDArray
NDMath. mean(INDArray in, INDArray dimensions)
Mean array reduction operation, optionally along specified dimensions: out = mean(abs(x))INDArray
NDMath. mean(INDArray in, INDArray dimensions, boolean keepDims)
Mean array reduction operation, optionally along specified dimensions: out = mean(abs(x))INDArray
NDLoss. meanPairwiseSquaredError(INDArray label, INDArray predictions, INDArray weights)
Mean pairwise squared error.
MPWSE loss calculates the difference between pairs of consecutive elements in the predictions and labels arrays.
For example, if predictions = [p0, p1, p2] and labels are [l0, l1, l2] then MPWSE is:
[((p0-p1) - (l0-l1))^2 + ((p0-p2) - (l0-l2))^2 + ((p1-p2) - (l1-l2))^2] / 3
INDArray
NDLoss. meanPairwiseSquaredError(INDArray label, INDArray predictions, INDArray weights, LossReduce lossReduce)
Mean pairwise squared error.
MPWSE loss calculates the difference between pairs of consecutive elements in the predictions and labels arrays.
For example, if predictions = [p0, p1, p2] and labels are [l0, l1, l2] then MPWSE is:
[((p0-p1) - (l0-l1))^2 + ((p0-p2) - (l0-l2))^2 + ((p1-p2) - (l1-l2))^2] / 3
INDArray
NDLoss. meanSquaredError(INDArray label, INDArray predictions, INDArray weights)
Mean squared error loss function.INDArray
NDLoss. meanSquaredError(INDArray label, INDArray predictions, INDArray weights, LossReduce lossReduce)
Mean squared error loss function.INDArray
NDBase. merge(INDArray x, INDArray y)
The merge operation is a control operation that forwards the either of the inputs to the output, when
the first of them becomes available.INDArray
NDMath. mergeAdd(INDArray... inputs)
Merge add function: merges an arbitrary number of equal shaped arrays using element-wise addition:
out = sum_i in[i]INDArray
NDMath. mergeAvg(INDArray... inputs)
Merge average function: merges an arbitrary number of equal shaped arrays using element-wise mean operation:
out = mean_i in[i]INDArray
NDMath. mergeMax(INDArray... inputs)
Merge max function: merges an arbitrary number of equal shaped arrays using element-wise maximum operation:
out = max_i in[i]INDArray
NDMath. mergeMaxIndex(INDArray... x)
Return array of max elements indices with along tensor dimensionsINDArray
NDMath. mergeMaxIndex(INDArray[] x, DataType dataType)
Return array of max elements indices with along tensor dimensionsINDArray[]
NDMath. meshgrid(INDArray[] inputs, boolean cartesian)
Broadcasts parameters for evaluation on an N-D grid.INDArray
NDBase. min(INDArray x, boolean keepDims, int... dimensions)
Minimum array reduction operation, optionally along specified dimensions.INDArray
NDBase. min(INDArray x, int... dimensions)
Minimum array reduction operation, optionally along specified dimensions.INDArray
NDBase. min(INDArray first, INDArray second)
Element-wise minimum operation: out[i] = min(first[i], second[i])
Note: supports broadcasting if x and y have different shapes and are broadcastable.
For example, if X has shape [1,10] and Y has shape [5,10] then op(X,Y) has output shape [5,10]
Broadcast rules are the same as NumPy: https://docs.scipy.org/doc/numpy/user/basics.broadcasting.htmlINDArray
NDMath. min(INDArray x, INDArray y)
Pairwise max operation, out = min(x, y)
Note: supports broadcasting if x and y have different shapes and are broadcastable.
For example, if X has shape [1,10] and Y has shape [5,10] then op(X,Y) has output shape [5,10]
Broadcast rules are the same as NumPy: https://docs.scipy.org/doc/numpy/user/basics.broadcasting.htmlINDArray
NDBase. mmul(INDArray x, INDArray y)
Matrix multiplication: out = mmul(x,y)
Supports specifying transpose argument to perform operation such as mmul(a^T, b), etc.INDArray
NDBase. mmul(INDArray x, INDArray y, boolean transposeX, boolean transposeY, boolean transposeZ)
Matrix multiplication: out = mmul(x,y)
Supports specifying transpose argument to perform operation such as mmul(a^T, b), etc.INDArray
NDLinalg. mmul(INDArray x, INDArray y)
Matrix multiplication: out = mmul(x,y)
Supports specifying transpose argument to perform operation such as mmul(a^T, b), etc.INDArray
NDLinalg. mmul(INDArray x, INDArray y, boolean transposeX, boolean transposeY, boolean transposeZ)
Matrix multiplication: out = mmul(x,y)
Supports specifying transpose argument to perform operation such as mmul(a^T, b), etc.INDArray
NDMath. mod(INDArray x, INDArray y)
Pairwise modulus (remainder) operation, out = x % y
Note: supports broadcasting if x and y have different shapes and are broadcastable.
For example, if X has shape [1,10] and Y has shape [5,10] then op(X,Y) has output shape [5,10]
Broadcast rules are the same as NumPy: https://docs.scipy.org/doc/numpy/user/basics.broadcasting.htmlINDArray[]
NDMath. moments(INDArray input, int[] axes, boolean keepDims)
Calculate the mean and (population) variance for the input variable, for the specified axisINDArray[]
NDMath. moments(INDArray input, INDArray axes, boolean keepDims)
Calculate the mean and (population) variance for the input variable, for the specified axisINDArray
NDMath. mul(INDArray x, double value)
Scalar multiplication operation, out = in * scalarINDArray
NDMath. mul(INDArray x, INDArray y)
Pairwise multiplication operation, out = x * y
Note: supports broadcasting if x and y have different shapes and are broadcastable.
For example, if X has shape [1,10] and Y has shape [5,10] then op(X,Y) has output shape [5,10]
Broadcast rules are the same as NumPy: https://docs.scipy.org/doc/numpy/user/basics.broadcasting.htmlINDArray
NDNN. multiHeadDotProductAttention(INDArray queries, INDArray keys, INDArray values, INDArray Wq, INDArray Wk, INDArray Wv, INDArray Wo, INDArray mask, boolean scaled)
This performs multi-headed dot product attention on the given timeseries input
out = concat(head_1, head_2, ..., head_n) * Wo
head_i = dot_product_attention(Wq_i*q, Wk_i*k, Wv_i*v)
Optionally with normalization when calculating the attention for each head.
See also "Attention is all you need" (https://arxiv.org/abs/1706.03762, pp.INDArray
NDMath. neg(INDArray x)
Elementwise negative operation: out = -xINDArray
NDBase. neq(INDArray x, double y)
Not equals operation: elementwise x != y
Return boolean array with values true where satisfied, or false otherwise.INDArray
NDBase. neq(INDArray x, INDArray y)
Not equal to operation: elementwise x != y
If x and y arrays have equal shape, the output shape is the same as these inputs.
Note: supports broadcasting if x and y have different shapes and are broadcastable.
For example, if X has shape [1,10] and Y has shape [5,10] then op(X,Y) has output shape [5,10]
Broadcast rules are the same as NumPy: https://docs.scipy.org/doc/numpy/user/basics.broadcasting.html
Return boolean array with values true where satisfied, or false otherwise.INDArray
NDImage. nonMaxSuppression(INDArray boxes, INDArray scores, int maxOutSize, double iouThreshold, double scoreThreshold)
Greedily selects a subset of bounding boxes in descending order of scoreINDArray
NDBase. norm1(INDArray x, boolean keepDims, int... dimensions)
Norm1 (L1 norm) reduction operation: The output contains the L1 norm for each tensor/subset along the specified dimensions:
out = sum_i abs(x[i])
Note that if keepDims = true, the output variable has the same rank as the input variable,
with the reduced dimensions having size 1.INDArray
NDBase. norm1(INDArray x, int... dimensions)
Norm1 (L1 norm) reduction operation: The output contains the L1 norm for each tensor/subset along the specified dimensions:
out = sum_i abs(x[i])
Note that if keepDims = true, the output variable has the same rank as the input variable,
with the reduced dimensions having size 1.INDArray
NDMath. norm1(INDArray in, boolean keepDims, int... dimensions)
Mean array reduction operation, optionally along specified dimensions: out = mean(abs(x))INDArray
NDMath. norm1(INDArray in, int... dimensions)
Mean array reduction operation, optionally along specified dimensions: out = mean(abs(x))INDArray
NDMath. norm1(INDArray in, INDArray dimensions)
Sum of absolute differences.INDArray
NDMath. norm1(INDArray in, INDArray dimensions, boolean keepDims)
Sum of absolute differences.INDArray
NDBase. norm2(INDArray x, boolean keepDims, int... dimensions)
Norm2 (L2 norm) reduction operation: The output contains the L2 norm for each tensor/subset along the specified dimensions:
out = sqrt(sum_i x[i]^2)
Note that if keepDims = true, the output variable has the same rank as the input variable,
with the reduced dimensions having size 1.INDArray
NDBase. norm2(INDArray x, int... dimensions)
Norm2 (L2 norm) reduction operation: The output contains the L2 norm for each tensor/subset along the specified dimensions:
out = sqrt(sum_i x[i]^2)
Note that if keepDims = true, the output variable has the same rank as the input variable,
with the reduced dimensions having size 1.INDArray
NDMath. norm2(INDArray in, boolean keepDims, int... dimensions)
Euclidean norm: euclidean distance of a vector from the originINDArray
NDMath. norm2(INDArray in, int... dimensions)
Euclidean norm: euclidean distance of a vector from the originINDArray
NDMath. norm2(INDArray in, INDArray dimensions)
Euclidean norm: euclidean distance of a vector from the originINDArray
NDMath. norm2(INDArray in, INDArray dimensions, boolean keepDims)
Euclidean norm: euclidean distance of a vector from the originINDArray[]
NDMath. normalizeMoments(INDArray counts, INDArray means, INDArray variances, double shift)
Calculate the mean and variance from the sufficient statisticsINDArray
NDBase. normmax(INDArray x, boolean keepDims, int... dimensions)
Max norm (infinity norm) reduction operation: The output contains the max norm for each tensor/subset along the
specified dimensions:
out = max(abs(x[i]))
Note that if keepDims = true, the output variable has the same rank as the input variable,
with the reduced dimensions having size 1.INDArray
NDBase. normmax(INDArray x, int... dimensions)
Max norm (infinity norm) reduction operation: The output contains the max norm for each tensor/subset along the
specified dimensions:
out = max(abs(x[i]))
Note that if keepDims = true, the output variable has the same rank as the input variable,
with the reduced dimensions having size 1.INDArray
NDMath. normMax(INDArray in, boolean keepDims, int... dimensions)
Differences between max absolute valueINDArray
NDMath. normMax(INDArray in, int... dimensions)
Differences between max absolute valueINDArray
NDMath. normMax(INDArray in, INDArray dimensions)
Differences between max absolute valueINDArray
NDMath. normMax(INDArray in, INDArray dimensions, boolean keepDims)
Differences between max absolute valueINDArray
NDBase. oneHot(INDArray indices, int depth)
Convert the array to a one-hot array with values 0 and 1 for each entry
If input has shape [ a, ..., n] then output has shape [ a, ..., n, depth],
with out[i, ..., j, in[i,...,j]] = 1 with other values being set to 0
see oneHot(SDVariable, int, int, double, double)INDArray
NDBase. oneHot(INDArray indices, int depth, int axis, double on, double off)
Convert the array to a one-hot array with values and for each entry
If input has shape [ a, ..., n] then output has shape [ a, ..., n, depth],
with {out[i, ..., j, in[i,...,j]] with other values being set toINDArray
NDBase. oneHot(INDArray indices, int depth, int axis, double on, double off, DataType dataType)
Convert the array to a one-hot array with values and for each entry
If input has shape [ a, ..., n] then output has shape [ a, ..., n, depth],
with {out[i, ..., j, in[i,...,j]] with other values being set toINDArray
NDBase. onesLike(INDArray input)
Return a variable of all 1s, with the same shape as the input variable.INDArray
NDBase. onesLike(INDArray input, DataType dataType)
As per onesLike(String, SDVariable) but the output datatype may be specifiedINDArray
NDBitwise. or(INDArray x, INDArray y)
Bitwise OR operation.INDArray
NDMath. or(INDArray x, INDArray y)
Boolean OR operation: elementwise (x != 0) || (y != 0)
If x and y arrays have equal shape, the output shape is the same as these inputs.
Note: supports broadcasting if x and y have different shapes and are broadcastable.
Returns an array with values 1 where condition is satisfied, or value 0 otherwise.INDArray
NDImage. pad(INDArray input, INDArray padding, Mode Mode, double padValue)
Pads an image according to the given padding typeINDArray
NDNN. pad(INDArray input, INDArray padding, double constant)
Padding operationINDArray
NDNN. pad(INDArray input, INDArray padding, PadMode PadMode, double constant)
Padding operationINDArray
NDBase. permute(INDArray x, int... dimensions)
Array permutation operation: permute the dimensions according to the specified permutation indices.
Example: if input has shape [a,b,c] and dimensions = [2,0,1] the output has shape [c,a,b]INDArray
NDBase. permute(INDArray x, INDArray dimensions)
Array permutation operation: permute the dimensions according to the specified permutation indices.
Example: if input has shape [a,b,c] and dimensions = [2,0,1] the output has shape [c,a,b]INDArray
NDMath. pow(INDArray x, double value)
Element-wise power function: out = x^valueINDArray
NDMath. pow(INDArray x, INDArray y)
Element-wise (broadcastable) power function: out = x[i]^y[i]INDArray
NDNN. preciseGelu(INDArray x)
GELU activation function - Gaussian Error Linear Units
For more details, see Gaussian Error Linear Units (GELUs) - https://arxiv.org/abs/1606.08415
This method uses the precise methodINDArray
NDNN. prelu(INDArray input, INDArray alpha, int... sharedAxes)
PReLU (Parameterized Rectified Linear Unit) operation.INDArray
NDBase. prod(INDArray x, boolean keepDims, int... dimensions)
Product array reduction operation, optionally along specified dimensions
Note that if keepDims = true, the output variable has the same rank as the input variable,
with the reduced dimensions having size 1.INDArray
NDBase. prod(INDArray x, int... dimensions)
Product array reduction operation, optionally along specified dimensions
Note that if keepDims = true, the output variable has the same rank as the input variable,
with the reduced dimensions having size 1.INDArray
NDBase. prod(INDArray x, INDArray dimensions)
Product array reduction operation, optionally along specified dimensions
Note that if keepDims = true, the output variable has the same rank as the input variable,
with the reduced dimensions having size 1.INDArray
NDBase. prod(INDArray x, INDArray dimensions, boolean keepDims)
Product array reduction operation, optionally along specified dimensions
Note that if keepDims = true, the output variable has the same rank as the input variable,
with the reduced dimensions having size 1.INDArray
NDMath. prod(INDArray in, boolean keepDims, int... dimensions)
The max of an array along each dimensionINDArray
NDMath. prod(INDArray in, int... dimensions)
The max of an array along each dimensionINDArray
NDMath. prod(INDArray in, INDArray dimensions)
The product of an array long each dimensionINDArray
NDMath. prod(INDArray in, INDArray dimensions, boolean keepDims)
The product of an array long each dimensionINDArray[]
NDLinalg. qr(INDArray input)
Computes the QR decompositions of input matrix.INDArray[]
NDLinalg. qr(INDArray input, boolean full)
Computes the QR decompositions of input matrix.INDArray
NDImage. randomCrop(INDArray input, INDArray shape)
Randomly crops imageINDArray
NDBase. range(INDArray from, INDArray to, INDArray step, DataType dataType)
Create a new variable with a 1d array, where the values start at from and increment by step
up to (but not including) limit.
For example, range(1.0, 3.0, 0.5) will return [1.0, 1.5, 2.0, 2.5]INDArray
NDBase. rank(INDArray in)
Returns the rank (number of dimensions, i.e., length(shape)) of the specified INDArray as a 0D scalar variableINDArray
NDMath. rationalTanh(INDArray x)
Rational Tanh Approximation elementwise function, as described in the paper:
Compact Convolutional Neural Network Cascade for Face Detection
This is a faster Tanh approximationINDArray
NDMath. rdiv(INDArray x, double value)
Scalar reverse division operation, out = scalar / inINDArray
NDMath. rdiv(INDArray x, INDArray y)
Pairwise reverse division operation, out = y / x
Note: supports broadcasting if x and y have different shapes and are broadcastable.
For example, if X has shape [1,10] and Y has shape [5,10] then op(X,Y) has output shape [5,10]
Broadcast rules are the same as NumPy: https://docs.scipy.org/doc/numpy/user/basics.broadcasting.htmlINDArray
NDMath. reciprocal(INDArray x)
Element-wise reciprocal (inverse) function: out[i] = 1 / in[i]INDArray
NDMath. rectifiedTanh(INDArray x)
Rectified tanh operation: max(0, tanh(in))INDArray
NDMath. reduceAMax(INDArray in, boolean keepDims, int... dimensions)
Absolute max array reduction operation, optionally along specified dimensions: out = max(abs(x))INDArray
NDMath. reduceAMax(INDArray in, int... dimensions)
Absolute max array reduction operation, optionally along specified dimensions: out = max(abs(x))INDArray
NDMath. reduceAMax(INDArray in, INDArray dimensions)
Absolute max array reduction operation, optionally along specified dimensions: out = max(abs(x))INDArray
NDMath. reduceAMax(INDArray in, INDArray dimensions, boolean keepDims)
Absolute max array reduction operation, optionally along specified dimensions: out = max(abs(x))INDArray
NDMath. reduceAmean(INDArray in, boolean keepDims, int... dimensions)
Absolute mean array reduction operation, optionally along specified dimensions: out = mean(abs(x))INDArray
NDMath. reduceAmean(INDArray in, int... dimensions)
Absolute mean array reduction operation, optionally along specified dimensions: out = mean(abs(x))INDArray
NDMath. reduceAmean(INDArray in, INDArray dimensions)
Absolute mean array reduction operation, optionally along specified dimensions: out = mean(abs(x))INDArray
NDMath. reduceAmean(INDArray in, INDArray dimensions, boolean keepDims)
Absolute mean array reduction operation, optionally along specified dimensions: out = mean(abs(x))INDArray
NDMath. reduceAmin(INDArray in, boolean keepDims, int... dimensions)
Absolute min array reduction operation, optionally along specified dimensions: out = min(abs(x))INDArray
NDMath. reduceAmin(INDArray in, int... dimensions)
Absolute min array reduction operation, optionally along specified dimensions: out = min(abs(x))INDArray
NDMath. reduceAmin(INDArray in, INDArray dimensions)
Absolute min array reduction operation, optionally along specified dimensions: out = min(abs(x))INDArray
NDMath. reduceAmin(INDArray in, INDArray dimensions, boolean keepDims)
Absolute min array reduction operation, optionally along specified dimensions: out = min(abs(x))INDArray
NDMath. reduceMax(INDArray in, boolean keepDims, int... dimensions)
The max of an array along each dimensionINDArray
NDMath. reduceMax(INDArray in, int... dimensions)
The max of an array along each dimensionINDArray
NDMath. reduceMax(INDArray in, INDArray dimensions)
The max of an array long each dimensionINDArray
NDMath. reduceMax(INDArray in, INDArray dimensions, boolean keepDims)
The max of an array long each dimensionINDArray
NDMath. reduceMin(INDArray in, boolean keepDims, int... dimensions)
The minimum of an array along each dimensionINDArray
NDMath. reduceMin(INDArray in, int... dimensions)
The minimum of an array along each dimensionINDArray
NDMath. reduceMin(INDArray in, INDArray dimensions)
The minimum of an array long each dimensionINDArray
NDMath. reduceMin(INDArray in, INDArray dimensions, boolean keepDims)
The minimum of an array long each dimensionINDArray
NDNN. relu(INDArray x, double cutoff)
Element-wise rectified linear function with specified cutoff:
out[i] = in[i] if in[i] >= cutoff
out[i] = 0 otherwiseINDArray
NDNN. relu6(INDArray x, double cutoff)
Element-wise "rectified linear 6" function with specified cutoff:
out[i] = min(max(in, cutoff), 6)INDArray
NDNN. reluLayer(INDArray input, INDArray weights, INDArray bias)
ReLU (Rectified Linear Unit) layer operation: out = relu(mmul(in,w) + bias)
Note that bias array is optionalINDArray
NDBase. repeat(INDArray input, INDArray repeats, int axis)
A tensor with the shape of input minus the specified axis with elements repeated along the specified axis.INDArray
NDBase. replaceWhere(INDArray update, double value, Condition condition)
Element-wise replace where condition:
out[i] = value if condition(update[i]) is satisfied, or
out[i] = update[i] if condition(update[i]) is NOT satisfiedINDArray
NDBase. replaceWhere(INDArray update, INDArray from, Condition condition)
Element-wise replace where condition:
out[i] = from[i] if condition(update[i]) is satisfied, or
out[i] = update[i] if condition(update[i]) is NOT satisfiedINDArray
NDBase. reshape(INDArray x, long... shape)
Reshape the input variable to the specified (fixed) shape.INDArray
NDBase. reshape(INDArray x, INDArray shape)
Reshape the input variable to the specified (fixed) shape.INDArray
NDImage. resizeBiCubic(INDArray input, INDArray size, boolean alignCorners, boolean alignPixelCenters)
Resize images to size using the specified method.INDArray
NDImage. resizeBiLinear(INDArray input, int height, int width, boolean alignCorners, boolean halfPixelCenters)
Resize images to size using the specified method.INDArray
NDBase. reverse(INDArray x, int... dimensions)
Reverse the values of an array for the specified dimensions
If input is:
[ 1, 2, 3]
[ 4, 5, 6]
then
reverse(in, 0):
[3, 2, 1]
[6, 5, 4]
reverse(in, 1):
[4, 5, 6]
[1, 2 3]INDArray
NDBase. reverseSequence(INDArray x, INDArray seq_lengths)
Reverse sequence op: for each slice along dimension seqDimension, the first seqLength values are reversedINDArray
NDBase. reverseSequence(INDArray x, INDArray seq_lengths, int seqDim, int batchDim)
Reverse sequence op: for each slice along dimension seqDimension, the first seqLength values are reversedINDArray
NDImage. rgbToHsv(INDArray input)
Converting array from HSV to RGB formatINDArray
NDImage. rgbToYiq(INDArray input)
Converting array from RGB to YIQ formatINDArray
NDImage. rgbToYuv(INDArray input)
Converting array from RGB to YUV formatINDArray
NDBitwise. rightShift(INDArray x, INDArray y)
Bitwise right shift operation.INDArray
NDBitwise. rightShiftCyclic(INDArray x, INDArray y)
Bitwise right cyclical shift operation.INDArray
NDMath. round(INDArray x)
Element-wise round function: out = round(x).
Rounds (up or down depending on value) to the nearest integer value.INDArray
NDMath. rsqrt(INDArray x)
Element-wise reciprocal (inverse) of square root: out = 1.0 / sqrt(x)INDArray
NDMath. rsub(INDArray x, double value)
Scalar reverse subtraction operation, out = scalar - inINDArray
NDMath. rsub(INDArray x, INDArray y)
Pairwise reverse subtraction operation, out = y - x
Note: supports broadcasting if x and y have different shapes and are broadcastable.
For example, if X has shape [1,10] and Y has shape [5,10] then op(X,Y) has output shape [5,10]
Broadcast rules are the same as NumPy: https://docs.scipy.org/doc/numpy/user/basics.broadcasting.htmlINDArray
NDBase. scalarFloorMod(INDArray in, double value)
Element-wise scalar floor modulus operation: out = floorMod(in, value).
i.e., returns the remainder after division by 'value'INDArray
NDBase. scalarMax(INDArray in, double value)
Element-wise scalar maximum operation: out = max(in, value)INDArray
NDBase. scalarMin(INDArray in, double value)
Element-wise scalar minimum operation: out = min(in, value)INDArray
NDBase. scalarSet(INDArray in, double set)
Return a variable with equal shape to the input, but all elements set to value 'set'INDArray
NDBase. scatterAdd(INDArray ref, INDArray indices, INDArray updates)
Scatter addition operation.
If indices is rank 0 (a scalar), then out[index, ...] = out[index, ...] + op(updates[...])
If indices is rank 1 (a vector), then for each position i, out[indices[i], ...] = out[indices[i], ...] + op(updates[i, ...])
If indices is rank 2+, then for each position (i,...,k), out[indices[i], ..., indices[k], ...] = out[indices[i], ..., indices[k], ...] + op(updates[i, ..., k, ...])
Note that if multiple indices refer to the same location, the contributions from each is handled correctly.INDArray
NDBase. scatterDiv(INDArray ref, INDArray indices, INDArray updates)
Scatter division operation.
If indices is rank 0 (a scalar), then out[index, ...] = out[index, ...] + op(updates[...])
If indices is rank 1 (a vector), then for each position i, out[indices[i], ...] = out[indices[i], ...] + op(updates[i, ...])
If indices is rank 2+, then for each position (i,...,k), out[indices[i], ..., indices[k], ...] = out[indices[i], ..., indices[k], ...] + op(updates[i, ..., k, ...])
Note that if multiple indices refer to the same location, the contributions from each is handled correctly.INDArray
NDBase. scatterMax(INDArray ref, INDArray indices, INDArray updates)
Scatter max operation.
If indices is rank 0 (a scalar), then out[index, ...] = out[index, ...] + op(updates[...])
If indices is rank 1 (a vector), then for each position i, out[indices[i], ...] = out[indices[i], ...] + op(updates[i, ...])
If indices is rank 2+, then for each position (i,...,k), out[indices[i], ..., indices[k], ...] = out[indices[i], ..., indices[k], ...] + op(updates[i, ..., k, ...])
Note that if multiple indices refer to the same location, the contributions from each is handled correctly.INDArray
NDBase. scatterMin(INDArray ref, INDArray indices, INDArray updates)
Scatter min operation.
If indices is rank 0 (a scalar), then out[index, ...] = out[index, ...] + op(updates[...])
If indices is rank 1 (a vector), then for each position i, out[indices[i], ...] = out[indices[i], ...] + op(updates[i, ...])
If indices is rank 2+, then for each position (i,...,k), out[indices[i], ..., indices[k], ...] = out[indices[i], ..., indices[k], ...] + op(updates[i, ..., k, ...])
Note that if multiple indices refer to the same location, the contributions from each is handled correctly.INDArray
NDBase. scatterMul(INDArray ref, INDArray indices, INDArray updates)
Scatter multiplication operation.
If indices is rank 0 (a scalar), then out[index, ...] = out[index, ...] + op(updates[...])
If indices is rank 1 (a vector), then for each position i, out[indices[i], ...] = out[indices[i], ...] + op(updates[i, ...])
If indices is rank 2+, then for each position (i,...,k), out[indices[i], ..., indices[k], ...] = out[indices[i], ..., indices[k], ...] + op(updates[i, ..., k, ...])
Note that if multiple indices refer to the same location, the contributions from each is handled correctly.INDArray
NDBase. scatterSub(INDArray ref, INDArray indices, INDArray updates)
Scatter subtraction operation.
If indices is rank 0 (a scalar), then out[index, ...] = out[index, ...] + op(updates[...])
If indices is rank 1 (a vector), then for each position i, out[indices[i], ...] = out[indices[i], ...] + op(updates[i, ...])
If indices is rank 2+, then for each position (i,...,k), out[indices[i], ..., indices[k], ...] = out[indices[i], ..., indices[k], ...] + op(updates[i, ..., k, ...])
Note that if multiple indices refer to the same location, the contributions from each is handled correctly.INDArray
NDBase. scatterUpdate(INDArray ref, INDArray indices, INDArray updates)
Scatter update operation.
If indices is rank 0 (a scalar), then out[index, ...] = out[index, ...] + op(updates[...])
If indices is rank 1 (a vector), then for each position i, out[indices[i], ...] = out[indices[i], ...] + op(updates[i, ...])
If indices is rank 2+, then for each position (i,...,k), out[indices[i], ..., indices[k], ...] = out[indices[i], ..., indices[k], ...] + op(updates[i, ..., k, ...])
Note that if multiple indices refer to the same location, the contributions from each is handled correctly.INDArray
NDBase. segmentMax(INDArray data, INDArray segmentIds)
Segment max operation.
If data = [3, 6, 1, 4, 9, 2, 8]
segmentIds = [0, 0, 1, 1, 1, 2, 2]
then output = [6, 9, 8] = [op(3,6), op(1,4,9), op(2,8)]
Note that the segment IDs must be sorted from smallest to largest segment.
See {unsortedSegment (String, SDVariable, SDVariable, int) ops
for the same op without this sorted requirementINDArray
NDBase. segmentMean(INDArray data, INDArray segmentIds)
Segment mean operation.
If data = [3, 6, 1, 4, 9, 2, 8]
segmentIds = [0, 0, 1, 1, 1, 2, 2]
then output = [6, 9, 8] = [op(3,6), op(1,4,9), op(2,8)]
Note that the segment IDs must be sorted from smallest to largest segment.
See {unsortedSegment (String, SDVariable, SDVariable, int) ops
for the same op without this sorted requirementINDArray
NDBase. segmentMin(INDArray data, INDArray segmentIds)
Segment min operation.
If data = [3, 6, 1, 4, 9, 2, 8]
segmentIds = [0, 0, 1, 1, 1, 2, 2]
then output = [6, 9, 8] = [op(3,6), op(1,4,9), op(2,8)]
Note that the segment IDs must be sorted from smallest to largest segment.
See {unsortedSegment (String, SDVariable, SDVariable, int) ops
for the same op without this sorted requirementINDArray
NDBase. segmentProd(INDArray data, INDArray segmentIds)
Segment product operation.
If data = [3, 6, 1, 4, 9, 2, 8]
segmentIds = [0, 0, 1, 1, 1, 2, 2]
then output = [6, 9, 8] = [op(3,6), op(1,4,9), op(2,8)]
Note that the segment IDs must be sorted from smallest to largest segment.
See {unsortedSegment (String, SDVariable, SDVariable, int) ops
for the same op without this sorted requirementINDArray
NDBase. segmentSum(INDArray data, INDArray segmentIds)
Segment sum operation.
If data = [3, 6, 1, 4, 9, 2, 8]
segmentIds = [0, 0, 1, 1, 1, 2, 2]
then output = [6, 9, 8] = [op(3,6), op(1,4,9), op(2,8)]
Note that the segment IDs must be sorted from smallest to largest segment.
See {unsortedSegment (String, SDVariable, SDVariable, int) ops
for the same op without this sorted requirementINDArray
NDNN. selu(INDArray x)
Element-wise SeLU function - Scaled exponential Lineal Unit: see Self-Normalizing Neural Networks
out[i] = scale * alpha * (exp(in[i])-1) if in[i]>0, or 0 if in[i] <= 0
Uses default scale and alpha values.INDArray
NDCNN. separableConv2d(INDArray layerInput, INDArray depthWeights, INDArray pointWeights, INDArray bias, Conv2DConfig Conv2DConfig)
Separable 2D convolution operation with optional biasINDArray
NDCNN. separableConv2d(INDArray layerInput, INDArray depthWeights, INDArray pointWeights, Conv2DConfig Conv2DConfig)
Separable 2D convolution operation with optional biasINDArray
NDBase. sequenceMask(INDArray lengths, int maxLen, DataType dataType)
Generate a sequence mask (with values 0 or 1) based on the specified lengths
Specifically, out[i, ..., k, j] = (j < lengths[i, ..., k] ? 1.0 : 0.0)INDArray
NDBase. sequenceMask(INDArray lengths, DataType dataType)
see sequenceMask(String, SDVariable, SDVariable, DataType)INDArray
NDBase. sequenceMask(INDArray lengths, INDArray maxLen, DataType dataType)
Generate a sequence mask (with values 0 or 1) based on the specified lengths
Specifically, out[i, ..., k, j] = (j < lengths[i, ..., k] ? 1.0 : 0.0)INDArray
NDMath. setDiag(INDArray in, INDArray diag)
Set the diagonal value to the specified values
If input is
[ a, b, c]
[ d, e, f]
[ g, h, i]
and diag = [ 1, 2, 3] then output is
[ 1, b, c]
[ d, 2, f]
[ g, h, 3]INDArray[]
NDBase. setShape(INDArray input, INDArray shape)
Sets an inplace shape on the passed in input.INDArray
NDMath. shannonEntropy(INDArray in, boolean keepDims, int... dimensions)
Shannon Entropy reduction: -sum(x * log2(x))INDArray
NDMath. shannonEntropy(INDArray in, int... dimensions)
Shannon Entropy reduction: -sum(x * log2(x))INDArray
NDMath. shannonEntropy(INDArray in, INDArray dimensions)
Shannon Entropy reduction: -sum(x * log2(x))INDArray
NDMath. shannonEntropy(INDArray in, INDArray dimensions, boolean keepDims)
Shannon Entropy reduction: -sum(x * log2(x))INDArray
NDBase. shape(INDArray input)
Returns the shape of the specified INDArray as a 1D INDArrayINDArray
NDNN. sigmoid(INDArray x)
Element-wise sigmoid function: out[i] = 1.0/(1+exp(-in[i]))INDArray
NDLoss. sigmoidCrossEntropy(INDArray label, INDArray predictionLogits, INDArray weights)
Sigmoid cross entropy: applies the sigmoid activation function on the input logits (input "pre-sigmoid preductions")
and implements the binary cross entropy loss function.INDArray
NDLoss. sigmoidCrossEntropy(INDArray label, INDArray predictionLogits, INDArray weights, LossReduce lossReduce, double labelSmoothing)
Sigmoid cross entropy: applies the sigmoid activation function on the input logits (input "pre-sigmoid preductions")
and implements the binary cross entropy loss function.INDArray
NDNN. sigmoidDerivative(INDArray x, INDArray wrt)
Element-wise sigmoid function derivative: dL/dIn given input and dL/dOutINDArray
NDMath. sign(INDArray x)
Element-wise sign (signum) function:
out = -1 if in < 0
out = 0 if in = 0
out = 1 if in > 0INDArray
NDMath. sin(INDArray x)
Elementwise sine operation: out = sin(x)INDArray
NDMath. sinh(INDArray x)
Elementwise sinh (hyperbolic sine) operation: out = sinh(x)INDArray
NDBase. size(INDArray in)
Returns the size (number of elements, i.e., prod(shape)) of the specified INDArray as a 0D scalar variableINDArray
NDBase. sizeAt(INDArray in, int dimension)
Returns a rank 0 (scalar) variable for the size of the specified dimension.
For example, if X has shape [10,20,30] then sizeAt(X,1)=20.INDArray
NDBase. slice(INDArray input, int[] begin, int... size)
Get a subset of the specified input, by specifying the first element and the size of the array.
For example, if input is:
[a, b, c]
[d, e, f]
then slice(input, begin=[0,1], size=[2,1] will return:
[b]
[e]
Note that for each dimension i, begin[i] + size[i] <= input.size(i)INDArray
NDBase. slice(INDArray input, INDArray begin, INDArray size)
Get a subset of the specified input, by specifying the first element and the size of the array.
For example, if input is:
[a, b, c]
[d, e, f]
then slice(input, begin=[0,1], size=[2,1] will return:
[b]
[e]
Note that for each dimension i, begin[i] + size[i] <= input.size(i)INDArray
NDNN. softmax(INDArray x)
Softmax activation, along the specified dimensionINDArray
NDNN. softmax(INDArray x, int dimension)
Softmax activation, along the specified dimensionINDArray
NDLoss. softmaxCrossEntropy(INDArray oneHotLabels, INDArray logitPredictions, INDArray weights)
Applies the softmax activation function to the input, then implement multi-class cross entropy:
-sum_classes label[i] * log(p[c])
wherep = softmax(logits)
If LossReduce#NONE is used, returned shape is [numExamples] out for [numExamples, numClasses] predicitons/labels;
otherwise, the output is a scalar.INDArray
NDLoss. softmaxCrossEntropy(INDArray oneHotLabels, INDArray logitPredictions, INDArray weights, LossReduce lossReduce, double labelSmoothing)
Applies the softmax activation function to the input, then implement multi-class cross entropy:
-sum_classes label[i] * log(p[c])
wherep = softmax(logits)
If LossReduce#NONE is used, returned shape is [numExamples] out for [numExamples, numClasses] predicitons/labels;
otherwise, the output is a scalar.INDArray
NDNN. softmaxDerivative(INDArray x, INDArray wrt, int dimension)
Softmax derivative functionINDArray
NDNN. softplus(INDArray x)
Element-wise softplus function: out = log(exp(x) + 1)INDArray
NDNN. softsign(INDArray x)
Element-wise softsign function: out = x / (abs(x) + 1)INDArray
NDNN. softsignDerivative(INDArray x)
Element-wise derivative (dOut/dIn) of the softsign function softsign(INDArray)INDArray
NDLinalg. solve(INDArray matrix, INDArray rhs)
Solver for systems of linear equations.INDArray
NDLinalg. solve(INDArray matrix, INDArray rhs, boolean adjoint)
Solver for systems of linear equations.INDArray
NDCNN. spaceToBatch(INDArray x, int[] blocks, int[] paddingTop, int... paddingBottom)
Convolution 2d layer space to batch operation on 4d input.
Increases input batch dimension by rearranging data from spatial dimensions into batch dimensionINDArray
NDCNN. spaceToDepth(INDArray x, int blockSize, DataFormat dataFormat)
Convolution 2d layer space to depth operation on 4d input.
Increases input channels (reduced spatial dimensions) by rearranging data into a larger channels dimension
Example: if input has shape [mb, 2, 4, 4] and block size is 2, then output size is [mb, 8/(2*2), 2*2, 2*2]
= [mb, 2, 4, 4]INDArray
NDLoss. sparseSoftmaxCrossEntropy(INDArray logits, INDArray labels)
As per softmaxCrossEntropy(String, SDVariable, SDVariable, LossReduce) but the labels variable
is represented as an integer array instead of the equivalent one-hot array.
i.e., if logits are rank N, then labels have rank N-1INDArray
NDBase. sparseToDense(INDArray indices, INDArray shape, INDArray values)
Create a dense matrix equivalent of a sparse matrix based on the given input.INDArray
NDBase. sparseToDense(INDArray indices, INDArray shape, INDArray values, INDArray defaultValue)
Create a dense matrix equivalent of a sparse matrix based on the given input.INDArray[]
NDBase. split(INDArray input, int numSplit, int splitDim)
Split a value in to a list of ndarrays.INDArray[]
NDBase. split(INDArray input, INDArray numSplit, int splitDim)
Split a value in to a list of ndarrays.INDArray[]
NDBase. splitV(INDArray input, INDArray sizes, int numSplit, int splitDim)
Split a value in to a list of ndarrays with varying sizes
according to the sizes parameter.INDArray
NDMath. sqrt(INDArray x)
Element-wise square root function: out = sqrt(x)INDArray
NDMath. square(INDArray x)
Element-wise square function: out = x^2INDArray
NDMath. squaredDifference(INDArray x, INDArray y)
Pairwise squared difference operation.
Note: supports broadcasting if x and y have different shapes and are broadcastable.
For example, if X has shape [1,10] and Y has shape [5,10] then op(X,Y) has output shape [5,10]
Broadcast rules are the same as NumPy: https://docs.scipy.org/doc/numpy/user/basics.broadcasting.htmlINDArray
NDBase. squaredNorm(INDArray x, boolean keepDims, int... dimensions)
Squared L2 norm: see norm2(String, SDVariable, boolean, int...)
Note that if keepDims = true, the output variable has the same rank as the input variable,
with the reduced dimensions having size 1.INDArray
NDBase. squaredNorm(INDArray x, int... dimensions)
Squared L2 norm: see norm2(String, SDVariable, boolean, int...)
Note that if keepDims = true, the output variable has the same rank as the input variable,
with the reduced dimensions having size 1.INDArray
NDMath. squaredNorm(INDArray in, boolean keepDims, int... dimensions)
Sum of squared differences.INDArray
NDMath. squaredNorm(INDArray in, int... dimensions)
Sum of squared differences.INDArray
NDMath. squaredNorm(INDArray in, INDArray dimensions)
Sum of squared differences.INDArray
NDMath. squaredNorm(INDArray in, INDArray dimensions, boolean keepDims)
Sum of squared differences.INDArray
NDBase. squeeze(INDArray x, int axis)
Remove a single dimension of size 1.
For example, if input has shape [a,b,1,c] then squeeze(input, 2) returns an array of shape [a,b,c]INDArray
NDRNN. sru(INDArray x, INDArray initialC, INDArray mask, SRUWeights SRUWeights)
The SRU layer.INDArray
NDRNN. sru(INDArray x, INDArray initialC, SRUWeights SRUWeights)
The SRU layer.INDArray
NDRNN. sruCell(INDArray x, INDArray cLast, SRUWeights SRUWeights)
The SRU layer.INDArray
NDBase. stack(int axis, INDArray... values)
Stack a set of N INDArray of rank X into one rank X+1 variable.
If inputs have shape [a,b,c] then output has shape:
axis = 0: [N,a,b,c]
axis = 1: [a,N,b,c]
axis = 2: [a,b,N,c]
axis = 3: [a,b,c,N]
see unstack(String[], SDVariable, int, int)INDArray
NDBase. standardDeviation(INDArray x, boolean biasCorrected, boolean keepDims, int... dimensions)
Standard deviation array reduction operation, optionally along specified dimensions
Note that if keepDims = true, the output variable has the same rank as the input variable,
with the reduced dimensions having size 1.INDArray
NDBase. standardDeviation(INDArray x, boolean biasCorrected, int... dimensions)
Standard deviation array reduction operation, optionally along specified dimensions
Note that if keepDims = true, the output variable has the same rank as the input variable,
with the reduced dimensions having size 1.INDArray
NDMath. standardize(INDArray x, int... dimensions)
Standardize input variable along given axisINDArray
NDMath. step(INDArray x, double value)
Elementwise step function:
out(x) = 1 if x >= cutoff
out(x) = 0 otherwiseINDArray
NDBase. stridedSlice(INDArray in, long[] begin, long[] end, long... strides)
Get a subset of the specified input, by specifying the first element, last element, and the strides.
For example, if input is:
[a, b, c]
[d, e, f]
[g, h, i]
then stridedSlice(input, begin=[0,1], end=[2,2], strides=[2,1], all masks = 0) will return:
[b, c]
[h, i]INDArray
NDBase. stridedSlice(INDArray in, long[] begin, long[] end, long[] strides, int beginMask, int endMask, int ellipsisMask, int newAxisMask, int shrinkAxisMask)
Get a subset of the specified input, by specifying the first element, last element, and the strides.
For example, if input is:
[a, b, c]
[d, e, f]
[g, h, i]
then stridedSlice(input, begin=[0,1], end=[2,2], strides=[2,1], all masks = 0) will return:
[b, c]
[h, i]INDArray
NDBase. stridedSlice(INDArray in, INDArray begin, INDArray end, INDArray strides)
Get a subset of the specified input, by specifying the first element, last element, and the strides.
For example, if input is:
[a, b, c]
[d, e, f]
[g, h, i]
then stridedSlice(input, begin=[0,1], end=[2,2], strides=[2,1], all masks = 0) will return:
[b, c]
[h, i]INDArray
NDBase. stridedSlice(INDArray in, INDArray begin, INDArray end, INDArray strides, int beginMask, int endMask, int ellipsisMask, int newAxisMask, int shrinkAxisMask)
Get a subset of the specified input, by specifying the first element, last element, and the strides.
For example, if input is:
[a, b, c]
[d, e, f]
[g, h, i]
then stridedSlice(input, begin=[0,1], end=[2,2], strides=[2,1], all masks = 0) will return:
[b, c]
[h, i]INDArray
NDMath. sub(INDArray x, double value)
Scalar subtraction operation, out = in - scalarINDArray
NDMath. sub(INDArray x, INDArray y)
Pairwise subtraction operation, out = x - y
Note: supports broadcasting if x and y have different shapes and are broadcastable.
For example, if X has shape [1,10] and Y has shape [5,10] then op(X,Y) has output shape [5,10]
Broadcast rules are the same as NumPy: https://docs.scipy.org/doc/numpy/user/basics.broadcasting.htmlINDArray
NDBase. sum(INDArray x, boolean keepDims, int... dimensions)
Sum array reduction operation, optionally along specified dimensions.
Note that if keepDims = true, the output variable has the same rank as the input variable,
with the reduced dimensions having size 1.INDArray
NDBase. sum(INDArray x, int... dimensions)
Sum array reduction operation, optionally along specified dimensions.
Note that if keepDims = true, the output variable has the same rank as the input variable,
with the reduced dimensions having size 1.INDArray
NDMath. sum(INDArray in, boolean keepDims, int... dimensions)
Sum of an array, optionally along specified dimensions: out = sum(x))INDArray
NDMath. sum(INDArray in, int... dimensions)
Sum of an array, optionally along specified dimensions: out = sum(x))INDArray
NDMath. sum(INDArray in, INDArray dimensions)
Sum of an array, optionally along specified dimensions: out = sum(x))INDArray
NDMath. sum(INDArray in, INDArray dimensions, boolean keepDims)
Sum of an array, optionally along specified dimensions: out = sum(x))INDArray
NDLinalg. svd(INDArray input, boolean fullUV, boolean computeUV)
Calculates singular value decomposition.INDArray
NDLinalg. svd(INDArray input, boolean fullUV, boolean computeUV, int switchNum)
Calculates singular value decomposition.INDArray
NDNN. swish(INDArray x)
Element-wise "swish" function: out = x * sigmoid(b*x) with b=1.0
See: https://arxiv.org/abs/1710.05941INDArray[]
NDBase. switchOp(INDArray x, INDArray predicate)
Switch operation
Predicate - if false, values are output to left (first) branch/output; if true, to right (second) branch/outputINDArray
NDMath. tan(INDArray x)
Elementwise tangent operation: out = tan(x)INDArray
NDMath. tanh(INDArray x)
Elementwise tanh (hyperbolic tangent) operation: out = tanh(x)INDArray
NDNN. tanh(INDArray x)
Elementwise tanh (hyperbolic tangent) operation: out = tanh(x)INDArray
NDBase. tensorMmul(INDArray x, INDArray y, int[] dimensionsX, int... dimensionsY)
//TODO: Ops must be documented.INDArray
NDBase. tensorMmul(INDArray x, INDArray y, int[] dimensionsX, int[] dimensionsY, boolean transposeX, boolean transposeY, boolean transposeZ)
//TODO: Ops must be documented.INDArray
NDBase. tile(INDArray x, int... repeat)
see tile(String, SDVariable, int...)INDArray
NDBase. tile(INDArray x, INDArray repeat)
Repeat (tile) the input tensor the specified number of times.
For example, if input is
[1, 2]
[3, 4]
and repeat is [2, 3]
then output is
[1, 2, 1, 2, 1, 2]
[3, 4, 3, 4, 3, 4]
[1, 2, 1, 2, 1, 2]
[3, 4, 3, 4, 3, 4]INDArray[]
NDNN. topK(INDArray input, double k, boolean sorted)
Find values and indices for the largest k entries along the last dimension.INDArray
NDMath. trace(INDArray in)
Matrix trace operation
For rank 2 matrices, the output is a scalar with the trace - i.e., sum of the main diagonal.
For higher rank inputs, output[a,b,c] = trace(in[a,b,c,:,:])INDArray
NDBase. transpose(INDArray x)
Matrix transpose operation: If input has shape [a,b] output has shape [b,a]INDArray
NDLinalg. triangularSolve(INDArray matrix, INDArray rhs, boolean lower, boolean adjoint)
Solver for systems of linear questions.INDArray
NDLinalg. triu(INDArray input)
Upper triangle of an array.INDArray
NDLinalg. triu(INDArray input, int diag)
Upper triangle of an array.INDArray
NDBase. unsortedSegmentMax(INDArray data, INDArray segmentIds, int numSegments)
Unsorted segment max operation.INDArray
NDBase. unsortedSegmentMax(INDArray data, INDArray segmentIds, INDArray numSegments)
Unsorted segment max operation.INDArray
NDBase. unsortedSegmentMean(INDArray data, INDArray segmentIds, int numSegments)
Unsorted segment mean operation.INDArray
NDBase. unsortedSegmentMean(INDArray data, INDArray segmentIds, INDArray numSegments)
Unsorted segment mean operation.INDArray
NDBase. unsortedSegmentMin(INDArray data, INDArray segmentIds, int numSegments)
Unsorted segment min operation.INDArray
NDBase. unsortedSegmentMin(INDArray data, INDArray segmentIds, INDArray numSegments)
Unsorted segment min operation.INDArray
NDBase. unsortedSegmentProd(INDArray data, INDArray segmentIds, int numSegments)
Unsorted segment product operation.INDArray
NDBase. unsortedSegmentProd(INDArray data, INDArray segmentIds, INDArray numSegments)
Unsorted segment product operation.INDArray
NDBase. unsortedSegmentSqrtN(INDArray data, INDArray segmentIds, int numSegments)
Unsorted segment sqrtN operation.INDArray
NDBase. unsortedSegmentSqrtN(INDArray data, INDArray segmentIds, INDArray numSegments)
Unsorted segment sqrtN operation.INDArray
NDBase. unsortedSegmentSum(INDArray data, INDArray segmentIds, int numSegments)
Unsorted segment sum operation.INDArray
NDBase. unsortedSegmentSum(INDArray data, INDArray segmentIds, INDArray numSegments)
Unsorted segment sum operation.INDArray[]
NDBase. unstack(INDArray value, int axis, int num)
Unstack a variable of rank X into N rank X-1 variables by taking slices along the specified axis.
If input has shape [a,b,c] then output has shape:
axis = 0: [b,c]
axis = 1: [a,c]
axis = 2: [a,b]INDArray
NDCNN. upsampling2d(INDArray input, int scale)
Upsampling layer for 2D inputs.
scale is used for both height and width dimensions.INDArray
NDCNN. upsampling2d(INDArray input, int scaleH, int scaleW, boolean nchw)
2D Convolution layer operation - Upsampling 2dINDArray
NDCNN. upsampling3d(INDArray input, boolean ncdhw, int scaleD, int scaleH, int scaleW)
3D Convolution layer operation - Upsampling 3dINDArray
NDBase. variance(INDArray x, boolean biasCorrected, boolean keepDims, int... dimensions)
Variance array reduction operation, optionally along specified dimensions
Note that if keepDims = true, the output variable has the same rank as the input variable,
with the reduced dimensions having size 1.INDArray
NDBase. variance(INDArray x, boolean biasCorrected, int... dimensions)
Variance array reduction operation, optionally along specified dimensions
Note that if keepDims = true, the output variable has the same rank as the input variable,
with the reduced dimensions having size 1.INDArray
NDBase. where(INDArray condition)
Returns elements that are true from the given condition array
Note that if keepDims = true, the output variable has the same rank as the input variable,
with the reduced dimensions having size 1.INDArray
NDBase. where(INDArray x, INDArray condition)
Similar to numpy where, takes elements from x or y depending on whether the condition at a given element is true or false
Note that if keepDims = true, the output variable has the same rank as the input variable,
with the reduced dimensions having size 1.INDArray
NDBase. where(INDArray x, INDArray y, INDArray condition)
Similar to numpy where, takes elements from x or y depending on whether the condition at a given element is true or false
Note that if keepDims = true, the output variable has the same rank as the input variable,
with the reduced dimensions having size 1.INDArray
NDBase. whereNumpy(INDArray x, INDArray y, INDArray condition)
As implemented in numpy, Return elements chosen from x or y depending on condition.
Note that if keepDims = true, the output variable has the same rank as the input variable,
with the reduced dimensions having size 1.INDArray
NDBitwise. xor(INDArray x, INDArray y)
Bitwise XOR operation (exclusive OR).INDArray
NDMath. xor(INDArray x, INDArray y)
Boolean XOR (exclusive OR) operation: elementwise (x != 0) XOR (y != 0)
If x and y arrays have equal shape, the output shape is the same as these inputs.
Note: supports broadcasting if x and y have different shapes and are broadcastable.
Returns an array with values 1 where condition is satisfied, or value 0 otherwise.INDArray
NDImage. yiqToRgb(INDArray input)
Converting image from YIQ to RGB formatINDArray
NDImage. yuvToRgb(INDArray input)
Converting image from YUV to RGB formatINDArray
NDMath. zeroFraction(INDArray input)
Full array zero fraction array reduction operation, optionally along specified dimensions: out = (count(x == 0) / length(x))INDArray
NDBase. zerosLike(INDArray input)
Return a variable of all 0s, with the same shape as the input variable. -
Uses of INDArray in org.nd4j.linalg.heartbeat.utils
Methods in org.nd4j.linalg.heartbeat.utils with parameters of type INDArray Modifier and Type Method Description static Task
TaskUtils. buildTask(INDArray array)
static Task
TaskUtils. buildTask(INDArray[] array, INDArray[] labels)
static Task
TaskUtils. buildTask(INDArray array, INDArray labels)
-
Uses of INDArray in org.nd4j.linalg.indexing
Methods in org.nd4j.linalg.indexing that return INDArray Modifier and Type Method Description static INDArray
BooleanIndexing. applyMask(INDArray arr, INDArray mask)
A minor shortcut for applying a bitmask to a matrixstatic INDArray
BooleanIndexing. applyMaskInPlace(INDArray arr, INDArray mask)
A minor shortcut for applying a bitmask to a matrixstatic INDArray
BooleanIndexing. chooseFrom(@NonNull INDArray[] input, @NonNull List<Double> tArgs, @NonNull List<Integer> iArgs, @NonNull Condition condition)
Choose from the inputs based on the given condition.static INDArray
BooleanIndexing. chooseFrom(@NonNull INDArray[] input, @NonNull Condition condition)
Choose from the inputs based on the given condition.static INDArray
BooleanIndexing. firstIndex(INDArray array, Condition condition)
This method returns first index matching given condition PLEASE NOTE: This method will return -1 value if condition wasn't metstatic INDArray
BooleanIndexing. firstIndex(INDArray array, Condition condition, int... dimension)
This method returns first index matching given condition along given dimensions PLEASE NOTE: This method will return -1 values for missing conditionsstatic INDArray
BooleanIndexing. lastIndex(INDArray array, Condition condition)
This method returns last index matching given condition PLEASE NOTE: This method will return -1 value if condition wasn't metstatic INDArray
BooleanIndexing. lastIndex(INDArray array, Condition condition, int... dimension)
This method returns first index matching given condition along given dimensions PLEASE NOTE: This method will return -1 values for missing conditionsMethods in org.nd4j.linalg.indexing with parameters of type INDArray Modifier and Type Method Description static INDArrayIndex[]
NDArrayIndex. allFor(INDArray arr)
Generate an all index equal to the rank of the given arraystatic boolean
BooleanIndexing. and(INDArray n, Condition cond)
And over the whole ndarray given some conditionstatic boolean[]
BooleanIndexing. and(INDArray n, Condition condition, int... dimension)
And over the whole ndarray given some condition, with respect to dimensionsstatic INDArray
BooleanIndexing. applyMask(INDArray arr, INDArray mask)
A minor shortcut for applying a bitmask to a matrixstatic INDArray
BooleanIndexing. applyMaskInPlace(INDArray arr, INDArray mask)
A minor shortcut for applying a bitmask to a matrixstatic void
BooleanIndexing. assignIf(@NonNull INDArray to, @NonNull INDArray from, @NonNull Condition condition)
This method does element-wise comparison for 2 equal-sized matrices, for each element that matches Condition.static INDArray
BooleanIndexing. chooseFrom(@NonNull INDArray[] input, @NonNull List<Double> tArgs, @NonNull List<Integer> iArgs, @NonNull Condition condition)
Choose from the inputs based on the given condition.static INDArray
BooleanIndexing. chooseFrom(@NonNull INDArray[] input, @NonNull Condition condition)
Choose from the inputs based on the given condition.static INDArrayIndex[]
Indices. createFromStartAndEnd(INDArray start, INDArray end)
Create an n dimensional index based on the given interval indices.static INDArrayIndex[]
Indices. createFromStartAndEnd(INDArray start, INDArray end, boolean inclusive)
Create indices representing intervals along each dimensionstatic INDArray
BooleanIndexing. firstIndex(INDArray array, Condition condition)
This method returns first index matching given condition PLEASE NOTE: This method will return -1 value if condition wasn't metstatic INDArray
BooleanIndexing. firstIndex(INDArray array, Condition condition, int... dimension)
This method returns first index matching given condition along given dimensions PLEASE NOTE: This method will return -1 values for missing conditionsvoid
INDArrayIndex. init(INDArray arr, int dimension)
Init the index wrt the dimension and the given nd arrayvoid
INDArrayIndex. init(INDArray arr, long begin, int dimension)
Init the index wrt the dimension and the given nd arrayvoid
IntervalIndex. init(INDArray arr, int dimension)
void
IntervalIndex. init(INDArray arr, long begin, int dimension)
void
NDArrayIndex. init(INDArray arr, int dimension)
void
NDArrayIndex. init(INDArray arr, long begin, int dimension)
void
NDArrayIndexAll. init(INDArray arr, long begin, int dimension)
void
NewAxis. init(INDArray arr, int dimension)
void
NewAxis. init(INDArray arr, long begin, int dimension)
void
PointIndex. init(INDArray arr, int dimension)
void
PointIndex. init(INDArray arr, long begin, int dimension)
void
SpecifiedIndex. init(INDArray arr, int dimension)
void
SpecifiedIndex. init(INDArray arr, long begin, int dimension)
static boolean
Indices. isScalar(INDArray indexOver, INDArrayIndex... indexes)
Check if the given indexes over the specified array are searching for a scalarstatic INDArray
BooleanIndexing. lastIndex(INDArray array, Condition condition)
This method returns last index matching given condition PLEASE NOTE: This method will return -1 value if condition wasn't metstatic INDArray
BooleanIndexing. lastIndex(INDArray array, Condition condition, int... dimension)
This method returns first index matching given condition along given dimensions PLEASE NOTE: This method will return -1 values for missing conditionsstatic long
Indices. linearOffset(int index, INDArray arr)
Compute the linear offset for an index in an ndarray.static long
NDArrayIndex. offset(INDArray arr, long... offsets)
Compute the offset given an array of offsets.static long
NDArrayIndex. offset(INDArray arr, INDArrayIndex... indices)
Compute the offset given an array of offsets.static boolean
BooleanIndexing. or(INDArray n, Condition cond)
Or over the whole ndarray given some conditionstatic boolean[]
BooleanIndexing. or(INDArray n, Condition condition, int... dimension)
Or over the whole ndarray given some condition, with respect to dimensionsstatic void
BooleanIndexing. replaceWhere(@NonNull INDArray to, @NonNull Number set, @NonNull Condition condition)
This method does element-wise assessing for 2 equal-sized matrices, for each element that matches Conditionstatic void
BooleanIndexing. replaceWhere(@NonNull INDArray to, @NonNull INDArray from, @NonNull Condition condition)
This method does element-wise comparison for 2 equal-sized matrices, for each element that matches Conditionstatic INDArrayIndex[]
NDArrayIndex. resolve(INDArray arr, INDArrayIndex... intendedIndexes)
Given an all index and the intended indexes, return an index array containing a combination of all elements for slicing and overriding particular indexes where necessarystatic int
Indices. rowNumber(int index, INDArray arr)
Compute the linear offset for an index in an ndarray.static int[]
Indices. stride(INDArray arr, INDArrayIndex[] indexes, int... shape)
Return the stride to be used for indexing -
Uses of INDArray in org.nd4j.linalg.indexing.masking
Methods in org.nd4j.linalg.indexing.masking that return INDArray Modifier and Type Method Description static INDArray
Masking. applyMask(INDArray input, INDArray mask, int axis)
Applies a boolean mask to the given input.Methods in org.nd4j.linalg.indexing.masking with parameters of type INDArray Modifier and Type Method Description static INDArray
Masking. applyMask(INDArray input, INDArray mask, int axis)
Applies a boolean mask to the given input. -
Uses of INDArray in org.nd4j.linalg.inverse
Methods in org.nd4j.linalg.inverse that return INDArray Modifier and Type Method Description static INDArray
InvertMatrix. invert(INDArray arr, boolean inPlace)
Inverts a matrixstatic INDArray
InvertMatrix. pinvert(INDArray arr, boolean inPlace)
Calculates pseudo inverse of a matrix using QR decompositionstatic INDArray
InvertMatrix. pLeftInvert(INDArray arr, boolean inPlace)
Compute the left pseudo inverse.static INDArray
InvertMatrix. pRightInvert(INDArray arr, boolean inPlace)
Compute the right pseudo inverse.Methods in org.nd4j.linalg.inverse with parameters of type INDArray Modifier and Type Method Description static INDArray
InvertMatrix. invert(INDArray arr, boolean inPlace)
Inverts a matrixstatic INDArray
InvertMatrix. pinvert(INDArray arr, boolean inPlace)
Calculates pseudo inverse of a matrix using QR decompositionstatic INDArray
InvertMatrix. pLeftInvert(INDArray arr, boolean inPlace)
Compute the left pseudo inverse.static INDArray
InvertMatrix. pRightInvert(INDArray arr, boolean inPlace)
Compute the right pseudo inverse. -
Uses of INDArray in org.nd4j.linalg.learning
Fields in org.nd4j.linalg.learning declared as INDArray Modifier and Type Field Description INDArray
AdaGradUpdater. historicalGradient
Methods in org.nd4j.linalg.learning that return types with arguments of type INDArray Modifier and Type Method Description Map<String,INDArray>
AdaBeliefUpdater. getState()
Map<String,INDArray>
AdaDeltaUpdater. getState()
Map<String,INDArray>
AdaGradUpdater. getState()
Map<String,INDArray>
AdaMaxUpdater. getState()
Map<String,INDArray>
AdamUpdater. getState()
Map<String,INDArray>
AMSGradUpdater. getState()
Map<String,INDArray>
GradientUpdater. getState()
Map<String,INDArray>
NadamUpdater. getState()
Map<String,INDArray>
NesterovsUpdater. getState()
Map<String,INDArray>
NoOpUpdater. getState()
Map<String,INDArray>
RmsPropUpdater. getState()
Map<String,INDArray>
SgdUpdater. getState()
Methods in org.nd4j.linalg.learning with parameters of type INDArray Modifier and Type Method Description void
AdaBeliefUpdater. applyUpdater(INDArray gradient, int iteration, int epoch)
Calculate the update based on the given gradientvoid
AdaDeltaUpdater. applyUpdater(INDArray gradient, int iteration, int epoch)
Get the updated gradient for the given gradient and also update the state of ada delta.void
AdaGradUpdater. applyUpdater(INDArray gradient, int iteration, int epoch)
Gets feature specific learning rates Adagrad keeps a history of gradients being passed in.void
AdaMaxUpdater. applyUpdater(INDArray gradient, int iteration, int epoch)
Calculate the update based on the given gradientvoid
AdamUpdater. applyUpdater(INDArray gradient, int iteration, int epoch)
Calculate the update based on the given gradientvoid
AMSGradUpdater. applyUpdater(INDArray gradient, int iteration, int epoch)
void
GradientUpdater. applyUpdater(INDArray gradient, int iteration, int epoch)
Modify the gradient to be an update.void
NadamUpdater. applyUpdater(INDArray gradient, int iteration, int epoch)
Calculate the update based on the given gradientvoid
NesterovsUpdater. applyUpdater(INDArray gradient, int iteration, int epoch)
Get the nesterov updatevoid
NoOpUpdater. applyUpdater(INDArray gradient, int iteration, int epoch)
void
RmsPropUpdater. applyUpdater(INDArray gradient, int iteration, int epoch)
void
SgdUpdater. applyUpdater(INDArray gradient, int iteration, int epoch)
void
AdaBeliefUpdater. setStateViewArray(INDArray viewArray, long[] gradientShape, char gradientOrder, boolean initialize)
void
AdaDeltaUpdater. setStateViewArray(INDArray viewArray, long[] gradientShape, char gradientOrder, boolean initialize)
void
AdaGradUpdater. setStateViewArray(INDArray viewArray, long[] gradientShape, char gradientOrder, boolean initialize)
void
AdaMaxUpdater. setStateViewArray(INDArray viewArray, long[] gradientShape, char gradientOrder, boolean initialize)
void
AdamUpdater. setStateViewArray(INDArray viewArray, long[] gradientShape, char gradientOrder, boolean initialize)
void
AMSGradUpdater. setStateViewArray(INDArray viewArray, long[] gradientShape, char gradientOrder, boolean initialize)
void
GradientUpdater. setStateViewArray(INDArray viewArray, long[] gradientShape, char gradientOrder, boolean initialize)
For the internal updater state (if any): set this to use the provided array.void
NadamUpdater. setStateViewArray(INDArray viewArray, long[] gradientShape, char gradientOrder, boolean initialize)
void
NesterovsUpdater. setStateViewArray(INDArray viewArray, long[] gradientShape, char gradientOrder, boolean initialize)
void
NoOpUpdater. setStateViewArray(INDArray viewArray, long[] shape, char order, boolean initialize)
void
RmsPropUpdater. setStateViewArray(INDArray viewArray, long[] gradientShape, char gradientOrder, boolean initialize)
void
SgdUpdater. setStateViewArray(INDArray viewArray, long[] gradientShape, char gradientOrder, boolean initialize)
Method parameters in org.nd4j.linalg.learning with type arguments of type INDArray Modifier and Type Method Description void
AdaBeliefUpdater. setState(@NonNull Map<String,INDArray> stateMap, boolean initialize)
void
AdaDeltaUpdater. setState(Map<String,INDArray> stateMap, boolean initialize)
void
AdaGradUpdater. setState(Map<String,INDArray> stateMap, boolean initialize)
void
AdaMaxUpdater. setState(@NonNull Map<String,INDArray> stateMap, boolean initialize)
void
AdamUpdater. setState(@NonNull Map<String,INDArray> stateMap, boolean initialize)
void
AMSGradUpdater. setState(@NonNull Map<String,INDArray> stateMap, boolean initialize)
void
GradientUpdater. setState(Map<String,INDArray> stateMap, boolean initialize)
void
NadamUpdater. setState(@NonNull Map<String,INDArray> stateMap, boolean initialize)
void
NesterovsUpdater. setState(@NonNull Map<String,INDArray> stateMap, boolean initialize)
void
NoOpUpdater. setState(Map<String,INDArray> stateMap, boolean initialize)
void
RmsPropUpdater. setState(@NonNull Map<String,INDArray> stateMap, boolean initialize)
void
SgdUpdater. setState(Map<String,INDArray> stateMap, boolean initialize)
-
Uses of INDArray in org.nd4j.linalg.learning.config
Methods in org.nd4j.linalg.learning.config with parameters of type INDArray Modifier and Type Method Description GradientUpdater
AdaBelief. instantiate(INDArray viewArray, boolean initializeViewArray)
GradientUpdater
AdaDelta. instantiate(INDArray viewArray, boolean initializeViewArray)
GradientUpdater
AdaGrad. instantiate(INDArray viewArray, boolean initializeViewArray)
GradientUpdater
Adam. instantiate(INDArray viewArray, boolean initializeViewArray)
GradientUpdater
AdaMax. instantiate(INDArray viewArray, boolean initializeViewArray)
GradientUpdater
AMSGrad. instantiate(INDArray viewArray, boolean initializeViewArray)
GradientUpdater
IUpdater. instantiate(INDArray viewArray, boolean initializeViewArray)
Create a new gradient updaterGradientUpdater
Nadam. instantiate(INDArray viewArray, boolean initializeViewArray)
GradientUpdater
Nesterovs. instantiate(INDArray viewArray, boolean initializeViewArray)
GradientUpdater
NoOp. instantiate(INDArray viewArray, boolean initializeViewArray)
GradientUpdater
RmsProp. instantiate(INDArray viewArray, boolean initializeViewArray)
GradientUpdater
Sgd. instantiate(INDArray viewArray, boolean initializeViewArray)
Method parameters in org.nd4j.linalg.learning.config with type arguments of type INDArray Modifier and Type Method Description GradientUpdater
AdaBelief. instantiate(Map<String,INDArray> updaterState, boolean initializeStateArrays)
GradientUpdater
AdaDelta. instantiate(Map<String,INDArray> updaterState, boolean initializeStateArrays)
GradientUpdater
AdaGrad. instantiate(Map<String,INDArray> updaterState, boolean initializeStateArrays)
GradientUpdater
Adam. instantiate(Map<String,INDArray> updaterState, boolean initializeStateArrays)
GradientUpdater
AdaMax. instantiate(Map<String,INDArray> updaterState, boolean initializeStateArrays)
GradientUpdater
AMSGrad. instantiate(Map<String,INDArray> updaterState, boolean initializeStateArrays)
GradientUpdater
IUpdater. instantiate(Map<String,INDArray> updaterState, boolean initializeStateArrays)
GradientUpdater
Nadam. instantiate(Map<String,INDArray> updaterState, boolean initializeStateArrays)
GradientUpdater
Nesterovs. instantiate(Map<String,INDArray> updaterState, boolean initializeStateArrays)
GradientUpdater
NoOp. instantiate(Map<String,INDArray> updaterState, boolean initializeStateArrays)
GradientUpdater
RmsProp. instantiate(Map<String,INDArray> updaterState, boolean initializeStateArrays)
GradientUpdater
Sgd. instantiate(Map<String,INDArray> updaterState, boolean initializeStateArrays)
-
Uses of INDArray in org.nd4j.linalg.learning.legacy
Fields in org.nd4j.linalg.learning.legacy declared as INDArray Modifier and Type Field Description INDArray
AdaGrad. historicalGradient
Methods in org.nd4j.linalg.learning.legacy that return INDArray Modifier and Type Method Description INDArray
AdaGrad. getGradient(INDArray gradient, int iteration)
Gets feature specific learning rates Adagrad keeps a history of gradients being passed in.INDArray
AdaGrad. getGradient(INDArray gradient, int slice, long[] shape)
Methods in org.nd4j.linalg.learning.legacy with parameters of type INDArray Modifier and Type Method Description INDArray
AdaGrad. getGradient(INDArray gradient, int iteration)
Gets feature specific learning rates Adagrad keeps a history of gradients being passed in.INDArray
AdaGrad. getGradient(INDArray gradient, int slice, long[] shape)
void
AdaGrad. setStateViewArray(INDArray viewArray, int[] gradientShape, char gradientOrder, boolean initialize)
void
AdaGrad. setStateViewArray(INDArray viewArray, long[] gradientShape, char gradientOrder, boolean initialize)
-
Uses of INDArray in org.nd4j.linalg.learning.regularization
Methods in org.nd4j.linalg.learning.regularization with parameters of type INDArray Modifier and Type Method Description void
L1Regularization. apply(INDArray param, INDArray gradView, double lr, int iteration, int epoch)
void
L2Regularization. apply(INDArray param, INDArray gradView, double lr, int iteration, int epoch)
void
Regularization. apply(INDArray param, INDArray gradView, double lr, int iteration, int epoch)
Apply the regularization by modifying the gradient array in-placevoid
WeightDecay. apply(INDArray param, INDArray gradView, double lr, int iteration, int epoch)
double
L1Regularization. score(INDArray param, int iteration, int epoch)
double
L2Regularization. score(INDArray param, int iteration, int epoch)
double
Regularization. score(INDArray param, int iteration, int epoch)
Calculate the loss function score component for the regularization.
For example, in L2 regularization, this would returnL = 0.5 * sum_i param[i]^2
For regularization types that don't have a score component, this method can return 0.double
WeightDecay. score(INDArray param, int iteration, int epoch)
-
Uses of INDArray in org.nd4j.linalg.lossfunctions
Methods in org.nd4j.linalg.lossfunctions that return INDArray Modifier and Type Method Description INDArray
ILossFunction. computeGradient(INDArray labels, INDArray preOutput, IActivation activationFn, INDArray mask)
Compute the gradient of the loss function with respect to the inputs: dL/dOutputINDArray
SameDiffLoss. computeGradient(INDArray labels, INDArray preOutput, IActivation activationFn, INDArray mask)
Compute the gradient of the loss function with respect to the inputs: dL/dOutputINDArray
ILossFunction. computeScoreArray(INDArray labels, INDArray preOutput, IActivation activationFn, INDArray mask)
Compute the score (loss function value) for each example individually.INDArray
SameDiffLoss. computeScoreArray(INDArray labels, INDArray preOutput, IActivation activationFn, INDArray mask)
Compute the score (loss function value) for each example individually.Methods in org.nd4j.linalg.lossfunctions that return types with arguments of type INDArray Modifier and Type Method Description Pair<Double,INDArray>
ILossFunction. computeGradientAndScore(INDArray labels, INDArray preOutput, IActivation activationFn, INDArray mask, boolean average)
Compute both the score (loss function value) and gradient.Pair<Double,INDArray>
SameDiffLoss. computeGradientAndScore(INDArray labels, INDArray preOutput, IActivation activationFn, INDArray mask, boolean average)
Compute both the score (loss function value) and gradient.Methods in org.nd4j.linalg.lossfunctions with parameters of type INDArray Modifier and Type Method Description static void
LossUtil. applyMask(INDArray to, INDArray mask)
INDArray
ILossFunction. computeGradient(INDArray labels, INDArray preOutput, IActivation activationFn, INDArray mask)
Compute the gradient of the loss function with respect to the inputs: dL/dOutputINDArray
SameDiffLoss. computeGradient(INDArray labels, INDArray preOutput, IActivation activationFn, INDArray mask)
Compute the gradient of the loss function with respect to the inputs: dL/dOutputPair<Double,INDArray>
ILossFunction. computeGradientAndScore(INDArray labels, INDArray preOutput, IActivation activationFn, INDArray mask, boolean average)
Compute both the score (loss function value) and gradient.Pair<Double,INDArray>
SameDiffLoss. computeGradientAndScore(INDArray labels, INDArray preOutput, IActivation activationFn, INDArray mask, boolean average)
Compute both the score (loss function value) and gradient.double
ILossFunction. computeScore(INDArray labels, INDArray preOutput, IActivation activationFn, INDArray mask, boolean average)
Compute the score (loss function value) for the given inputs.double
SameDiffLoss. computeScore(INDArray labels, INDArray preOutput, IActivation activationFn, INDArray mask, boolean average)
Compute the score (loss function value) for the given inputs.INDArray
ILossFunction. computeScoreArray(INDArray labels, INDArray preOutput, IActivation activationFn, INDArray mask)
Compute the score (loss function value) for each example individually.INDArray
SameDiffLoss. computeScoreArray(INDArray labels, INDArray preOutput, IActivation activationFn, INDArray mask)
Compute the score (loss function value) for each example individually.static boolean
LossUtil. isPerOutputMasking(INDArray to, INDArray mask)
-
Uses of INDArray in org.nd4j.linalg.lossfunctions.impl
Fields in org.nd4j.linalg.lossfunctions.impl declared as INDArray Modifier and Type Field Description protected INDArray
LossL1. weights
protected INDArray
LossL2. weights
protected INDArray
LossMCXENT. weights
Methods in org.nd4j.linalg.lossfunctions.impl that return INDArray Modifier and Type Method Description INDArray
LossBinaryXENT. computeGradient(INDArray labels, INDArray preOutput, IActivation activationFn, INDArray mask)
INDArray
LossCosineProximity. computeGradient(INDArray labels, INDArray preOutput, IActivation activationFn, INDArray mask)
INDArray
LossFMeasure. computeGradient(INDArray labels, INDArray preOutput, IActivation activationFn, INDArray mask)
INDArray
LossHinge. computeGradient(INDArray labels, INDArray preOutput, IActivation activationFn, INDArray mask)
INDArray
LossKLD. computeGradient(INDArray labels, INDArray preOutput, IActivation activationFn, INDArray mask)
INDArray
LossL1. computeGradient(INDArray labels, INDArray preOutput, IActivation activationFn, INDArray mask)
INDArray
LossL2. computeGradient(INDArray labels, INDArray preOutput, IActivation activationFn, INDArray mask)
INDArray
LossMAE. computeGradient(INDArray labels, INDArray preOutput, IActivation activationFn, INDArray mask)
INDArray
LossMAPE. computeGradient(INDArray labels, INDArray preOutput, IActivation activationFn, INDArray mask)
INDArray
LossMCXENT. computeGradient(INDArray labels, INDArray preOutput, IActivation activationFn, INDArray mask)
INDArray
LossMixtureDensity. computeGradient(INDArray labels, INDArray preOutput, IActivation activationFn, INDArray mask)
This method returns the gradient of the cost function with respect to the output from the previous layer.INDArray
LossMSE. computeGradient(INDArray labels, INDArray preOutput, IActivation activationFn, INDArray mask)
INDArray
LossMSLE. computeGradient(INDArray labels, INDArray preOutput, IActivation activationFn, INDArray mask)
INDArray
LossMultiLabel. computeGradient(INDArray labels, INDArray preOutput, IActivation activationFn, INDArray mask)
INDArray
LossPoisson. computeGradient(INDArray labels, INDArray preOutput, IActivation activationFn, INDArray mask)
INDArray
LossSparseMCXENT. computeGradient(INDArray labels, INDArray preOutput, IActivation activationFn, INDArray mask)
INDArray
LossSquaredHinge. computeGradient(INDArray labels, INDArray preOutput, IActivation activationFn, INDArray mask)
INDArray
LossWasserstein. computeGradient(INDArray labels, INDArray preOutput, IActivation activationFn, INDArray mask)
INDArray
LossBinaryXENT. computeScoreArray(INDArray labels, INDArray preOutput, IActivation activationFn, INDArray mask)
INDArray
LossCosineProximity. computeScoreArray(INDArray labels, INDArray preOutput, IActivation activationFn, INDArray mask)
INDArray
LossFMeasure. computeScoreArray(INDArray labels, INDArray preOutput, IActivation activationFn, INDArray mask)
INDArray
LossHinge. computeScoreArray(INDArray labels, INDArray preOutput, IActivation activationFn, INDArray mask)
INDArray
LossKLD. computeScoreArray(INDArray labels, INDArray preOutput, IActivation activationFn, INDArray mask)
INDArray
LossL1. computeScoreArray(INDArray labels, INDArray preOutput, IActivation activationFn, INDArray mask)
INDArray
LossL2. computeScoreArray(INDArray labels, INDArray preOutput, IActivation activationFn, INDArray mask)
INDArray
LossMAE. computeScoreArray(INDArray labels, INDArray preOutput, IActivation activationFn, INDArray mask)
INDArray
LossMAPE. computeScoreArray(INDArray labels, INDArray preOutput, IActivation activationFn, INDArray mask)
INDArray
LossMCXENT. computeScoreArray(INDArray labels, INDArray preOutput, IActivation activationFn, INDArray mask)
INDArray
LossMixtureDensity. computeScoreArray(INDArray labels, INDArray preOutput, IActivation activationFn, INDArray mask)
This method returns the score for each of the given outputs against the given set of labels.INDArray
LossMSE. computeScoreArray(INDArray labels, INDArray preOutput, IActivation activationFn, INDArray mask)
INDArray
LossMSLE. computeScoreArray(INDArray labels, INDArray preOutput, IActivation activationFn, INDArray mask)
INDArray
LossMultiLabel. computeScoreArray(INDArray labels, INDArray preOutput, IActivation activationFn, INDArray mask)
INDArray
LossPoisson. computeScoreArray(INDArray labels, INDArray preOutput, IActivation activationFn, INDArray mask)
INDArray
LossSparseMCXENT. computeScoreArray(INDArray labels, INDArray preOutput, IActivation activationFn, INDArray mask)
INDArray
LossSquaredHinge. computeScoreArray(INDArray labels, INDArray preOutput, IActivation activationFn, INDArray mask)
INDArray
LossWasserstein. computeScoreArray(INDArray labels, INDArray preOutput, IActivation activationFn, INDArray mask)
INDArray
LossCosineProximity. scoreArray(INDArray labels, INDArray preOutput, IActivation activationFn, INDArray mask)
INDArray
LossHinge. scoreArray(INDArray labels, INDArray preOutput, IActivation activationFn, INDArray mask)
INDArray
LossL1. scoreArray(INDArray labels, INDArray preOutput, IActivation activationFn, INDArray mask)
protected INDArray
LossL2. scoreArray(INDArray labels, INDArray preOutput, IActivation activationFn, INDArray mask)
INDArray
LossMAPE. scoreArray(INDArray labels, INDArray preOutput, IActivation activationFn, INDArray mask)
protected INDArray
LossMCXENT. scoreArray(INDArray labels, INDArray preOutput, IActivation activationFn, INDArray mask)
INDArray
LossMSLE. scoreArray(INDArray labels, INDArray preOutput, IActivation activationFn, INDArray mask)
INDArray
LossMultiLabel. scoreArray(INDArray labels, INDArray preOutput, IActivation activationFn, INDArray mask)
INDArray
LossPoisson. scoreArray(INDArray labels, INDArray preOutput, IActivation activationFn, INDArray mask)
INDArray
LossSquaredHinge. scoreArray(INDArray labels, INDArray preOutput, IActivation activationFn, INDArray mask)
protected INDArray
LossSparseMCXENT. sparseScoreArray(INDArray labels, INDArray preOutput, IActivation activationFn, INDArray mask)
Methods in org.nd4j.linalg.lossfunctions.impl that return types with arguments of type INDArray Modifier and Type Method Description Pair<Double,INDArray>
LossBinaryXENT. computeGradientAndScore(INDArray labels, INDArray preOutput, IActivation activationFn, INDArray mask, boolean average)
Pair<Double,INDArray>
LossCosineProximity. computeGradientAndScore(INDArray labels, INDArray preOutput, IActivation activationFn, INDArray mask, boolean average)
Pair<Double,INDArray>
LossFMeasure. computeGradientAndScore(INDArray labels, INDArray preOutput, IActivation activationFn, INDArray mask, boolean average)
Pair<Double,INDArray>
LossHinge. computeGradientAndScore(INDArray labels, INDArray preOutput, IActivation activationFn, INDArray mask, boolean average)
Pair<Double,INDArray>
LossKLD. computeGradientAndScore(INDArray labels, INDArray preOutput, IActivation activationFn, INDArray mask, boolean average)
Pair<Double,INDArray>
LossL1. computeGradientAndScore(INDArray labels, INDArray preOutput, IActivation activationFn, INDArray mask, boolean average)
Pair<Double,INDArray>
LossL2. computeGradientAndScore(INDArray labels, INDArray preOutput, IActivation activationFn, INDArray mask, boolean average)
Pair<Double,INDArray>
LossMAPE. computeGradientAndScore(INDArray labels, INDArray preOutput, IActivation activationFn, INDArray mask, boolean average)
Pair<Double,INDArray>
LossMCXENT. computeGradientAndScore(INDArray labels, INDArray preOutput, IActivation activationFn, INDArray mask, boolean average)
Pair<Double,INDArray>
LossMixtureDensity. computeGradientAndScore(INDArray labels, INDArray preOutput, IActivation activationFn, INDArray mask, boolean average)
Pair<Double,INDArray>
LossMSLE. computeGradientAndScore(INDArray labels, INDArray preOutput, IActivation activationFn, INDArray mask, boolean average)
Pair<Double,INDArray>
LossMultiLabel. computeGradientAndScore(INDArray labels, INDArray preOutput, IActivation activationFn, INDArray mask, boolean average)
Pair<Double,INDArray>
LossPoisson. computeGradientAndScore(INDArray labels, INDArray preOutput, IActivation activationFn, INDArray mask, boolean average)
Pair<Double,INDArray>
LossSparseMCXENT. computeGradientAndScore(INDArray labels, INDArray preOutput, IActivation activationFn, INDArray mask, boolean average)
Pair<Double,INDArray>
LossSquaredHinge. computeGradientAndScore(INDArray labels, INDArray preOutput, IActivation activationFn, INDArray mask, boolean average)
Pair<Double,INDArray>
LossWasserstein. computeGradientAndScore(INDArray labels, INDArray preOutput, IActivation activationFn, INDArray mask, boolean average)
Methods in org.nd4j.linalg.lossfunctions.impl with parameters of type INDArray Modifier and Type Method Description INDArray
LossBinaryXENT. computeGradient(INDArray labels, INDArray preOutput, IActivation activationFn, INDArray mask)
INDArray
LossCosineProximity. computeGradient(INDArray labels, INDArray preOutput, IActivation activationFn, INDArray mask)
INDArray
LossFMeasure. computeGradient(INDArray labels, INDArray preOutput, IActivation activationFn, INDArray mask)
INDArray
LossHinge. computeGradient(INDArray labels, INDArray preOutput, IActivation activationFn, INDArray mask)
INDArray
LossKLD. computeGradient(INDArray labels, INDArray preOutput, IActivation activationFn, INDArray mask)
INDArray
LossL1. computeGradient(INDArray labels, INDArray preOutput, IActivation activationFn, INDArray mask)
INDArray
LossL2. computeGradient(INDArray labels, INDArray preOutput, IActivation activationFn, INDArray mask)
INDArray
LossMAE. computeGradient(INDArray labels, INDArray preOutput, IActivation activationFn, INDArray mask)
INDArray
LossMAPE. computeGradient(INDArray labels, INDArray preOutput, IActivation activationFn, INDArray mask)
INDArray
LossMCXENT. computeGradient(INDArray labels, INDArray preOutput, IActivation activationFn, INDArray mask)
INDArray
LossMixtureDensity. computeGradient(INDArray labels, INDArray preOutput, IActivation activationFn, INDArray mask)
This method returns the gradient of the cost function with respect to the output from the previous layer.INDArray
LossMSE. computeGradient(INDArray labels, INDArray preOutput, IActivation activationFn, INDArray mask)
INDArray
LossMSLE. computeGradient(INDArray labels, INDArray preOutput, IActivation activationFn, INDArray mask)
INDArray
LossMultiLabel. computeGradient(INDArray labels, INDArray preOutput, IActivation activationFn, INDArray mask)
INDArray
LossPoisson. computeGradient(INDArray labels, INDArray preOutput, IActivation activationFn, INDArray mask)
INDArray
LossSparseMCXENT. computeGradient(INDArray labels, INDArray preOutput, IActivation activationFn, INDArray mask)
INDArray
LossSquaredHinge. computeGradient(INDArray labels, INDArray preOutput, IActivation activationFn, INDArray mask)
INDArray
LossWasserstein. computeGradient(INDArray labels, INDArray preOutput, IActivation activationFn, INDArray mask)
Pair<Double,INDArray>
LossBinaryXENT. computeGradientAndScore(INDArray labels, INDArray preOutput, IActivation activationFn, INDArray mask, boolean average)
Pair<Double,INDArray>
LossCosineProximity. computeGradientAndScore(INDArray labels, INDArray preOutput, IActivation activationFn, INDArray mask, boolean average)
Pair<Double,INDArray>
LossFMeasure. computeGradientAndScore(INDArray labels, INDArray preOutput, IActivation activationFn, INDArray mask, boolean average)
Pair<Double,INDArray>
LossHinge. computeGradientAndScore(INDArray labels, INDArray preOutput, IActivation activationFn, INDArray mask, boolean average)
Pair<Double,INDArray>
LossKLD. computeGradientAndScore(INDArray labels, INDArray preOutput, IActivation activationFn, INDArray mask, boolean average)
Pair<Double,INDArray>
LossL1. computeGradientAndScore(INDArray labels, INDArray preOutput, IActivation activationFn, INDArray mask, boolean average)
Pair<Double,INDArray>
LossL2. computeGradientAndScore(INDArray labels, INDArray preOutput, IActivation activationFn, INDArray mask, boolean average)
Pair<Double,INDArray>
LossMAPE. computeGradientAndScore(INDArray labels, INDArray preOutput, IActivation activationFn, INDArray mask, boolean average)
Pair<Double,INDArray>
LossMCXENT. computeGradientAndScore(INDArray labels, INDArray preOutput, IActivation activationFn, INDArray mask, boolean average)
Pair<Double,INDArray>
LossMixtureDensity. computeGradientAndScore(INDArray labels, INDArray preOutput, IActivation activationFn, INDArray mask, boolean average)
Pair<Double,INDArray>
LossMSLE. computeGradientAndScore(INDArray labels, INDArray preOutput, IActivation activationFn, INDArray mask, boolean average)
Pair<Double,INDArray>
LossMultiLabel. computeGradientAndScore(INDArray labels, INDArray preOutput, IActivation activationFn, INDArray mask, boolean average)
Pair<Double,INDArray>
LossPoisson. computeGradientAndScore(INDArray labels, INDArray preOutput, IActivation activationFn, INDArray mask, boolean average)
Pair<Double,INDArray>
LossSparseMCXENT. computeGradientAndScore(INDArray labels, INDArray preOutput, IActivation activationFn, INDArray mask, boolean average)
Pair<Double,INDArray>
LossSquaredHinge. computeGradientAndScore(INDArray labels, INDArray preOutput, IActivation activationFn, INDArray mask, boolean average)
Pair<Double,INDArray>
LossWasserstein. computeGradientAndScore(INDArray labels, INDArray preOutput, IActivation activationFn, INDArray mask, boolean average)
double
LossBinaryXENT. computeScore(INDArray labels, INDArray preOutput, IActivation activationFn, INDArray mask, boolean average)
double
LossCosineProximity. computeScore(INDArray labels, INDArray preOutput, IActivation activationFn, INDArray mask, boolean average)
double
LossFMeasure. computeScore(INDArray labels, INDArray preOutput, IActivation activationFn, INDArray mask, boolean average)
double
LossHinge. computeScore(INDArray labels, INDArray preOutput, IActivation activationFn, INDArray mask, boolean average)
double
LossKLD. computeScore(INDArray labels, INDArray preOutput, IActivation activationFn, INDArray mask, boolean average)
double
LossL1. computeScore(INDArray labels, INDArray preOutput, IActivation activationFn, INDArray mask, boolean average)
double
LossL2. computeScore(INDArray labels, INDArray preOutput, IActivation activationFn, INDArray mask, boolean average)
double
LossMAE. computeScore(INDArray labels, INDArray preOutput, IActivation activationFn, INDArray mask, boolean average)
double
LossMAPE. computeScore(INDArray labels, INDArray preOutput, IActivation activationFn, INDArray mask, boolean average)
double
LossMCXENT. computeScore(INDArray labels, INDArray preOutput, IActivation activationFn, INDArray mask, boolean average)
double
LossMixtureDensity. computeScore(INDArray labels, INDArray preOutput, IActivation activationFn, INDArray mask, boolean average)
Computes the aggregate score as a sum of all of the individual scores of each of the labels against each of the outputs of the network.double
LossMSE. computeScore(INDArray labels, INDArray preOutput, IActivation activationFn, INDArray mask, boolean average)
double
LossMSLE. computeScore(INDArray labels, INDArray preOutput, IActivation activationFn, INDArray mask, boolean average)
double
LossMultiLabel. computeScore(INDArray labels, INDArray preOutput, IActivation activationFn, INDArray mask, boolean average)
double
LossPoisson. computeScore(INDArray labels, INDArray preOutput, IActivation activationFn, INDArray mask, boolean average)
double
LossSparseMCXENT. computeScore(INDArray labels, INDArray preOutput, IActivation activationFn, INDArray mask, boolean average)
double
LossSquaredHinge. computeScore(INDArray labels, INDArray preOutput, IActivation activationFn, INDArray mask, boolean average)
double
LossWasserstein. computeScore(INDArray labels, INDArray preOutput, IActivation activationFn, INDArray mask, boolean average)
INDArray
LossBinaryXENT. computeScoreArray(INDArray labels, INDArray preOutput, IActivation activationFn, INDArray mask)
INDArray
LossCosineProximity. computeScoreArray(INDArray labels, INDArray preOutput, IActivation activationFn, INDArray mask)
INDArray
LossFMeasure. computeScoreArray(INDArray labels, INDArray preOutput, IActivation activationFn, INDArray mask)
INDArray
LossHinge. computeScoreArray(INDArray labels, INDArray preOutput, IActivation activationFn, INDArray mask)
INDArray
LossKLD. computeScoreArray(INDArray labels, INDArray preOutput, IActivation activationFn, INDArray mask)
INDArray
LossL1. computeScoreArray(INDArray labels, INDArray preOutput, IActivation activationFn, INDArray mask)
INDArray
LossL2. computeScoreArray(INDArray labels, INDArray preOutput, IActivation activationFn, INDArray mask)
INDArray
LossMAE. computeScoreArray(INDArray labels, INDArray preOutput, IActivation activationFn, INDArray mask)
INDArray
LossMAPE. computeScoreArray(INDArray labels, INDArray preOutput, IActivation activationFn, INDArray mask)
INDArray
LossMCXENT. computeScoreArray(INDArray labels, INDArray preOutput, IActivation activationFn, INDArray mask)
INDArray
LossMixtureDensity. computeScoreArray(INDArray labels, INDArray preOutput, IActivation activationFn, INDArray mask)
This method returns the score for each of the given outputs against the given set of labels.INDArray
LossMSE. computeScoreArray(INDArray labels, INDArray preOutput, IActivation activationFn, INDArray mask)
INDArray
LossMSLE. computeScoreArray(INDArray labels, INDArray preOutput, IActivation activationFn, INDArray mask)
INDArray
LossMultiLabel. computeScoreArray(INDArray labels, INDArray preOutput, IActivation activationFn, INDArray mask)
INDArray
LossPoisson. computeScoreArray(INDArray labels, INDArray preOutput, IActivation activationFn, INDArray mask)
INDArray
LossSparseMCXENT. computeScoreArray(INDArray labels, INDArray preOutput, IActivation activationFn, INDArray mask)
INDArray
LossSquaredHinge. computeScoreArray(INDArray labels, INDArray preOutput, IActivation activationFn, INDArray mask)
INDArray
LossWasserstein. computeScoreArray(INDArray labels, INDArray preOutput, IActivation activationFn, INDArray mask)
LossMixtureDensity.MixtureDensityComponents
LossMixtureDensity. extractComponents(INDArray output)
INDArray
LossCosineProximity. scoreArray(INDArray labels, INDArray preOutput, IActivation activationFn, INDArray mask)
INDArray
LossHinge. scoreArray(INDArray labels, INDArray preOutput, IActivation activationFn, INDArray mask)
INDArray
LossL1. scoreArray(INDArray labels, INDArray preOutput, IActivation activationFn, INDArray mask)
protected INDArray
LossL2. scoreArray(INDArray labels, INDArray preOutput, IActivation activationFn, INDArray mask)
INDArray
LossMAPE. scoreArray(INDArray labels, INDArray preOutput, IActivation activationFn, INDArray mask)
protected INDArray
LossMCXENT. scoreArray(INDArray labels, INDArray preOutput, IActivation activationFn, INDArray mask)
INDArray
LossMSLE. scoreArray(INDArray labels, INDArray preOutput, IActivation activationFn, INDArray mask)
INDArray
LossMultiLabel. scoreArray(INDArray labels, INDArray preOutput, IActivation activationFn, INDArray mask)
INDArray
LossPoisson. scoreArray(INDArray labels, INDArray preOutput, IActivation activationFn, INDArray mask)
INDArray
LossSquaredHinge. scoreArray(INDArray labels, INDArray preOutput, IActivation activationFn, INDArray mask)
protected INDArray
LossSparseMCXENT. sparseScoreArray(INDArray labels, INDArray preOutput, IActivation activationFn, INDArray mask)
Constructors in org.nd4j.linalg.lossfunctions.impl with parameters of type INDArray Constructor Description LossBinaryXENT(double clipEps, INDArray weights)
Binary cross entropy where each the output is (optionally) weighted/scaled by a fixed scalar value.LossBinaryXENT(INDArray weights)
Binary cross entropy where each the output is (optionally) weighted/scaled by a fixed scalar value.LossL1(INDArray weights)
L1 loss function where each the output is (optionally) weighted/scaled by a flags scalar value.LossL2(INDArray weights)
L2 loss function where each the output is (optionally) weighted/scaled by a flags scalar value.LossMAE(INDArray weights)
Mean Absolute Error loss function where each the output is (optionally) weighted/scaled by a flags scalar value.LossMAPE(INDArray weights)
Mean Absolute Percentage Error loss function where each the output is (optionally) weighted/scaled by a flags scalar value.LossMCXENT(double softmaxClipEps, INDArray weights)
Multi-Class Cross Entropy loss function where each the output is (optionally) weighted/scaled by a fixed scalar value.LossMCXENT(INDArray weights)
Multi-Class Cross Entropy loss function where each the output is (optionally) weighted/scaled by a flags scalar value.LossMSE(INDArray weights)
Mean Squared Error loss function where each the output is (optionally) weighted/scaled by a flags scalar value.LossMSLE(INDArray weights)
Mean Squared Logarithmic Error loss function where each the output is (optionally) weighted/scaled by a flags scalar value.LossNegativeLogLikelihood(INDArray weights)
LossSparseMCXENT(double softmaxClipEps, INDArray weights)
Multi-Class Cross Entropy loss function where each the output is (optionally) weighted/scaled by a fixed scalar value.LossSparseMCXENT(INDArray weights)
Multi-Class Cross Entropy loss function where each the output is (optionally) weighted/scaled by a flags scalar value. -
Uses of INDArray in org.nd4j.linalg.lossfunctions.serde
Methods in org.nd4j.linalg.lossfunctions.serde that return INDArray Modifier and Type Method Description INDArray
RowVectorDeserializer. deserialize(org.nd4j.shade.jackson.core.JsonParser jsonParser, org.nd4j.shade.jackson.databind.DeserializationContext deserializationContext)
Deprecated.Methods in org.nd4j.linalg.lossfunctions.serde with parameters of type INDArray Modifier and Type Method Description void
RowVectorSerializer. serialize(INDArray array, org.nd4j.shade.jackson.core.JsonGenerator jsonGenerator, org.nd4j.shade.jackson.databind.SerializerProvider serializerProvider)
Deprecated. -
Uses of INDArray in org.nd4j.linalg.ops.transforms
Methods in org.nd4j.linalg.ops.transforms that return INDArray Modifier and Type Method Description static INDArray
Transforms. abs(INDArray ndArray)
Abs functionstatic INDArray
Transforms. abs(INDArray ndArray, boolean dup)
Abs functionstatic INDArray
Transforms. acos(INDArray arr)
static INDArray
Transforms. acos(INDArray in, boolean copy)
static INDArray
Transforms. allCosineDistances(@NonNull INDArray d1, @NonNull INDArray d2, int... dimensions)
static INDArray
Transforms. allCosineSimilarities(@NonNull INDArray d1, @NonNull INDArray d2, int... dimensions)
static INDArray
Transforms. allEuclideanDistances(@NonNull INDArray d1, @NonNull INDArray d2, int... dimensions)
static INDArray
Transforms. allManhattanDistances(@NonNull INDArray d1, @NonNull INDArray d2, int... dimensions)
static INDArray
Transforms. and(INDArray x, INDArray y)
static INDArray
Transforms. asin(INDArray arr)
static INDArray
Transforms. asin(INDArray in, boolean copy)
static INDArray
Transforms. atan(INDArray arr)
static INDArray
Transforms. atan(INDArray in, boolean copy)
static INDArray
Transforms. atan2(@NonNull INDArray x, @NonNull INDArray y)
Atan2 operation, new INDArray instance will be returned Note the order of x and y parameters is opposite to that ofMath.atan2(double, double)
static INDArray
Transforms. atanh(INDArray in)
Sin functionstatic INDArray
Transforms. atanh(INDArray in, boolean copy)
Sin functionstatic INDArray
Transforms. ceil(INDArray arr)
static INDArray
Transforms. ceil(INDArray in, boolean copy)
static INDArray
Transforms. ceiling(INDArray ndArray)
Binary matrix of whether the number at a given index is greater thanstatic INDArray
Transforms. ceiling(INDArray ndArray, boolean copyOnOps)
Ceiling functionstatic INDArray
Transforms. cos(INDArray in)
static INDArray
Transforms. cos(INDArray in, boolean copy)
static INDArray
Transforms. cosh(INDArray in)
static INDArray
Transforms. cosh(INDArray in, boolean copy)
static INDArray
Transforms. cross(INDArray x, INDArray y)
static INDArray
Transforms. dot(INDArray x, INDArray y)
Dot product, new INDArray instance will be returned.
Note that the Nd4J design is different from Numpy.static INDArray
Transforms. elu(INDArray arr)
static INDArray
Transforms. elu(INDArray in, boolean copy)
static INDArray
Transforms. eluDerivative(INDArray arr, INDArray grad)
static INDArray
Transforms. eluDerivative(INDArray in, INDArray grad, boolean copy)
static INDArray
Transforms. eps(INDArray ndArray)
static INDArray
Transforms. exp(INDArray ndArray)
Run the exp operationstatic INDArray
Transforms. exp(INDArray ndArray, boolean dup)
Exp functionstatic INDArray
Transforms. expm1(INDArray ndArray, boolean dup)
Elementwise exponential - 1 functionstatic INDArray
Transforms. floor(INDArray ndArray)
Binary matrix of whether the number at a given index is greater thanstatic INDArray
Transforms. floor(INDArray ndArray, boolean dup)
Floor functionstatic INDArray
Transforms. greaterThanOrEqual(INDArray first, INDArray ndArray)
1 if greater than or equal to 0 otherwise (at each element)static INDArray
Transforms. greaterThanOrEqual(INDArray first, INDArray ndArray, boolean dup)
Eps functionstatic INDArray
Transforms. hardSigmoid(INDArray arr, boolean dup)
static INDArray
Transforms. hardTanh(INDArray ndArray)
static INDArray
Transforms. hardTanh(INDArray ndArray, boolean dup)
Hard tanhstatic INDArray
Transforms. hardTanhDerivative(INDArray ndArray)
static INDArray
Transforms. hardTanhDerivative(INDArray ndArray, boolean dup)
Hard tanhstatic INDArray
Transforms. identity(INDArray ndArray)
static INDArray
Transforms. identity(INDArray ndArray, boolean dup)
Identity functionstatic INDArray
Transforms. isMax(INDArray input)
static INDArray
Transforms. isMax(INDArray input, DataType dataType)
static INDArray
Transforms. isMax(INDArray input, INDArray output)
static INDArray
Transforms. leakyRelu(INDArray arr)
static INDArray
Transforms. leakyRelu(INDArray in, boolean copy)
static INDArray
Transforms. leakyRelu(INDArray arr, double cutoff)
static INDArray
Transforms. leakyRelu(INDArray in, double cutoff, boolean copy)
static INDArray
Transforms. leakyReluDerivative(INDArray arr, double cutoff)
static INDArray
Transforms. leakyReluDerivative(INDArray in, double cutoff, boolean copy)
static INDArray
Transforms. lessThanOrEqual(INDArray first, INDArray ndArray)
1 if less than or equal to 0 otherwise (at each element)static INDArray
Transforms. lessThanOrEqual(INDArray first, INDArray ndArray, boolean dup)
Eps functionstatic INDArray
Transforms. log(INDArray ndArray)
static INDArray
Transforms. log(INDArray ndArray, boolean dup)
Log functionstatic INDArray
Transforms. log(INDArray ndArray, double base)
Log on arbitrary basestatic INDArray
Transforms. log(INDArray ndArray, double base, boolean duplicate)
Log on arbitrary basestatic INDArray
Transforms. log1p(INDArray ndArray, boolean dup)
Log of x + 1 functionstatic INDArray
Transforms. max(INDArray ndArray, double k)
Maximum function with a scalarstatic INDArray
Transforms. max(INDArray ndArray, double k, boolean dup)
Maximum function with a scalarstatic INDArray
Transforms. max(INDArray first, INDArray second)
Element wise maximum function between 2 INDArraysstatic INDArray
Transforms. max(INDArray first, INDArray second, boolean dup)
Element wise maximum function between 2 INDArraysstatic INDArray
Transforms. min(INDArray ndArray, double k)
Maximum function with a scalarstatic INDArray
Transforms. min(INDArray ndArray, double k, boolean dup)
Minimum function with a scalarstatic INDArray
Transforms. min(INDArray first, INDArray second)
Element wise minimum function between 2 INDArraysstatic INDArray
Transforms. min(INDArray first, INDArray second, boolean dup)
Element wise minimum function between 2 INDArraysstatic INDArray
Transforms. mpow(INDArray in, int n, boolean dup)
Raises a square matrix to a power n, which can be positive, negative, or zero.static INDArray
Transforms. neg(INDArray ndArray)
Returns the negative of an ndarraystatic INDArray
Transforms. neg(INDArray ndArray, boolean dup)
Negativestatic INDArray
Transforms. normalizeZeroMeanAndUnitVariance(INDArray toNormalize)
Normalize data to zero mean and unit variance substract by the mean and divide by the standard deviationstatic INDArray
Transforms. not(INDArray x)
static INDArray
Transforms. or(INDArray x, INDArray y)
static INDArray
Transforms. pow(INDArray ndArray, Number power)
Pow functionstatic INDArray
Transforms. pow(INDArray ndArray, Number power, boolean dup)
Pow functionstatic INDArray
Transforms. pow(INDArray ndArray, INDArray power)
Element-wise power function - x^y, performed element-wise.static INDArray
Transforms. pow(INDArray ndArray, INDArray power, boolean dup)
Element-wise power function - x^y, performed element-wisestatic INDArray
Transforms. relu(INDArray arr)
static INDArray
Transforms. relu(INDArray in, boolean copy)
static INDArray
Transforms. relu6(INDArray arr)
static INDArray
Transforms. relu6(INDArray in, boolean copy)
static INDArray
Transforms. reverse(INDArray x, boolean dup)
static INDArray
Transforms. round(INDArray ndArray)
Rounding functionstatic INDArray
Transforms. round(INDArray ndArray, boolean dup)
Rounding functionstatic INDArray
Transforms. sigmoid(INDArray ndArray)
Sigmoid functionstatic INDArray
Transforms. sigmoid(INDArray ndArray, boolean dup)
Sigmoid functionstatic INDArray
Transforms. sigmoidDerivative(INDArray ndArray)
Sigmoid functionstatic INDArray
Transforms. sigmoidDerivative(INDArray ndArray, boolean dup)
Sigmoid functionstatic INDArray
Transforms. sign(INDArray toSign)
Signum function of this ndarraystatic INDArray
Transforms. sign(INDArray toSign, boolean dup)
Signum function of this ndarraystatic INDArray
Transforms. sin(INDArray in)
Sin functionstatic INDArray
Transforms. sin(INDArray in, boolean copy)
Sin functionstatic INDArray
Transforms. sinh(INDArray in)
Sinh functionstatic INDArray
Transforms. sinh(INDArray in, boolean copy)
Sinh functionstatic INDArray
Transforms. softmax(INDArray arr)
static INDArray
Transforms. softmax(INDArray in, boolean copy)
static INDArray
Transforms. softPlus(INDArray arr)
static INDArray
Transforms. softPlus(INDArray in, boolean copy)
static INDArray
Transforms. softsign(INDArray arr)
static INDArray
Transforms. softsign(INDArray in, boolean copy)
static INDArray
Transforms. softsignDerivative(INDArray arr)
static INDArray
Transforms. softsignDerivative(INDArray in, boolean copy)
static INDArray
Transforms. sqrt(INDArray ndArray)
Sqrt functionstatic INDArray
Transforms. sqrt(INDArray ndArray, boolean dup)
Sqrt functionstatic INDArray
Transforms. stabilize(INDArray ndArray, double k)
static INDArray
Transforms. stabilize(INDArray ndArray, double k, boolean dup)
Stabilize to be within a range of kstatic INDArray
Transforms. step(INDArray arr)
static INDArray
Transforms. step(INDArray in, boolean copy)
static INDArray
Transforms. tan(INDArray ndArray)
Element-wise tan function.static INDArray
Transforms. tan(INDArray ndArray, boolean dup)
Element-wise tan function.static INDArray
Transforms. tanh(INDArray ndArray)
Tanh functionstatic INDArray
Transforms. tanh(INDArray ndArray, boolean dup)
Tanh functionstatic INDArray
Transforms. timesOneMinus(INDArray in, boolean copy)
out = in * (1-in)static INDArray
Transforms. unitVec(INDArray toScale)
Scale by 1 / norm2 of the matrixstatic INDArray
Transforms. xor(INDArray x, INDArray y)
Methods in org.nd4j.linalg.ops.transforms with parameters of type INDArray Modifier and Type Method Description static INDArray
Transforms. abs(INDArray ndArray)
Abs functionstatic INDArray
Transforms. abs(INDArray ndArray, boolean dup)
Abs functionstatic INDArray
Transforms. acos(INDArray arr)
static INDArray
Transforms. acos(INDArray in, boolean copy)
static INDArray
Transforms. allCosineDistances(@NonNull INDArray d1, @NonNull INDArray d2, int... dimensions)
static INDArray
Transforms. allCosineSimilarities(@NonNull INDArray d1, @NonNull INDArray d2, int... dimensions)
static INDArray
Transforms. allEuclideanDistances(@NonNull INDArray d1, @NonNull INDArray d2, int... dimensions)
static INDArray
Transforms. allManhattanDistances(@NonNull INDArray d1, @NonNull INDArray d2, int... dimensions)
static INDArray
Transforms. and(INDArray x, INDArray y)
static INDArray
Transforms. asin(INDArray arr)
static INDArray
Transforms. asin(INDArray in, boolean copy)
static INDArray
Transforms. atan(INDArray arr)
static INDArray
Transforms. atan(INDArray in, boolean copy)
static INDArray
Transforms. atan2(@NonNull INDArray x, @NonNull INDArray y)
Atan2 operation, new INDArray instance will be returned Note the order of x and y parameters is opposite to that ofMath.atan2(double, double)
static INDArray
Transforms. atanh(INDArray in)
Sin functionstatic INDArray
Transforms. atanh(INDArray in, boolean copy)
Sin functionprotected static long[]
Transforms. broadcastResultShape(INDArray first, INDArray second)
static INDArray
Transforms. ceil(INDArray arr)
static INDArray
Transforms. ceil(INDArray in, boolean copy)
static INDArray
Transforms. ceiling(INDArray ndArray)
Binary matrix of whether the number at a given index is greater thanstatic INDArray
Transforms. ceiling(INDArray ndArray, boolean copyOnOps)
Ceiling functionstatic INDArray
Transforms. cos(INDArray in)
static INDArray
Transforms. cos(INDArray in, boolean copy)
static INDArray
Transforms. cosh(INDArray in)
static INDArray
Transforms. cosh(INDArray in, boolean copy)
static double
Transforms. cosineDistance(@NonNull INDArray d1, @NonNull INDArray d2)
static double
Transforms. cosineSim(@NonNull INDArray d1, @NonNull INDArray d2)
Cosine similaritystatic INDArray
Transforms. cross(INDArray x, INDArray y)
static INDArray
Transforms. dot(INDArray x, INDArray y)
Dot product, new INDArray instance will be returned.
Note that the Nd4J design is different from Numpy.static INDArray
Transforms. elu(INDArray arr)
static INDArray
Transforms. elu(INDArray in, boolean copy)
static INDArray
Transforms. eluDerivative(INDArray arr, INDArray grad)
static INDArray
Transforms. eluDerivative(INDArray in, INDArray grad, boolean copy)
static INDArray
Transforms. eps(INDArray ndArray)
static double
Transforms. euclideanDistance(@NonNull INDArray d1, @NonNull INDArray d2)
static INDArray
Transforms. exp(INDArray ndArray)
Run the exp operationstatic INDArray
Transforms. exp(INDArray ndArray, boolean dup)
Exp functionstatic INDArray
Transforms. expm1(INDArray ndArray, boolean dup)
Elementwise exponential - 1 functionstatic INDArray
Transforms. floor(INDArray ndArray)
Binary matrix of whether the number at a given index is greater thanstatic INDArray
Transforms. floor(INDArray ndArray, boolean dup)
Floor functionstatic INDArray
Transforms. greaterThanOrEqual(INDArray first, INDArray ndArray)
1 if greater than or equal to 0 otherwise (at each element)static INDArray
Transforms. greaterThanOrEqual(INDArray first, INDArray ndArray, boolean dup)
Eps functionstatic double
Transforms. hammingDistance(@NonNull INDArray d1, @NonNull INDArray d2)
static INDArray
Transforms. hardSigmoid(INDArray arr, boolean dup)
static INDArray
Transforms. hardTanh(INDArray ndArray)
static INDArray
Transforms. hardTanh(INDArray ndArray, boolean dup)
Hard tanhstatic INDArray
Transforms. hardTanhDerivative(INDArray ndArray)
static INDArray
Transforms. hardTanhDerivative(INDArray ndArray, boolean dup)
Hard tanhstatic INDArray
Transforms. identity(INDArray ndArray)
static INDArray
Transforms. identity(INDArray ndArray, boolean dup)
Identity functionstatic INDArray
Transforms. isMax(INDArray input)
static INDArray
Transforms. isMax(INDArray input, DataType dataType)
static INDArray
Transforms. isMax(INDArray input, INDArray output)
static double
Transforms. jaccardDistance(@NonNull INDArray d1, @NonNull INDArray d2)
static INDArray
Transforms. leakyRelu(INDArray arr)
static INDArray
Transforms. leakyRelu(INDArray in, boolean copy)
static INDArray
Transforms. leakyRelu(INDArray arr, double cutoff)
static INDArray
Transforms. leakyRelu(INDArray in, double cutoff, boolean copy)
static INDArray
Transforms. leakyReluDerivative(INDArray arr, double cutoff)
static INDArray
Transforms. leakyReluDerivative(INDArray in, double cutoff, boolean copy)
static INDArray
Transforms. lessThanOrEqual(INDArray first, INDArray ndArray)
1 if less than or equal to 0 otherwise (at each element)static INDArray
Transforms. lessThanOrEqual(INDArray first, INDArray ndArray, boolean dup)
Eps functionstatic INDArray
Transforms. log(INDArray ndArray)
static INDArray
Transforms. log(INDArray ndArray, boolean dup)
Log functionstatic INDArray
Transforms. log(INDArray ndArray, double base)
Log on arbitrary basestatic INDArray
Transforms. log(INDArray ndArray, double base, boolean duplicate)
Log on arbitrary basestatic INDArray
Transforms. log1p(INDArray ndArray, boolean dup)
Log of x + 1 functionstatic double
Transforms. manhattanDistance(@NonNull INDArray d1, @NonNull INDArray d2)
static INDArray
Transforms. max(INDArray ndArray, double k)
Maximum function with a scalarstatic INDArray
Transforms. max(INDArray ndArray, double k, boolean dup)
Maximum function with a scalarstatic INDArray
Transforms. max(INDArray first, INDArray second)
Element wise maximum function between 2 INDArraysstatic INDArray
Transforms. max(INDArray first, INDArray second, boolean dup)
Element wise maximum function between 2 INDArraysstatic INDArray
Transforms. min(INDArray ndArray, double k)
Maximum function with a scalarstatic INDArray
Transforms. min(INDArray ndArray, double k, boolean dup)
Minimum function with a scalarstatic INDArray
Transforms. min(INDArray first, INDArray second)
Element wise minimum function between 2 INDArraysstatic INDArray
Transforms. min(INDArray first, INDArray second, boolean dup)
Element wise minimum function between 2 INDArraysstatic INDArray
Transforms. mpow(INDArray in, int n, boolean dup)
Raises a square matrix to a power n, which can be positive, negative, or zero.static INDArray
Transforms. neg(INDArray ndArray)
Returns the negative of an ndarraystatic INDArray
Transforms. neg(INDArray ndArray, boolean dup)
Negativestatic INDArray
Transforms. normalizeZeroMeanAndUnitVariance(INDArray toNormalize)
Normalize data to zero mean and unit variance substract by the mean and divide by the standard deviationstatic INDArray
Transforms. not(INDArray x)
static INDArray
Transforms. or(INDArray x, INDArray y)
static INDArray
Transforms. pow(INDArray ndArray, Number power)
Pow functionstatic INDArray
Transforms. pow(INDArray ndArray, Number power, boolean dup)
Pow functionstatic INDArray
Transforms. pow(INDArray ndArray, INDArray power)
Element-wise power function - x^y, performed element-wise.static INDArray
Transforms. pow(INDArray ndArray, INDArray power, boolean dup)
Element-wise power function - x^y, performed element-wisestatic INDArray
Transforms. relu(INDArray arr)
static INDArray
Transforms. relu(INDArray in, boolean copy)
static INDArray
Transforms. relu6(INDArray arr)
static INDArray
Transforms. relu6(INDArray in, boolean copy)
static INDArray
Transforms. reverse(INDArray x, boolean dup)
static INDArray
Transforms. round(INDArray ndArray)
Rounding functionstatic INDArray
Transforms. round(INDArray ndArray, boolean dup)
Rounding functionstatic INDArray
Transforms. sigmoid(INDArray ndArray)
Sigmoid functionstatic INDArray
Transforms. sigmoid(INDArray ndArray, boolean dup)
Sigmoid functionstatic INDArray
Transforms. sigmoidDerivative(INDArray ndArray)
Sigmoid functionstatic INDArray
Transforms. sigmoidDerivative(INDArray ndArray, boolean dup)
Sigmoid functionstatic INDArray
Transforms. sign(INDArray toSign)
Signum function of this ndarraystatic INDArray
Transforms. sign(INDArray toSign, boolean dup)
Signum function of this ndarraystatic INDArray
Transforms. sin(INDArray in)
Sin functionstatic INDArray
Transforms. sin(INDArray in, boolean copy)
Sin functionstatic INDArray
Transforms. sinh(INDArray in)
Sinh functionstatic INDArray
Transforms. sinh(INDArray in, boolean copy)
Sinh functionstatic INDArray
Transforms. softmax(INDArray arr)
static INDArray
Transforms. softmax(INDArray in, boolean copy)
static INDArray
Transforms. softPlus(INDArray arr)
static INDArray
Transforms. softPlus(INDArray in, boolean copy)
static INDArray
Transforms. softsign(INDArray arr)
static INDArray
Transforms. softsign(INDArray in, boolean copy)
static INDArray
Transforms. softsignDerivative(INDArray arr)
static INDArray
Transforms. softsignDerivative(INDArray in, boolean copy)
static INDArray
Transforms. sqrt(INDArray ndArray)
Sqrt functionstatic INDArray
Transforms. sqrt(INDArray ndArray, boolean dup)
Sqrt functionstatic INDArray
Transforms. stabilize(INDArray ndArray, double k)
static INDArray
Transforms. stabilize(INDArray ndArray, double k, boolean dup)
Stabilize to be within a range of kstatic INDArray
Transforms. step(INDArray arr)
static INDArray
Transforms. step(INDArray in, boolean copy)
static INDArray
Transforms. tan(INDArray ndArray)
Element-wise tan function.static INDArray
Transforms. tan(INDArray ndArray, boolean dup)
Element-wise tan function.static INDArray
Transforms. tanh(INDArray ndArray)
Tanh functionstatic INDArray
Transforms. tanh(INDArray ndArray, boolean dup)
Tanh functionstatic INDArray
Transforms. timesOneMinus(INDArray in, boolean copy)
out = in * (1-in)static INDArray
Transforms. unitVec(INDArray toScale)
Scale by 1 / norm2 of the matrixstatic INDArray
Transforms. xor(INDArray x, INDArray y)
-
Uses of INDArray in org.nd4j.linalg.profiler
Methods in org.nd4j.linalg.profiler with parameters of type INDArray Modifier and Type Method Description void
OpProfiler. processBlasCall(boolean isGemm, INDArray... operands)
OpProfiler.PenaltyCause[]
OpProfiler. processOperands(INDArray... operands)
This method checks for something somewhereOpProfiler.PenaltyCause[]
OpProfiler. processOperands(INDArray x, INDArray y)
OpProfiler.PenaltyCause[]
OpProfiler. processOperands(INDArray x, INDArray y, INDArray z)
String
OpProfiler. processOrders(INDArray... operands)
-
Uses of INDArray in org.nd4j.linalg.string
Methods in org.nd4j.linalg.string with parameters of type INDArray Modifier and Type Method Description String
NDArrayStrings. format(INDArray arr)
String
NDArrayStrings. format(INDArray arr, boolean summarize)
Format the given ndarray as a string -
Uses of INDArray in org.nd4j.linalg.util
Fields in org.nd4j.linalg.util declared as INDArray Modifier and Type Field Description protected INDArray
DeviceLocal. delayedArray
Methods in org.nd4j.linalg.util that return INDArray Modifier and Type Method Description INDArray
DeviceLocalNDArray. get()
This method returns object local to current deviceIdstatic INDArray
NDArrayUtil. toNDArray(int[] nums)
Deprecated.static INDArray
NDArrayUtil. toNDArray(int[][] nums)
Deprecated.static INDArray
NDArrayUtil. toNDArray(long[] nums)
Deprecated.static INDArray
FeatureUtil. toOutcomeMatrix(int[] index, long numOutcomes)
Creates an out come vector from the specified inputsstatic INDArray
FeatureUtil. toOutcomeVector(long index, long numOutcomes)
Creates an out come vector from the specified inputsMethods in org.nd4j.linalg.util with parameters of type INDArray Modifier and Type Method Description Boolean
ND4JTestUtils.EqualsFn. apply(INDArray i1, INDArray i2)
Boolean
ND4JTestUtils.EqualsWithEpsFn. apply(INDArray i1, INDArray i2)
static void
LinAlgExceptions. assertColumns(INDArray n, INDArray n2)
static void
LinAlgExceptions. assertMatrix(INDArray arr)
static void
LinAlgExceptions. assertMatrix(INDArray... arr)
static void
LinAlgExceptions. assertMultiplies(INDArray nd1, INDArray nd2)
Asserts matrix multiply rules (columns of left == rows of right or rows of left == columns of right)static void
LinAlgExceptions. assertRows(INDArray n, INDArray n2)
static void
LinAlgExceptions. assertSameLength(INDArray x, INDArray z)
Asserts both arrays be the same lengthstatic void
LinAlgExceptions. assertSameLength(INDArray x, INDArray y, INDArray z)
static void
LinAlgExceptions. assertSameShape(INDArray n, INDArray n2)
static void
LinAlgExceptions. assertSameShape(INDArray x, INDArray y, INDArray z)
static void
LinAlgExceptions. assertValidNum(INDArray n)
static void
LinAlgExceptions. assertVector(INDArray arr)
static void
LinAlgExceptions. assertVector(INDArray... arr)
void
DeviceLocalNDArray. broadcast(INDArray array)
This method duplicates array, and stores it to all devices PLEASE NOTE: this method is NOT atomic, so you must be sure no other threads are using this instance during the updatestatic long
NDArrayMath. lengthPerSlice(INDArray arr)
Return the length of a slicestatic long
NDArrayMath. lengthPerSlice(INDArray arr, int... dimension)
The number of elements in a slice along a set of dimensionsstatic int
NDArrayMath. mapIndexOntoTensor(int index, INDArray arr, int... rank)
This maps an index of a vector on to a vector in the matrix that can be used for indexing in to a tensorstatic long
NDArrayMath. mapIndexOntoVector(int index, INDArray arr)
This maps an index of a vector on to a vector in the matrix that can be used for indexing in to a tensorstatic long
NDArrayMath. matricesPerSlice(INDArray arr)
The number of vectors in each slice of an ndarray.static void
FeatureUtil. normalizeMatrix(INDArray toNormalize)
static long
NDArrayMath. numVectors(INDArray arr)
Return the number of vectors for an array the number of vectors for an arraystatic long
NDArrayMath. offsetForSlice(INDArray arr, int slice)
Compute the offset for a given slicestatic void
FeatureUtil. scaleByMax(INDArray toScale)
Divides each row by its maxstatic void
FeatureUtil. scaleMinMax(double min, double max, INDArray toScale)
Scales the ndarray columns to the given min/max valuesvoid
DataSetUtils. showINDArray(int mtLv, String itemCode, INDArray INDA, int digits, int r_End_I, int c_End_I)
showINDArray
public void showINDArray( int mtLv, String itemCode, INDArray INDA,
int digits, int r_End_I, int c_End_I )
Shows content of INDArray.
Shows first rows and than columns.void
DataSetUtils. showINDArray(int mtLv, String itemCode, INDArray INDA, int digits, int r_End_I, int c_End_I, boolean turned)
showINDArray
public void showINDArray( int mtLv, String itemCode, INDArray INDA,
int digits, int r_End_I, int c_End_I, boolean turned )
Shows content of INDArray.
If turned is false shows first rows and than columns.
If turned is true shows first columns and than rows.static long
NDArrayMath. sliceOffsetForTensor(int index, INDArray arr, int[] tensorShape)
calculates the offset for a tensorstatic long
NDArrayMath. sliceOffsetForTensor(int index, INDArray arr, long[] tensorShape)
static long
NDArrayMath. tensorsPerSlice(INDArray arr, int[] tensorShape)
Computes the tensors per slice given a tensor shape and arraystatic int[]
NDArrayUtil. toInts(INDArray n)
Deprecated.static long[]
NDArrayUtil. toLongs(INDArray n)
Deprecated.void
DeviceLocalNDArray. update(@NonNull INDArray array)
This method updates PLEASE NOTE: this method is NOT atomic, so you must be sure no other threads are using this instance during the updatestatic long
NDArrayMath. vectorsPerSlice(INDArray arr)
The number of vectors in each slice of an ndarray.static long
NDArrayMath. vectorsPerSlice(INDArray arr, int... rank)
The number of vectors in each slice of an ndarray.Method parameters in org.nd4j.linalg.util with type arguments of type INDArray Modifier and Type Method Description static ND4JTestUtils.ComparisonResult
ND4JTestUtils. validateSerializedArrays(File dir1, File dir2, boolean recursive, BiFunction<INDArray,INDArray,Boolean> evalFn)
Scan the specified directories for matching files (i.e., same path relative to their respective root directories) and compare the contents using a provided function.
Assumes the saved files represent INDArrays saved withNd4j.saveBinary(INDArray, File)
static ND4JTestUtils.ComparisonResult
ND4JTestUtils. validateSerializedArrays(File dir1, File dir2, boolean recursive, BiFunction<INDArray,INDArray,Boolean> evalFn)
Scan the specified directories for matching files (i.e., same path relative to their respective root directories) and compare the contents using a provided function.
Assumes the saved files represent INDArrays saved withNd4j.saveBinary(INDArray, File)
Constructors in org.nd4j.linalg.util with parameters of type INDArray Constructor Description DeviceLocalNDArray(INDArray array)
DeviceLocalNDArray(INDArray array, boolean delayedMode)
-
Uses of INDArray in org.nd4j.linalg.workspace
Methods in org.nd4j.linalg.workspace that return INDArray Modifier and Type Method Description INDArray
BaseWorkspaceMgr. castTo(T arrayType, @NonNull DataType dataType, @NonNull INDArray toCast, boolean dupIfCorrectType)
INDArray
WorkspaceMgr. castTo(T arrayType, @NonNull DataType dataType, @NonNull INDArray toCast, boolean dupIfCorrectType)
Cast the specified array to the specified datatype.
If the array is already the correct type, the bahaviour depends on the 'dupIfCorrectType' argument.
dupIfCorrectType = false && toCast.dataType() == dataType: return input array as-is (unless workspace is wrong)
dupIfCorrectType = true && toCast.dataType() == dataType: duplicate the array into the specified workspaceINDArray
BaseWorkspaceMgr. create(T arrayType, @NonNull DataType dataType, @lombok.NonNull long... shape)
INDArray
BaseWorkspaceMgr. create(T arrayType, @NonNull DataType dataType, @lombok.NonNull long[] shape, @lombok.NonNull char order)
INDArray
WorkspaceMgr. create(T arrayType, DataType dataType, long... shape)
Create an array in the specified array type's workspace (or detached if none is specified).INDArray
WorkspaceMgr. create(T arrayType, DataType dataType, long[] shape, char ordering)
Create an array in the specified array type's workspace (or detached if none is specified).INDArray
BaseWorkspaceMgr. createUninitialized(T arrayType, @NonNull DataType dataType, @lombok.NonNull long[] shape, char order)
INDArray
BaseWorkspaceMgr. createUninitialized(T arrayType, DataType dataType, long... shape)
INDArray
WorkspaceMgr. createUninitialized(T arrayType, DataType dataType, long... shape)
Create an uninitialized array in the specified array type's workspace (or detached if none is specified).INDArray
WorkspaceMgr. createUninitialized(T arrayType, DataType dataType, long[] shape, char order)
Create an uninitialized array in the specified array type's workspace (or detached if none is specified).INDArray
BaseWorkspaceMgr. dup(T arrayType, @NonNull INDArray toDup)
INDArray
BaseWorkspaceMgr. dup(T arrayType, @NonNull INDArray toDup, char order)
INDArray
WorkspaceMgr. dup(T arrayType, @NonNull INDArray toDup)
Duplicate the array, where the array is put into the specified array type's workspace (if applicable)INDArray
WorkspaceMgr. dup(T arrayType, INDArray toDup, char order)
Duplicate the array, where the array is put into the specified array type's workspace (if applicable)INDArray
BaseWorkspaceMgr. leverageTo(T arrayType, @NonNull INDArray array)
INDArray
WorkspaceMgr. leverageTo(T toWorkspace, INDArray array)
Leverage the array to the specified array type's workspace (or detach if required).INDArray
BaseWorkspaceMgr. validateArrayLocation(T arrayType, @NonNull INDArray array, boolean migrateIfInvalid, boolean exceptionIfDetached)
INDArray
WorkspaceMgr. validateArrayLocation(T arrayType, INDArray array, boolean migrateIfInvalid, boolean exceptionIfDetached)
Validate that the specified array type is actually in the workspace it's supposed to be inMethods in org.nd4j.linalg.workspace with parameters of type INDArray Modifier and Type Method Description static void
WorkspaceUtils. assertValidArray(INDArray array, String msg)
Assert that the specified array is valid, in terms of workspaces: i.e., if it is attached (and not in a circular workspace), assert that the workspace is open, and that the data is not from an old generation.INDArray
BaseWorkspaceMgr. castTo(T arrayType, @NonNull DataType dataType, @NonNull INDArray toCast, boolean dupIfCorrectType)
INDArray
WorkspaceMgr. castTo(T arrayType, @NonNull DataType dataType, @NonNull INDArray toCast, boolean dupIfCorrectType)
Cast the specified array to the specified datatype.
If the array is already the correct type, the bahaviour depends on the 'dupIfCorrectType' argument.
dupIfCorrectType = false && toCast.dataType() == dataType: return input array as-is (unless workspace is wrong)
dupIfCorrectType = true && toCast.dataType() == dataType: duplicate the array into the specified workspaceINDArray
BaseWorkspaceMgr. dup(T arrayType, @NonNull INDArray toDup)
INDArray
BaseWorkspaceMgr. dup(T arrayType, @NonNull INDArray toDup, char order)
INDArray
WorkspaceMgr. dup(T arrayType, @NonNull INDArray toDup)
Duplicate the array, where the array is put into the specified array type's workspace (if applicable)INDArray
WorkspaceMgr. dup(T arrayType, INDArray toDup, char order)
Duplicate the array, where the array is put into the specified array type's workspace (if applicable)INDArray
BaseWorkspaceMgr. leverageTo(T arrayType, @NonNull INDArray array)
INDArray
WorkspaceMgr. leverageTo(T toWorkspace, INDArray array)
Leverage the array to the specified array type's workspace (or detach if required).INDArray
BaseWorkspaceMgr. validateArrayLocation(T arrayType, @NonNull INDArray array, boolean migrateIfInvalid, boolean exceptionIfDetached)
INDArray
WorkspaceMgr. validateArrayLocation(T arrayType, INDArray array, boolean migrateIfInvalid, boolean exceptionIfDetached)
Validate that the specified array type is actually in the workspace it's supposed to be in -
Uses of INDArray in org.nd4j.list
Fields in org.nd4j.list declared as INDArray Modifier and Type Field Description protected INDArray
BaseNDArrayList. container
Methods in org.nd4j.list that return INDArray Modifier and Type Method Description INDArray
BaseNDArrayList. array()
Get a view of the underlying array relative to the size of the actual array.INDArray
NDArrayList. array()
Get a view of the underlying array relative to the size of the actual array.Constructors in org.nd4j.list with parameters of type INDArray Constructor Description NDArrayList(@NonNull INDArray container)
Specify the underlying ndarray for this list.NDArrayList(@NonNull INDArray container, int size)
Specify the underlying ndarray for this list. -
Uses of INDArray in org.nd4j.serde.base64
Methods in org.nd4j.serde.base64 that return INDArray Modifier and Type Method Description static INDArray
Nd4jBase64. fromBase64(String base64)
Create an ndarray from a base 64 representationMethods in org.nd4j.serde.base64 with parameters of type INDArray Modifier and Type Method Description static String
Nd4jBase64. base64String(INDArray arr)
Returns an ndarray as base 64 -
Uses of INDArray in org.nd4j.serde.binary
Methods in org.nd4j.serde.binary that return INDArray Modifier and Type Method Description static INDArray
BinarySerde. readFromDisk(File readFrom)
Read an ndarray from diskstatic INDArray
BinarySerde. toArray(ByteBuffer buffer)
Create an ndarray from the unsafe bufferstatic INDArray
BinarySerde. toArray(ByteBuffer buffer, int offset)
Create an ndarray from the unsafe bufferMethods in org.nd4j.serde.binary that return types with arguments of type INDArray Modifier and Type Method Description protected static Pair<INDArray,ByteBuffer>
BinarySerde. toArrayAndByteBuffer(ByteBuffer buffer, int offset)
Create an ndarray and existing bytebufferMethods in org.nd4j.serde.binary with parameters of type INDArray Modifier and Type Method Description static int
BinarySerde. byteBufferSizeFor(INDArray arr)
Returns the byte buffer size for the given ndarray.static void
BinarySerde. doByteBufferPutCompressed(INDArray arr, ByteBuffer allocated, boolean rewind)
Setup the given byte buffer for serialization (note that this is for compressed INDArrays) 4 bytes for rank 4 bytes for data opType shape information codec information data opTypestatic void
BinarySerde. doByteBufferPutUnCompressed(INDArray arr, ByteBuffer allocated, boolean rewind)
Setup the given byte buffer for serialization (note that this is for uncompressed INDArrays) 4 bytes int for rank 4 bytes for data opType shape buffer data bufferstatic ByteBuffer
BinarySerde. toByteBuffer(INDArray arr)
Convert an ndarray to an unsafe buffer for use by aeronstatic void
BinarySerde. writeArrayToDisk(INDArray arr, File toWrite)
Write an ndarray to disk in binary formatstatic void
BinarySerde. writeArrayToOutputStream(INDArray arr, OutputStream outputStream)
Write an array to an output stream. -
Uses of INDArray in org.nd4j.serde.jackson.shaded
Methods in org.nd4j.serde.jackson.shaded that return INDArray Modifier and Type Method Description INDArray
NDArrayDeSerializer. deserialize(org.nd4j.shade.jackson.core.JsonParser jp, org.nd4j.shade.jackson.databind.DeserializationContext deserializationContext)
INDArray
NDArrayTextDeSerializer. deserialize(org.nd4j.shade.jackson.core.JsonParser jp, org.nd4j.shade.jackson.databind.DeserializationContext deserializationContext)
INDArray
NDArrayTextDeSerializer. deserialize(org.nd4j.shade.jackson.databind.JsonNode n)
Methods in org.nd4j.serde.jackson.shaded with parameters of type INDArray Modifier and Type Method Description void
NDArraySerializer. serialize(INDArray indArray, org.nd4j.shade.jackson.core.JsonGenerator jsonGenerator, org.nd4j.shade.jackson.databind.SerializerProvider serializerProvider)
void
NDArrayTextSerializer. serialize(INDArray arr, org.nd4j.shade.jackson.core.JsonGenerator jg, org.nd4j.shade.jackson.databind.SerializerProvider serializerProvider)
-
Uses of INDArray in org.nd4j.weightinit
Methods in org.nd4j.weightinit that return INDArray Modifier and Type Method Description INDArray
BaseWeightInitScheme. create(long[] shape, INDArray paramsView)
INDArray
BaseWeightInitScheme. create(DataType dataType, long... shape)
INDArray
WeightInitScheme. create(long[] shape, INDArray paramsView)
Create the arrayINDArray
WeightInitScheme. create(DataType dataType, long... shape)
Create the arrayabstract INDArray
BaseWeightInitScheme. doCreate(DataType dataType, long[] shape, INDArray paramsView)
protected INDArray
BaseWeightInitScheme. handleParamsView(INDArray outputArray, INDArray paramView)
Methods in org.nd4j.weightinit with parameters of type INDArray Modifier and Type Method Description INDArray
BaseWeightInitScheme. create(long[] shape, INDArray paramsView)
INDArray
WeightInitScheme. create(long[] shape, INDArray paramsView)
Create the arrayabstract INDArray
BaseWeightInitScheme. doCreate(DataType dataType, long[] shape, INDArray paramsView)
protected INDArray
BaseWeightInitScheme. handleParamsView(INDArray outputArray, INDArray paramView)
-
Uses of INDArray in org.nd4j.weightinit.impl
Methods in org.nd4j.weightinit.impl that return INDArray Modifier and Type Method Description INDArray
NDArraySupplierInitScheme. create(long[] shape, INDArray paramsView)
INDArray
NDArraySupplierInitScheme. create(DataType dataType, long[] shape)
INDArray
ConstantInitScheme. doCreate(DataType dataType, long[] shape, INDArray paramsView)
INDArray
DistributionInitScheme. doCreate(DataType dataType, long[] shape, INDArray paramsView)
INDArray
IdentityInitScheme. doCreate(DataType dataType, long[] shape, INDArray paramsView)
INDArray
LecunUniformInitScheme. doCreate(DataType dataType, long[] shape, INDArray paramsView)
INDArray
OneInitScheme. doCreate(DataType dataType, long[] shape, INDArray paramsView)
INDArray
ReluInitScheme. doCreate(DataType dataType, long[] shape, INDArray paramsView)
INDArray
ReluUniformInitScheme. doCreate(DataType dataType, long[] shape, INDArray paramsView)
INDArray
SigmoidUniformInitScheme. doCreate(DataType dataType, long[] shape, INDArray paramsView)
INDArray
UniformInitScheme. doCreate(DataType dataType, long[] shape, INDArray paramsView)
INDArray
VarScalingNormalFanAvgInitScheme. doCreate(DataType dataType, long[] shape, INDArray paramsView)
INDArray
VarScalingNormalFanInInitScheme. doCreate(DataType dataType, long[] shape, INDArray paramsView)
INDArray
VarScalingNormalFanOutInitScheme. doCreate(DataType dataType, long[] shape, INDArray paramsView)
INDArray
VarScalingNormalUniformFanInInitScheme. doCreate(DataType dataType, long[] shape, INDArray paramsView)
INDArray
VarScalingNormalUniformFanOutInitScheme. doCreate(DataType dataType, long[] shape, INDArray paramsView)
INDArray
VarScalingUniformFanAvgInitScheme. doCreate(DataType dataType, long[] shape, INDArray paramsView)
INDArray
XavierFanInInitScheme. doCreate(DataType dataType, long[] shape, INDArray paramsView)
INDArray
XavierInitScheme. doCreate(DataType dataType, long[] shape, INDArray paramsView)
INDArray
XavierUniformInitScheme. doCreate(DataType dataType, long[] shape, INDArray paramsView)
INDArray
ZeroInitScheme. doCreate(DataType dataType, long[] shape, INDArray paramsView)
INDArray
NDArraySupplierInitScheme.NDArraySupplier. getArr()
An array proxy method.Methods in org.nd4j.weightinit.impl with parameters of type INDArray Modifier and Type Method Description INDArray
NDArraySupplierInitScheme. create(long[] shape, INDArray paramsView)
INDArray
ConstantInitScheme. doCreate(DataType dataType, long[] shape, INDArray paramsView)
INDArray
DistributionInitScheme. doCreate(DataType dataType, long[] shape, INDArray paramsView)
INDArray
IdentityInitScheme. doCreate(DataType dataType, long[] shape, INDArray paramsView)
INDArray
LecunUniformInitScheme. doCreate(DataType dataType, long[] shape, INDArray paramsView)
INDArray
OneInitScheme. doCreate(DataType dataType, long[] shape, INDArray paramsView)
INDArray
ReluInitScheme. doCreate(DataType dataType, long[] shape, INDArray paramsView)
INDArray
ReluUniformInitScheme. doCreate(DataType dataType, long[] shape, INDArray paramsView)
INDArray
SigmoidUniformInitScheme. doCreate(DataType dataType, long[] shape, INDArray paramsView)
INDArray
UniformInitScheme. doCreate(DataType dataType, long[] shape, INDArray paramsView)
INDArray
VarScalingNormalFanAvgInitScheme. doCreate(DataType dataType, long[] shape, INDArray paramsView)
INDArray
VarScalingNormalFanInInitScheme. doCreate(DataType dataType, long[] shape, INDArray paramsView)
INDArray
VarScalingNormalFanOutInitScheme. doCreate(DataType dataType, long[] shape, INDArray paramsView)
INDArray
VarScalingNormalUniformFanInInitScheme. doCreate(DataType dataType, long[] shape, INDArray paramsView)
INDArray
VarScalingNormalUniformFanOutInitScheme. doCreate(DataType dataType, long[] shape, INDArray paramsView)
INDArray
VarScalingUniformFanAvgInitScheme. doCreate(DataType dataType, long[] shape, INDArray paramsView)
INDArray
XavierFanInInitScheme. doCreate(DataType dataType, long[] shape, INDArray paramsView)
INDArray
XavierInitScheme. doCreate(DataType dataType, long[] shape, INDArray paramsView)
INDArray
XavierUniformInitScheme. doCreate(DataType dataType, long[] shape, INDArray paramsView)
INDArray
ZeroInitScheme. doCreate(DataType dataType, long[] shape, INDArray paramsView)
Constructors in org.nd4j.weightinit.impl with parameters of type INDArray Constructor Description NDArraySupplierInitScheme(INDArray arr)
-