Class EncodeThreshold
- java.lang.Object
-
- org.nd4j.autodiff.functions.DifferentialFunction
-
- org.nd4j.linalg.api.ops.DynamicCustomOp
-
- org.nd4j.linalg.api.ops.compression.EncodeThreshold
-
- All Implemented Interfaces:
CustomOp
public class EncodeThreshold extends DynamicCustomOp
-
-
Nested Class Summary
-
Nested classes/interfaces inherited from class org.nd4j.linalg.api.ops.DynamicCustomOp
DynamicCustomOp.DynamicCustomOpsBuilder
-
-
Field Summary
Fields Modifier and Type Field Description protected int
boundary
protected float
threshold
-
Fields inherited from class org.nd4j.linalg.api.ops.DynamicCustomOp
axis, bArguments, dArguments, iArguments, inplaceCall, inputArguments, outputArguments, outputVariables, sArguments, tArguments
-
Fields inherited from class org.nd4j.autodiff.functions.DifferentialFunction
dimensions, extraArgs, inPlace, ownName, ownNameSetWithDefault, sameDiff, scalarValue
-
-
Constructor Summary
Constructors Constructor Description EncodeThreshold()
EncodeThreshold(@NonNull INDArray updates, float threshold)
EncodeThreshold(@NonNull INDArray updates, float threshold, @NonNull Integer boundary)
EncodeThreshold(@NonNull INDArray updates, @NonNull INDArray encoded, float threshold, @NonNull Integer boundary)
-
Method Summary
All Methods Instance Methods Concrete Methods Modifier and Type Method Description List<DataType>
calculateOutputDataTypes(List<DataType> dataTypes)
Calculate the data types for the output arrays.String
opName()
This method returns op opName as string-
Methods inherited from class org.nd4j.linalg.api.ops.DynamicCustomOp
addBArgument, addDArgument, addIArgument, addIArgument, addInputArgument, addOutputArgument, addOutputsToOp, addSArgument, addTArgument, assertValidForExecution, bArgs, builder, calculateOutputShape, calculateOutputShape, clearArrays, computeArrays, configureFromArguments, dArgs, doDiff, generateFake, generateFake, getBArgument, getDescriptor, getIArgument, getInputArgument, getOutputArgument, getSArgument, getTArgument, getValue, iArgs, initFromOnnx, initFromTensorFlow, inputArguments, mappingsForFunction, numBArguments, numDArguments, numIArguments, numInputArguments, numOutputArguments, numSArguments, numTArguments, onnxName, opHash, opNum, opType, outputArguments, outputVariables, outputVariables, propertiesForFunction, removeIArgument, removeInputArgument, removeOutputArgument, removeSArgument, removeTArgument, sArgs, setInputArgument, setInputArguments, setOutputArgument, setPropertiesForFunction, setValueFor, tArgs, tensorflowName, toString, wrapFilterNull, wrapOrNull, wrapOrNull
-
Methods inherited from class org.nd4j.autodiff.functions.DifferentialFunction
arg, arg, argNames, args, attributeAdaptersForFunction, configFieldName, configureWithSameDiff, diff, dup, equals, getBooleanFromProperty, getDoubleValueFromProperty, getIntValueFromProperty, getLongValueFromProperty, getNumOutputs, getStringFromProperty, hashCode, isConfigProperties, larg, onnxNames, outputs, outputVariable, outputVariablesNames, rarg, replaceArg, setInstanceId, tensorflowNames
-
Methods inherited from class java.lang.Object
clone, finalize, getClass, notify, notifyAll, wait, wait, wait
-
Methods inherited from interface org.nd4j.linalg.api.ops.CustomOp
isInplaceCall
-
-
-
-
Constructor Detail
-
EncodeThreshold
public EncodeThreshold()
-
EncodeThreshold
public EncodeThreshold(@NonNull @NonNull INDArray updates, float threshold)
-
EncodeThreshold
public EncodeThreshold(@NonNull @NonNull INDArray updates, @NonNull @NonNull INDArray encoded, float threshold, @NonNull @NonNull Integer boundary)
-
-
Method Detail
-
opName
public String opName()
Description copied from class:DynamicCustomOp
This method returns op opName as string- Specified by:
opName
in interfaceCustomOp
- Overrides:
opName
in classDynamicCustomOp
- Returns:
-
calculateOutputDataTypes
public List<DataType> calculateOutputDataTypes(List<DataType> dataTypes)
Description copied from class:DifferentialFunction
Calculate the data types for the output arrays. Though datatypes can also be inferred fromDifferentialFunction.calculateOutputShape()
, this method differs in that it does not require the input arrays to be populated. This is important as it allows us to do greedy datatype inference for the entire net - even if arrays are not available.- Overrides:
calculateOutputDataTypes
in classDifferentialFunction
- Parameters:
dataTypes
- The data types of the inputs- Returns:
- The data types of the outputs
-
-