Class ManhattanDistance
- java.lang.Object
-
- org.nd4j.autodiff.functions.DifferentialFunction
-
- org.nd4j.linalg.api.ops.BaseOp
-
- org.nd4j.linalg.api.ops.BaseReduceOp
-
- org.nd4j.linalg.api.ops.BaseReduceFloatOp
-
- org.nd4j.linalg.api.ops.impl.reduce3.BaseReduce3Op
-
- org.nd4j.linalg.api.ops.impl.reduce3.ManhattanDistance
-
- All Implemented Interfaces:
Op
,ReduceFloatOp
,ReduceOp
public class ManhattanDistance extends BaseReduce3Op
-
-
Field Summary
Fields Modifier and Type Field Description static String
OP_NAME
-
Fields inherited from class org.nd4j.linalg.api.ops.BaseReduceOp
dimensionVariable, isComplex, isEmptyReduce, keepDims
-
Fields inherited from class org.nd4j.linalg.api.ops.BaseOp
dimensionz, extraArgz, x, xVertexId, y, yVertexId, z, zVertexId
-
Fields inherited from class org.nd4j.autodiff.functions.DifferentialFunction
dimensions, extraArgs, inPlace, ownName, ownNameSetWithDefault, sameDiff, scalarValue
-
-
Constructor Summary
Constructors Constructor Description ManhattanDistance()
ManhattanDistance(SameDiff sameDiff, SDVariable i_v, int[] dimensions)
ManhattanDistance(SameDiff sameDiff, SDVariable i_v, SDVariable dimensions)
ManhattanDistance(SameDiff sd, SDVariable x, SDVariable y, boolean keepDims, boolean isComplex, int[] dimensions)
ManhattanDistance(SameDiff sameDiff, SDVariable i_v, SDVariable i_v2, int... dimensions)
ManhattanDistance(SameDiff sameDiff, SDVariable i_v, SDVariable i_v2, SDVariable dimensions)
ManhattanDistance(INDArray x, INDArray y, boolean keepDims, boolean isComplex, int[] dimensions)
ManhattanDistance(INDArray x, INDArray y, boolean allDistances, int... dimensions)
ManhattanDistance(INDArray x, INDArray y, int... dimensions)
ManhattanDistance(INDArray x, INDArray y, INDArray z)
ManhattanDistance(INDArray x, INDArray y, INDArray z, boolean keepDims, boolean allDistances, int... dimensions)
ManhattanDistance(INDArray x, INDArray y, INDArray z, boolean allDistances, int... dimensions)
ManhattanDistance(INDArray x, INDArray y, INDArray z, int... dimensions)
-
Method Summary
All Methods Instance Methods Concrete Methods Modifier and Type Method Description List<SDVariable>
doDiff(List<SDVariable> i_v1)
The actual implementation for automatic differentiation.String
opName()
The name of the opint
opNum()
The number of the op (mainly for old legacy XYZ ops likeOp
)-
Methods inherited from class org.nd4j.linalg.api.ops.impl.reduce3.BaseReduce3Op
calculateOutputDataTypes, getOpType, onnxName, opType, resultType, tensorflowName
-
Methods inherited from class org.nd4j.linalg.api.ops.BaseReduceFloatOp
calculateOutputShape, calculateOutputShape, resultType, validateDataTypes
-
Methods inherited from class org.nd4j.linalg.api.ops.BaseReduceOp
configureWithSameDiff, hasReductionIndices, initFromOnnx, initFromTensorFlow, isComplexAccumulation, isKeepDims, noOp, setDimensions, setPropertiesForFunction
-
Methods inherited from class org.nd4j.linalg.api.ops.BaseOp
clearArrays, computeVariables, defineDimensions, dimensions, equals, extraArgs, extraArgsBuff, extraArgsDataBuff, getFinalResult, getInputArgument, getNumOutputs, getOpType, hashCode, outputVariables, setX, setY, setZ, toCustomOp, toString, x, y, z
-
Methods inherited from class org.nd4j.autodiff.functions.DifferentialFunction
arg, arg, argNames, args, attributeAdaptersForFunction, configFieldName, diff, dup, getBooleanFromProperty, getDoubleValueFromProperty, getIntValueFromProperty, getLongValueFromProperty, getStringFromProperty, getValue, isConfigProperties, larg, mappingsForFunction, onnxNames, outputs, outputVariable, outputVariables, outputVariablesNames, propertiesForFunction, rarg, replaceArg, setInstanceId, setValueFor, tensorflowNames
-
Methods inherited from class java.lang.Object
clone, finalize, getClass, notify, notifyAll, wait, wait, wait
-
Methods inherited from interface org.nd4j.linalg.api.ops.Op
clearArrays, extraArgs, extraArgsBuff, extraArgsDataBuff, setExtraArgs, setX, setY, setZ, toCustomOp, x, y, z
-
Methods inherited from interface org.nd4j.linalg.api.ops.ReduceOp
dimensions, getFinalResult, isComplexAccumulation, isKeepDims, noOp, setDimensions
-
-
-
-
Field Detail
-
OP_NAME
public static final String OP_NAME
- See Also:
- Constant Field Values
-
-
Constructor Detail
-
ManhattanDistance
public ManhattanDistance(SameDiff sameDiff, SDVariable i_v, int[] dimensions)
-
ManhattanDistance
public ManhattanDistance(SameDiff sameDiff, SDVariable i_v, SDVariable i_v2, int... dimensions)
-
ManhattanDistance
public ManhattanDistance(SameDiff sameDiff, SDVariable i_v, SDVariable dimensions)
-
ManhattanDistance
public ManhattanDistance(SameDiff sameDiff, SDVariable i_v, SDVariable i_v2, SDVariable dimensions)
-
ManhattanDistance
public ManhattanDistance()
-
ManhattanDistance
public ManhattanDistance(INDArray x, INDArray y, boolean allDistances, int... dimensions)
-
ManhattanDistance
public ManhattanDistance(INDArray x, INDArray y, INDArray z, boolean allDistances, int... dimensions)
-
ManhattanDistance
public ManhattanDistance(INDArray x, INDArray y, INDArray z, boolean keepDims, boolean allDistances, int... dimensions)
-
ManhattanDistance
public ManhattanDistance(SameDiff sd, SDVariable x, SDVariable y, boolean keepDims, boolean isComplex, int[] dimensions)
-
-
Method Detail
-
opNum
public int opNum()
Description copied from class:DifferentialFunction
The number of the op (mainly for old legacy XYZ ops likeOp
)- Specified by:
opNum
in interfaceOp
- Overrides:
opNum
in classDifferentialFunction
- Returns:
-
opName
public String opName()
Description copied from class:DifferentialFunction
The name of the op- Specified by:
opName
in interfaceOp
- Overrides:
opName
in classDifferentialFunction
- Returns:
- the opName of this operation
-
doDiff
public List<SDVariable> doDiff(List<SDVariable> i_v1)
Description copied from class:DifferentialFunction
The actual implementation for automatic differentiation.- Specified by:
doDiff
in classDifferentialFunction
- Returns:
-
-