Class GatherNd
- java.lang.Object
-
- org.nd4j.autodiff.functions.DifferentialFunction
-
- org.nd4j.linalg.api.ops.DynamicCustomOp
-
- org.nd4j.linalg.api.ops.impl.shape.GatherNd
-
- All Implemented Interfaces:
CustomOp
public class GatherNd extends DynamicCustomOp
GatherND op
-
-
Nested Class Summary
-
Nested classes/interfaces inherited from class org.nd4j.linalg.api.ops.DynamicCustomOp
DynamicCustomOp.DynamicCustomOpsBuilder
-
-
Field Summary
-
Fields inherited from class org.nd4j.linalg.api.ops.DynamicCustomOp
axis, bArguments, dArguments, iArguments, inplaceCall, inputArguments, outputArguments, outputVariables, sArguments, tArguments
-
Fields inherited from class org.nd4j.autodiff.functions.DifferentialFunction
dimensions, extraArgs, inPlace, ownName, ownNameSetWithDefault, sameDiff, scalarValue
-
-
Constructor Summary
Constructors Constructor Description GatherNd(SameDiff sameDiff, SDVariable input, SDVariable indices)
GatherNd(INDArray[] inputs, INDArray[] outputs)
GatherNd(INDArray df, INDArray indices)
-
Method Summary
All Methods Instance Methods Concrete Methods Modifier and Type Method Description List<DataType>
calculateOutputDataTypes(List<DataType> dataTypes)
Calculate the data types for the output arrays.String
onnxName()
The opName of this function in onnxString
opName()
This method returns op opName as stringString[]
tensorflowNames()
The opName of this function tensorflow-
Methods inherited from class org.nd4j.linalg.api.ops.DynamicCustomOp
addBArgument, addDArgument, addIArgument, addIArgument, addInputArgument, addOutputArgument, addOutputsToOp, addSArgument, addTArgument, assertValidForExecution, bArgs, builder, calculateOutputShape, calculateOutputShape, clearArrays, computeArrays, configureFromArguments, dArgs, doDiff, generateFake, generateFake, getBArgument, getDescriptor, getIArgument, getInputArgument, getOutputArgument, getSArgument, getTArgument, getValue, iArgs, initFromOnnx, initFromTensorFlow, inputArguments, mappingsForFunction, numBArguments, numDArguments, numIArguments, numInputArguments, numOutputArguments, numSArguments, numTArguments, opHash, opNum, opType, outputArguments, outputVariables, outputVariables, propertiesForFunction, removeIArgument, removeInputArgument, removeOutputArgument, removeSArgument, removeTArgument, sArgs, setInputArgument, setInputArguments, setOutputArgument, setPropertiesForFunction, setValueFor, tArgs, tensorflowName, toString, wrapFilterNull, wrapOrNull, wrapOrNull
-
Methods inherited from class org.nd4j.autodiff.functions.DifferentialFunction
arg, arg, argNames, args, attributeAdaptersForFunction, configFieldName, configureWithSameDiff, diff, dup, equals, getBooleanFromProperty, getDoubleValueFromProperty, getIntValueFromProperty, getLongValueFromProperty, getNumOutputs, getStringFromProperty, hashCode, isConfigProperties, larg, onnxNames, outputs, outputVariable, outputVariablesNames, rarg, replaceArg, setInstanceId
-
Methods inherited from class java.lang.Object
clone, finalize, getClass, notify, notifyAll, wait, wait, wait
-
Methods inherited from interface org.nd4j.linalg.api.ops.CustomOp
isInplaceCall
-
-
-
-
Constructor Detail
-
GatherNd
public GatherNd(SameDiff sameDiff, SDVariable input, SDVariable indices)
-
-
Method Detail
-
opName
public String opName()
Description copied from class:DynamicCustomOp
This method returns op opName as string- Specified by:
opName
in interfaceCustomOp
- Overrides:
opName
in classDynamicCustomOp
- Returns:
-
onnxName
public String onnxName()
Description copied from class:DifferentialFunction
The opName of this function in onnx- Overrides:
onnxName
in classDynamicCustomOp
- Returns:
-
tensorflowNames
public String[] tensorflowNames()
Description copied from class:DifferentialFunction
The opName of this function tensorflow- Overrides:
tensorflowNames
in classDifferentialFunction
- Returns:
-
calculateOutputDataTypes
public List<DataType> calculateOutputDataTypes(List<DataType> dataTypes)
Description copied from class:DifferentialFunction
Calculate the data types for the output arrays. Though datatypes can also be inferred fromDifferentialFunction.calculateOutputShape()
, this method differs in that it does not require the input arrays to be populated. This is important as it allows us to do greedy datatype inference for the entire net - even if arrays are not available.- Overrides:
calculateOutputDataTypes
in classDifferentialFunction
- Parameters:
dataTypes
- The data types of the inputs- Returns:
- The data types of the outputs
-
-