A class supporting filtered operations
Concatenates this sequence with the elements of an iterator
Concatenates this sequence with the elements of an iterator.
the element type of the returned collection.
the class of the returned collection. Where possible, That
is
the same class as the current collection class Repr
, but this
depends on the element type B
being admissible for that class,
which means that an implicit instance of type CanBuildFrom[Repr, B, That]
is found.
the iterator to append.
an implicit value of class CanBuildFrom
which determines the
result class That
from the current representation type Repr
and the new element type B
.
a new collection of type That
which contains all elements of this sequence
followed by all elements of that
.
Concatenates this sequence with the elements of a traversable collection
Concatenates this sequence with the elements of a traversable collection.
the element type of the returned collection.
the class of the returned collection. Where possible, That
is
the same class as the current collection class Repr
, but this
depends on the element type B
being admissible for that class,
which means that an implicit instance of type CanBuildFrom[Repr, B, That]
is found.
the traversable to append.
an implicit value of class CanBuildFrom
which determines the
result class That
from the current representation type Repr
and the new element type B
.
a new collection of type That
which contains all elements of this sequence
followed by all elements of that
.
Prepends an element to this sequence
Prepends an element to this sequence
the element type of the returned sequence.
the class of the returned collection. Where possible, That
is
the same class as the current collection class Repr
, but this
depends on the element type B
being admissible for that class,
which means that an implicit instance of type CanBuildFrom[Repr, B, That]
is found.
the prepended element
an implicit value of class CanBuildFrom
which determines the
result class That
from the current representation type Repr
and the new element type B
.
a new collection of type That
consisting of elem
followed
by all elements of this sequence.
Applies a binary operator to a start value and all elements of this sequence, going left to right
Applies a binary operator to a start value and all elements of this sequence, going left to right.
Note: /:
is alternate syntax for foldLeft
; z /: xs
is the same as xs foldLeft z
.
the result type of the binary operator.
the start value.
the binary operator.
the result of inserting op
between consecutive elements of this sequence$,
going left to right with the start value z
on the left:
{{{
op(...op(op(z, x_{1}), x_{2}), ..., x_{n})
}}}
where x,,1,,, ..., x,,n,,
are the elements of this sequence.
Appends an element to this sequence
Appends an element to this sequence
the element type of the returned sequence.
the class of the returned collection. Where possible, That
is
the same class as the current collection class Repr
, but this
depends on the element type B
being admissible for that class,
which means that an implicit instance of type CanBuildFrom[Repr, B, That]
is found.
the appended element
an implicit value of class CanBuildFrom
which determines the
result class That
from the current representation type Repr
and the new element type B
.
a new collection of type That
consisting of
all elements of this sequence followed by elem
.
Applies a binary operator to all elements of this sequence and a start value, going right to left
Applies a binary operator to all elements of this sequence and a start value, going right to left.
Note: :\
is alternate syntax for foldRight
; xs :\ z
is the same as xs foldRight z
.
the result type of the binary operator.
the start value
the binary operator
the result of inserting op
between consecutive elements of this sequence$,
going right to left with the start value z
on the right:
{{{
op(x_{1}, op(x_{2}, ... op(x_{n}, z)...))
}}}
where x,,1,,, ..., x,,n,,
are the elements of this sequence.
Appends all elements of this sequence to a string builder
Appends all elements of this sequence to a string builder.
The written text consists of the string representations (w.r.t. the method toString
)
of all elements of this sequence without any separator string.
the string builder to which elements are appended.
the string builder b
to which elements were appended.
Appends all elements of this sequence to a string builder using a separator string
Appends all elements of this sequence to a string builder using a separator string.
The written text consists of the string representations (w.r.t. the method toString
)
of all elements of this sequence, separated by the string sep
.
the string builder to which elements are appended.
the separator string.
the string builder b
to which elements were appended.
Appends all elements of this sequence to a string builder using start, end, and separator strings
Appends all elements of this sequence to a string builder using start, end, and separator strings.
The written text begins with the string start
and ends with the string
end
. Inside, the string representations (w.r.t. the method toString
)
of all elements of this sequence are separated by the string sep
.
the string builder to which elements are appended.
the starting string.
the separator string.
the ending string.
the string builder b
to which elements were appended.
Composes this partial function with a transformation function that gets applied to results of this partial function
Composes this partial function with a transformation function that gets applied to results of this partial function.
the result type of the transformation function.
the transformation function
a partial function with the same domain as this partial function, which maps
arguments x
to k(this(x))
.
Selects an element by its index in the sequence
Selects an element by its index in the sequence.
The index to select.
the element of this sequence at index idx
, where 0
indicates the first element.
Method called from equality methods, so that user-defined subclasses can refuse to be equal to other collections of the same kind
Method called from equality methods, so that user-defined subclasses can refuse to be equal to other collections of the same kind.
The object with which this sequence should be compared
true
, if this sequence can possibly equal that
, false
otherwise. The test
takes into consideration only the run-time types of objects but ignores their elements.
The factory companion object that builds instances of class Seq
The factory companion object that builds instances of class Seq.
(f compose g)(x) == f(g(x))
(f compose g)(x) == f(g(x))
Tests whether this sequence contains a given value as an element
Tests whether this sequence contains a given value as an element.
the element to test.
true
if this sequence has an element that is
is equal (wrt ==
) to elem
, false
otherwise.
Tests whether this sequence contains a given sequence as a slice
Tests whether this sequence contains a given sequence as a slice.
the sequence to test
true
if this sequence contains a slice with the same elements
as that
, otherwise false
.
Copies elements of this sequence to an array
Copies elements of this sequence to an array.
Fills the given array xs
with at most len
elements of
this sequence, starting at position start
.
Copying will stop once either the end of the current sequence is reached,
or the end of the array is reached, or len
elements have been copied.
the type of the elements of the array.
the array to fill.
the starting index.
the maximal number of elements to copy.
Copies elements of this sequence to an array
Copies elements of this sequence to an array.
Fills the given array xs
with all elements of
this sequence, starting at position 0
.
Copying will stop once either the end of the current sequence is reached,
or the end of the array is reached.
the type of the elements of the array.
the array to fill.
Copies elements of this sequence to an array
Copies elements of this sequence to an array.
Fills the given array xs
with all elements of
this sequence, starting at position start
.
Copying will stop once either the end of the current sequence is reached,
or the end of the array is reached.
the type of the elements of the array.
the array to fill.
the starting index.
Copies all elements of this sequence to a buffer
Copies all elements of this sequence to a buffer.
The buffer to which elements are copied.
Tests whether every element of this sequence relates to the corresponding element of another sequence by satisfying a test predicate
Tests whether every element of this sequence relates to the corresponding element of another sequence by satisfying a test predicate.
the type of the elements of that
the other sequence
the test predicate, which relates elements from both sequences
true
if both sequences have the same length and
p(x, y)
is true
for all corresponding elements x
of this sequence
and y
of that
, otherwise false
.
Counts the number of elements in the sequence which satisfy a predicate
Counts the number of elements in the sequence which satisfy a predicate.
the predicate used to test elements.
the number of elements satisfying the predicate p
.
Computes the multiset difference between this sequence and another sequence
Computes the multiset difference between this sequence and another sequence.
the element type of the returned sequence.
the class of the returned collection. Where possible, That
is
the same class as the current collection class Repr
, but this
depends on the element type B
being admissible for that class,
which means that an implicit instance of type CanBuildFrom[Repr, B, That]
is found.
the sequence of elements to remove
a new collection of type That
which contains all elements of this sequence
except some of occurrences of elements that also appear in that
.
If an element value x
appears
n times in that
, then the first n occurrences of x
will not form
part of the result, but any following occurrences will.
Selects all elements except first n ones
Selects all elements except first n ones.
the number of elements to drop from this sequence.
a sequence consisting of all elements of this sequence except the first n
ones, or else the
empty sequence, if this sequence has less than n
elements.
Selects all elements except first n ones
Selects all elements except first n ones.
The number of elements to take
a sequence consisting of all elements of this sequence except the first n
ones, or else the
empty sequence, if this sequence has less than n
elements.
Drops longest prefix of elements that satisfy a predicate
Drops longest prefix of elements that satisfy a predicate.
The predicate used to test elements.
the longest suffix of this sequence whose first element
does not satisfy the predicate p
.
Tests whether this sequence ends with the given sequence
Tests whether this sequence ends with the given sequence.
the sequence to test
true
if this sequence has that
as a suffix, false
otherwise.
The equality method defined in AnyRef
Tests whether every element of this sequence relates to the corresponding element of another sequence by satisfying a test predicate
Tests whether every element of this sequence relates to the corresponding element of another sequence by satisfying a test predicate.
the type of the elements of that
the other sequence
true
if both sequences have the same length and
p(x, y)
is true
for all corresponding elements x
of this sequence
and y
of that
, otherwise false
.
Tests whether a predicate holds for some of the elements of this sequence
Tests whether a predicate holds for some of the elements of this sequence.
the predicate used to test elements.
true
if the given predicate p
holds for some of the elements
of this sequence, otherwise false
.
Selects all elements of this sequence which satisfy a predicate
Selects all elements of this sequence which satisfy a predicate.
the predicate used to test elements.
a new sequence consisting of all elements of this sequence that satisfy the given
predicate p
. The order of the elements is preserved.
Selects all elements of this sequence which do not satisfy a predicate
Selects all elements of this sequence which do not satisfy a predicate.
the predicate used to test elements.
a new sequence consisting of all elements of this sequence that do not satisfy the given
predicate p
. The order of the elements is preserved.
Finds the first element of the sequence satisfying a predicate, if any
Finds the first element of the sequence satisfying a predicate, if any.
the predicate used to test elements.
an option value containing the first element in the sequence
that satisfies p
, or None
if none exists.
Returns index of the first element satisying a predicate, or -1
Returns index of the first element satisying a predicate, or -1
.
Returns index of the last element satisying a predicate, or -1
Returns index of the last element satisying a predicate, or -1.
None
if iterable is empty
None
if iterable is empty.
Builds a new collection by applying a function to all elements of this sequence and concatenating the results
Builds a new collection by applying a function to all elements of this sequence and concatenating the results.
the element type of the returned collection.
the class of the returned collection. Where possible, That
is
the same class as the current collection class Repr
, but this
depends on the element type B
being admissible for that class,
which means that an implicit instance of type CanBuildFrom[Repr, B, That]
is found.
the function to apply to each element.
an implicit value of class CanBuildFrom
which determines the
result class That
from the current representation type Repr
and the new element type B
.
a new collection of type That
resulting from applying the given collection-valued function
f
to each element of this sequence and concatenating the results.
Converts this sequence of traversable collections into a sequence in which all element collections are concatenated
Converts this sequence of traversable collections into a sequence in which all element collections are concatenated.
the type of the elements of each traversable collection.
an implicit conversion which asserts that the element type of this
sequence is a Traversable
.
a new sequence resulting from concatenating all element sequences.
Applies a binary operator to a start value and all elements of this sequence, going left to right
Applies a binary operator to a start value and all elements of this sequence, going left to right.
the result type of the binary operator.
the start value.
the binary operator.
the result of inserting op
between consecutive elements of this sequence$,
going left to right with the start value z
on the left:
{{{
op(...op(z, x_{1}), x_{2}, ..., x_{n})
}}}
where x,,1,,, ..., x,,n,,
are the elements of this sequence.
Applies a binary operator to all elements of this sequence and a start value, going right to left
Applies a binary operator to all elements of this sequence and a start value, going right to left.
the result type of the binary operator.
the start value.
the binary operator.
the result of inserting op
between consecutive elements of this sequence$,
going right to left with the start value z
on the right:
{{{
op(x_{1}, op(x_{2}, ... op(x_{n}, z)...))
}}}
where x,,1,,, ..., x,,n,,
are the elements of this sequence.
Tests whether a predicate holds for all elements of this sequence
Tests whether a predicate holds for all elements of this sequence.
the predicate used to test elements.
true
if the given predicate p
holds for all elements
of this sequence, otherwise false
.
Applies a function f
to all elements of this sequence
Applies a function f
to all elements of this sequence.
Note: this method underlies the implementation of most other bulk operations. Subclasses should re-implement this method if a more efficient implementation exists.
the type parameter describing the result of function f
.
This result will always be ignored. Typically U
is Unit
,
but this is not necessary.
the function that is applied for its side-effect to every element.
The result of function f
is discarded.
The generic builder that builds instances of Seq at arbitrary element types
The generic builder that builds instances of Seq at arbitrary element types.
Partitions this sequence into a map of sequences according to some discriminator function
Partitions this sequence into a map of sequences according to some discriminator function.
Note: this method is not re-implemented by views. This means when applied to a view it will always force the view and return a new sequence.
the type of keys returned by the discriminator function.
the discriminator function.
A map from keys to sequences such that the following invariant holds:
{{{
(xs partition f)(k) = xs filter (x => f(x) == k)
}}}
That is, every key k
is bound to a sequence of those elements x
for which f(x)
equals k
.
Tests whether this sequence is known to have a finite size
Tests whether this sequence is known to have a finite size.
All strict collections are known to have finite size. For a non-strict collection
such as Stream
, the predicate returns true
if all elements have been computed.
It returns false
if the stream is not yet evaluated to the end.
Note: many collection methods will not work on collections of infinite sizes.
Hashcodes for Seq produce a value from the hashcodes of all the elements of the sequence
Hashcodes for Seq produce a value from the hashcodes of all the elements of the sequence.
Selects the first element of this sequence
Selects the first element of this sequence.
Optionally selects the first element
Optionally selects the first element.
Finds index of first occurrence of some value in this sequence after or at some start index
Finds index of first occurrence of some value in this sequence after or at some start index.
the type of the element elem
.
the element value to search for.
the start index
the index >= from
of the first element of this sequence that is equal (wrt ==
)
to elem
, or -1
, if none exists.
Finds index of first occurrence of some value in this sequence
Finds index of first occurrence of some value in this sequence.
the type of the element elem
.
the element value to search for.
the index of the first element of this sequence that is equal (wrt ==
)
to elem
, or -1
, if none exists.
Finds first index after or at a start index where this sequence contains a given sequence as a slice
Finds first index after or at a start index where this sequence contains a given sequence as a slice.
the sequence to test
the start index
the first index >= from
such that the elements of this sequence starting at this index
match the elements of sequence that
, or -1
of no such subsequence exists.
Finds first index where this sequence contains a given sequence as a slice
Finds first index where this sequence contains a given sequence as a slice.
the sequence to test
the first index such that the elements of this sequence starting at this index
match the elements of sequence that
, or -1
of no such subsequence exists.
Finds index of the first element satisfying some predicate after or at some start index
Finds index of the first element satisfying some predicate after or at some start index.
the predicate used to test elements.
the start index
the index >= from
of the first element of this sequence that satisfies the predicate p
,
or -1
, if none exists.
Finds index of first element satisfying some predicate
Finds index of first element satisfying some predicate.
the predicate used to test elements.
the index of the first element of this sequence that satisfies the predicate p
,
or -1
, if none exists.
Produces the range of all indices of this sequence
Produces the range of all indices of this sequence.
Selects all elements except the last
Selects all elements except the last.
Computes the multiset intersection between this sequence and another sequence
Computes the multiset intersection between this sequence and another sequence.
the element type of the returned sequence.
the class of the returned collection. Where possible, That
is
the same class as the current collection class Repr
, but this
depends on the element type B
being admissible for that class,
which means that an implicit instance of type CanBuildFrom[Repr, B, That]
is found.
the sequence of elements to intersect with.
a new collection of type That
which contains all elements of this sequence
which also appear in that
.
If an element value x
appears
n times in that
, then the first n occurrences of x
will be retained
in the result, but any following occurrences will be omitted.
Tests whether this sequence contains given index
Tests whether this sequence contains given index.
The implementations of methods apply
and isDefinedAt
turn a Seq[A]
into
a PartialFunction[Int, A]
.
the index to test
true
if this sequence contains an element at position idx
, false
otherwise.
Tests whether this sequence is empty
Tests whether this sequence is empty.
Creates a new iterator over all elements contained in this iterable object
Creates a new iterator over all elements contained in this iterable object.
Selects the last element
Selects the last element.
Finds index of last occurrence of some value in this sequence before or at a given end index
Finds index of last occurrence of some value in this sequence before or at a given end index.
the type of the element elem
.
the element value to search for.
the end index.
the index <= end
of the last element of this sequence that is equal (wrt ==
)
to elem
, or -1
, if none exists.
Finds index of last occurrence of some value in this sequence
Finds index of last occurrence of some value in this sequence.
the type of the element elem
.
the element value to search for.
the index of the last element of this sequence that is equal (wrt ==
)
to elem
, or -1
, if none exists.
Finds last index before or at a given end index where this sequence contains a given sequence as a slice
Finds last index before or at a given end index where this sequence contains a given sequence as a slice.
the sequence to test
the end idnex
the last index <= end
such that the elements of this sequence starting at this index
match the elements of sequence that
, or -1
of no such subsequence exists.
Finds last index where this sequence contains a given sequence as a slice
Finds last index where this sequence contains a given sequence as a slice.
the sequence to test
the last index such that the elements of this sequence starting a this index
match the elements of sequence that
, or -1
of no such subsequence exists.
Finds index of last element satisfying some predicate before or at given end index
Finds index of last element satisfying some predicate before or at given end index.
the predicate used to test elements.
the index <= end
of the last element of this sequence that satisfies the predicate p
,
or -1
, if none exists.
Finds index of last element satisfying some predicate
Finds index of last element satisfying some predicate.
the predicate used to test elements.
the index of the last element of this sequence that satisfies the predicate p
,
or -1
, if none exists.
Optionally selects the last element
Optionally selects the last element.
The length of the sequence
The length of the sequence.
Note: xs.length
and xs.size
yield the same result.
Compares the length of this sequence to a test value
Compares the length of this sequence to a test value.
the test value that gets compared with the length.
A value x
where
{{{
x < 0 if this.length < len
x == 0 if this.length == len
x > 0 if this.length > len
}}}
The method as implemented here does not call length
directly; its running time
is O(length min len)
instead of O(length)
. The method should be overwritten
if computing length
is cheap.
Turns this partial function into an plain function returning an Option
result
Turns this partial function into an plain function returning an Option
result.
Builds a new collection by applying a function to all elements of this sequence
Builds a new collection by applying a function to all elements of this sequence.
the element type of the returned collection.
the class of the returned collection. Where possible, That
is
the same class as the current collection class Repr
, but this
depends on the element type B
being admissible for that class,
which means that an implicit instance of type CanBuildFrom[Repr, B, That]
is found.
the function to apply to each element.
an implicit value of class CanBuildFrom
which determines the
result class That
from the current representation type Repr
and the new element type B
.
a new collection of type That
resulting from applying the given function
f
to each element of this sequence and collecting the results.
Finds the largest element
Finds the largest element.
The type over which the ordering is defined.
An ordering to be used for comparing elements.
the largest element of this sequence with respect to the ordering cmp
.
Finds the smallest element
Finds the smallest element.
The type over which the ordering is defined.
An ordering to be used for comparing elements.
the smallest element of this sequence with respect to the ordering cmp
.
Displays all elements of this sequence in a string
Displays all elements of this sequence in a string.
Displays all elements of this sequence in a string using a separator string
Displays all elements of this sequence in a string using a separator string.
the separator string.
a string representation of this sequence. In the resulting string
the string representations (w.r.t. the method toString
)
of all elements of this sequence are separated by the string sep
.
Displays all elements of this sequence in a string using start, end, and separator strings
Displays all elements of this sequence in a string using start, end, and separator strings.
the starting string.
the separator string.
the ending string.
a string representation of this sequence. The resulting string
begins with the string start
and ends with the string
end
. Inside, the string representations (w.r.t. the method toString
)
of all elements of this sequence are separated by the string sep
.
Tests whether the sequence is not empty
Tests whether the sequence is not empty.
Composes this partial function with a fallback partial function which gets applied where this partial function is not defined
Composes this partial function with a fallback partial function which gets applied where this partial function is not defined.
the argument type of the fallback function
the result type of the fallback function
the fallback function
a partial function which has as domain the union of the domains
of this partial function and that
. The resulting partial function
takes x
to this(x)
where this
is defined, and to that(x)
where it is not.
Appends an element value to this sequence until a given target length is reached
Appends an element value to this sequence until a given target length is reached.
the element type of the returned sequence.
the class of the returned collection. Where possible, That
is
the same class as the current collection class Repr
, but this
depends on the element type B
being admissible for that class,
which means that an implicit instance of type CanBuildFrom[Repr, B, That]
is found.
the target length
the padding value
an implicit value of class CanBuildFrom
which determines the
result class That
from the current representation type Repr
and the new element type B
.
a new collection of type That
consisting of
all elements of this sequence followed by the minimal number of occurrences of elem
so
that the resulting collection has a length of at least len
.
Builds a new collection by applying a partial function to all elements of this sequence on which the function is defined
Builds a new collection by applying a partial function to all elements of this sequence on which the function is defined.
the element type of the returned collection.
the class of the returned collection. Where possible, That
is
the same class as the current collection class Repr
, but this
depends on the element type B
being admissible for that class,
which means that an implicit instance of type CanBuildFrom[Repr, B, That]
is found.
the partial function which filters and maps the sequence.
an implicit value of class CanBuildFrom
which determines the
result class That
from the current representation type Repr
and the new element type B
.
a new collection of type That
resulting from applying the partial function
pf
to each element on which it is defined and collecting the results.
The order of the elements is preserved.
Partitions this sequence in two sequences according to a predicate
Partitions this sequence in two sequences according to a predicate.
the predicate on which to partition.
a pair of sequences: the first sequence consists of all elements that
satisfy the predicate p
and the second sequence consists of all elements
that don't. The relative order of the elements in the resulting sequences
is the same as in the original sequence.
Produces a new sequence where a slice of elements in this sequence is replaced by another sequence
Produces a new sequence where a slice of elements in this sequence is replaced by another sequence.
the element type of the returned sequence.
the class of the returned collection. Where possible, That
is
the same class as the current collection class Repr
, but this
depends on the element type B
being admissible for that class,
which means that an implicit instance of type CanBuildFrom[Repr, B, That]
is found.
the index of the first replaced element
the replacement sequence
the number of elements to drop in the original sequence
an implicit value of class CanBuildFrom
which determines the
result class That
from the current representation type Repr
and the new element type B
.
a new collection of type That
consisting of all elements of this sequence
except that replaced
elements starting from from
are replaced
by patch
.
Returns the length of the longest prefix whose elements all satisfy some preficate
Returns the length of the longest prefix whose elements all satisfy some preficate.
the predicate used to test elements.
the length of the longest prefix of this sequence
such that every element of the segment satisfies the predicate p
.
Multiplies up the elements of this collection
Multiplies up the elements of this collection.
the result type of the *
operator.
an implicit parameter defining a set of numeric operations
which includes the *
operator to be used in forming the product.
the product of all elements of this sequence with respect to the *
operator in num
.
returns a projection that can be used to call non-strict filter
,
map
, and flatMap
methods that build projections
of the collection
returns a projection that can be used to call non-strict filter
,
map
, and flatMap
methods that build projections
of the collection.
Applies a binary operator to all elements of this sequence, going left to right
Applies a binary operator to all elements of this sequence, going left to right.
the result type of the binary operator.
the binary operator.
the result of inserting op
between consecutive elements of this sequence$,
going left to right:
{{{
op(...(op(x_{1}, x_{2}), ... ) , x_{n})
}}}
where x,,1,,, ..., x,,n,,
are the elements of this sequence.
Optionally applies a binary operator to all elements of this sequence, going left to right
Optionally applies a binary operator to all elements of this sequence, going left to right.
the result type of the binary operator.
the binary operator.
an option value containing the result of reduceLeft(op)
is this sequence is nonempty,
None
otherwise.
Applies a binary operator to all elements of this sequence, going right to left
Applies a binary operator to all elements of this sequence, going right to left.
the result type of the binary operator.
the binary operator.
the result of inserting op
between consecutive elements of this sequence$,
going right to left:
{{{
op(x_{1}, op(x_{2}, ..., op(x_{n-1}, x_{n})...))
}}}
where x,,1,,, ..., x,,n,,
are the elements of this sequence.
Optionally applies a binary operator to all elements of this sequence, going right to left
Optionally applies a binary operator to all elements of this sequence, going right to left.
the result type of the binary operator.
the binary operator.
an option value containing the result of reduceRight(op)
is this sequence is nonempty,
None
otherwise.
Builds a new sequence from this sequence without any duplicate elements
Builds a new sequence from this sequence without any duplicate elements.
The collection of type sequence underlying this TraversableLike
object
The collection of type sequence underlying this TraversableLike
object.
By default this is implemented as the TraversableLike
object itself, but this can be overridden.
Returns new sequence wih elements in reversed order
Returns new sequence wih elements in reversed order.
An iterator yielding elements in reversed order
An iterator yielding elements in reversed order.
Note: xs.reverseIterator
is the same as xs.reverse.iterator
but might be more efficient.
Builds a new collection by applying a function to all elements of this sequence and collecting the results in reversed order
Builds a new collection by applying a function to all elements of this sequence and collecting the results in reversed order.
Note: xs.reverseMap(f)
is the same as xs.reverse.map(f)
but might be more efficient.
the element type of the returned collection.
the class of the returned collection. Where possible, That
is
the same class as the current collection class Repr
, but this
depends on the element type B
being admissible for that class,
which means that an implicit instance of type CanBuildFrom[Repr, B, That]
is found.
the function to apply to each element.
an implicit value of class CanBuildFrom
which determines the
result class That
from the current representation type Repr
and the new element type B
.
a new collection of type That
resulting from applying the given function
f
to each element of this sequence and collecting the results in reversed order.
Checks if the other iterable collection contains the same elements in the same order as this sequence
Checks if the other iterable collection contains the same elements in the same order as this sequence.
the type of the elements of collection that
.
the collection to compare with.
true
, if both collections contain the same elements in the same order, false
otherwise.
Computes length of longest segment whose elements all satisfy some preficate
Computes length of longest segment whose elements all satisfy some preficate.
the predicate used to test elements.
the index where the search starts.
the length of the longest segment of this sequence starting from index from
such that every element of the segment satisfies the predicate p
.
The size of this sequence, equivalent to length
The size of this sequence, equivalent to length
.
Selects an interval of elements
Selects an interval of elements.
Note: c.slice(from, to)
is equivalent to (but possibly more efficient than)
c.drop(from).take(to - from)
the index of the first returned element in this sequence.
the index one past the last returned element in this sequence.
a sequence containing the elements starting at index from
and extending up to (but not including) index until
of this sequence.
Sorts this Seq according to the Ordering which results from transforming an implicitly given Ordering with a transformation function
Sorts this Seq according to the Ordering which results from transforming an implicitly given Ordering with a transformation function.
the target type of the transformation f
, and the type where
the ordering ord
is defined.
the transformation function mapping elements
to some other domain B
.
the ordering assumed on domain B
.
a sequence consisting of the elements of this sequence
sorted according to the ordering where x < y
if
ord.lt(f(x), f(y))
.
Sorts this sequence according to an Ordering
Sorts this sequence according to an Ordering.
The sort is stable. That is, elements that are equal wrt lt
appear in the
same order in the sorted sequence as in the original.
the ordering to be used to compare elements.
a sequence consisting of the elements of this sequence
sorted according to the ordering ord
.
Sorts this sequence according to a comparison function
Sorts this sequence according to a comparison function.
The sort is stable. That is, elements that are equal wrt lt
appear in the
same order in the sorted sequence as in the original.
the comparison function which tests whether its first argument precedes its second argument in the desired ordering.
a sequence consisting of the elements of this sequence
sorted according to the comparison function lt
.
Spits this sequence into a prefix/suffix pair according to a predicate
Spits this sequence into a prefix/suffix pair according to a predicate.
Note: c span p
is equivalent to (but possibly more efficient than)
(c takeWhile p, c dropWhile p)
, provided the evaluation of the predicate p
does not cause any side-effects.
the test predicate
a pair consisting of the longest prefix of this sequence whose
elements all satisfy p
, and the rest of this sequence.
Splits this sequence into two at a given position
Splits this sequence into two at a given position.
Note: c splitAt n
is equivalent to (but possibly more efficient than)
(c take n, c drop n)
.
the position at which to split.
a pair of sequences consisting of the first n
elements of this sequence, and the other elements.
Tests whether this sequence contains the given sequence at a given index
Tests whether this sequence contains the given sequence at a given index.
If the both the receiver object, this
and
the argument, that
are infinite sequences
this method may not terminate.
the sequence to test
the index where the sequence is searched.
true
if the sequence that
is contained in this sequence at index offset
,
otherwise false
.
Tests whether this sequence starts with the given sequence
Tests whether this sequence starts with the given sequence.
the sequence to test
true
if this collection has that
as a prefix, false
otherwise.
otherwise false
Defines the prefix of this object's toString
representation
Defines the prefix of this object's toString
representation.
Sums up the elements of this collection
Sums up the elements of this collection.
the result type of the +
operator.
an implicit parameter defining a set of numeric operations
which includes the +
operator to be used in forming the sum.
the sum of all elements of this sequence with respect to the +
operator in num
.
Selects all elements except the first
Selects all elements except the first.
Selects first n elements
Selects first n elements.
Tt number of elements to take from this sequence.
a sequence consisting only of the first n
elements of this sequence, or else the
whole sequence, if it has less than n
elements.
Selects last n elements
Selects last n elements.
the number of elements to take
a sequence consisting only of the last n
elements of this sequence, or else the
whole sequence, if it has less than n
elements.
Takes longest prefix of elements that satisfy a predicate
Takes longest prefix of elements that satisfy a predicate.
The predicate used to test elements.
the longest prefix of this sequence whose elements all satisfy
the predicate p
.
Converts this sequence to an array
Converts this sequence to an array.
the type of the elements of the array. A ClassManifest
for this type must
be available.
an array containing all elements of this sequence.
Converts this sequence to an indexed sequence
Converts this sequence to an indexed sequence.
Converts this sequence to an iterable collection
Converts this sequence to an iterable collection.
Note: Will not terminate for infinite-sized collections.
Converts this sequence to a list
Converts this sequence to a list.
Converts this sequence to a sequence
Converts this sequence to a sequence.
Overridden for efficiency.
Converts this sequence to a set
Converts this sequence to a set.
Converts this sequence to a stream
Converts this sequence to a stream.
Converts this sequence to a string
Converts this sequence to a string
Transposes this sequence of traversable collections into
Transposes this sequence of traversable collections into
Produces a new sequence which contains all elements of this sequence and also all elements of a given sequence
Produces a new sequence which contains all elements of this sequence and also all elements of
a given sequence. xs union ys
is equivalent to xs ++ ys
.
Another way to express this
is that xs union ys
computes the order-presevring multi-set union of xs
and ys
.
union
is hence a counter-oart of diff
and intersect
which also work on multi-sets.
the element type of the returned sequence.
the class of the returned collection. Where possible, That
is
the same class as the current collection class Repr
, but this
depends on the element type B
being admissible for that class,
which means that an implicit instance of type CanBuildFrom[Repr, B, That]
is found.
the sequence to add.
an implicit value of class CanBuildFrom
which determines the
result class That
from the current representation type Repr
and the new element type B
.
a new collection of type That
which contains all elements of this sequence
followed by all elements of that
.
Converts this sequence of pairs into two collections of the first and second halfs of each pair
Converts this sequence of pairs into two collections of the first and second halfs of each pair.
an implicit conversion which asserts that the element type of this sequence is a pair.
a pair sequences, containing the first, respectively second half of each element pair of this sequence.
A copy of this sequence with one single replaced element
A copy of this sequence with one single replaced element.
the element type of the returned sequence.
the class of the returned collection. Where possible, That
is
the same class as the current collection class Repr
, but this
depends on the element type B
being admissible for that class,
which means that an implicit instance of type CanBuildFrom[Repr, B, That]
is found.
the position of the replacement
the replacing element
an implicit value of class CanBuildFrom
which determines the
result class That
from the current representation type Repr
and the new element type B
.
a new collection of type That
which is a copy of this sequence with the element at position index
replaced by elem
.
Creates a non-strict view of a slice of this sequence
Creates a non-strict view of a slice of this sequence.
Note: the difference between view
and slice
is that view
produces
a view of the current sequence, whereas slice
produces a new sequence.
Note: view(from, to)
is equivalent to view.slice(from, to)
the index of the first element of the view
the index of the element following the view
a non-strict view of a slice of this sequence, starting at index from
and extending up to (but not including) index until
.
Creates a non-strict view of this sequence
Creates a non-strict view of this sequence.
Creates a non-strict filter of this sequence
Creates a non-strict filter of this sequence.
Note: the difference between c filter p
and c withFilter p
is that
the former creates a new collection, whereas the latter only restricts
the domain of subsequent map
, flatMap
, foreach
, and withFilter
operations.
the predicate used to test elements.
an object of class WithFilter
, which supports
map
, flatMap
, foreach
, and withFilter
operations.
All these operations apply to those elements of this sequence which
satify the predicate p
.
Returns a sequence formed from this sequence and another iterable collection by combining corresponding elements in pairs
Returns a sequence formed from this sequence and another iterable collection by combining corresponding elements in pairs. If one of the two collections is longer than the other, its remaining elements are ignored.
the type of the first half of the returned pairs (this is always a supertype
of the collection's element type A
).
the type of the second half of the returned pairs
the class of the returned collection. Where possible, That
is
the same class as the current collection class Repr
, but this
depends on the element type (A1, B)
being admissible for that class,
which means that an implicit instance of type CanBuildFrom[Repr, (A1, B), That]
.
is found.
The iterable providing the second half of each result pair
an implicit value of class CanBuildFrom
which determines the
result class That
from the current representation type Repr
and the new element type (A1, B)
.
a new collection of type That
containing pairs consisting of
corresponding elements of this sequence and that
. The length
of the returned collection is the minimum of the lengths of this sequence$ and that
.
Returns a sequence formed from this sequence and another iterable collection by combining corresponding elements in pairs
Returns a sequence formed from this sequence and another iterable collection by combining corresponding elements in pairs. If one of the two collections is shorter than the other, placeholder elements are used to extend the shorter collection to the length of the longer.
the iterable providing the second half of each result pair
the element to be used to fill up the result if this sequence is shorter than that
.
the element to be used to fill up the result if that
is shorter than this sequence.
a new collection of type That
containing pairs consisting of
corresponding elements of this sequence and that
. The length
of the returned collection is the maximum of the lengths of this sequence$ and that
.
If this sequence is shorter than that
, thisElem
values are used to pad the result.
If that
is shorter than this sequence, thatElem
values are used to pad the result.
Zips this sequence with its indices
Zips this sequence with its indices.
the type of the first half of the returned pairs (this is always a supertype
of the collection's element type A
).
the class of the returned collection. Where possible, That
is
the same class as the current collection class Repr
, but this
depends on the element type (A1, Int)
being admissible for that class,
which means that an implicit instance of type CanBuildFrom[Repr, (A1, Int), That]
.
is found.
A new collection of type That
containing pairs consisting of all elements of this
sequence paired with their index. Indices start at 0
.
Sequences that support O(1) element access and O(1) length computation.
This class does not add any methods to
Sequence
but overrides several methods with optimized implementations.