scala.collection.IterableViewLike.Transformed
pre: from >= 0
A class supporting filtered operations
[use case] Concatenates this iterable collection with the elements of an iterator
Concatenates this iterable collection with the elements of an iterator.
the iterator to append.
a new iterable collection which contains all elements of this iterable collection
followed by all elements of that
.
Concatenates this iterable collection with the elements of an iterator
Concatenates this iterable collection with the elements of an iterator.
the element type of the returned collection.
the class of the returned collection. Where possible, That
is
the same class as the current collection class Repr
, but this
depends on the element type B
being admissible for that class,
which means that an implicit instance of type CanBuildFrom[Repr, B, That]
is found.
the iterator to append.
an implicit value of class CanBuildFrom
which determines the
result class That
from the current representation type Repr
and
and the new element type B
.
a new collection of type That
which contains all elements of this iterable collection
followed by all elements of that
.
[use case] Concatenates this iterable collection with the elements of a traversable collection
Concatenates this iterable collection with the elements of a traversable collection.
the traversable to append.
a new iterable collection which contains all elements of this iterable collection
followed by all elements of that
.
Concatenates this iterable collection with the elements of a traversable collection
Concatenates this iterable collection with the elements of a traversable collection.
the element type of the returned collection.
the class of the returned collection. Where possible, That
is
the same class as the current collection class Repr
, but this
depends on the element type B
being admissible for that class,
which means that an implicit instance of type CanBuildFrom[Repr, B, That]
is found.
the traversable to append.
an implicit value of class CanBuildFrom
which determines the
result class That
from the current representation type Repr
and
and the new element type B
.
a new collection of type That
which contains all elements of this iterable collection
followed by all elements of that
.
Applies a binary operator to a start value and all elements of this iterable collection, going left to right
Applies a binary operator to a start value and all elements of this iterable collection, going left to right.
Note: /:
is alternate syntax for foldLeft
; z /: xs
is the same as xs foldLeft z
.
Note: will not terminate for infinite-sized collections.
Note: might return different results for different runs, unless the underlying collection type is ordered. or the operator is associative and commutative.
the result type of the binary operator.
the start value.
the binary operator.
the result of inserting op
between consecutive elements of this iterable collection$,
going left to right with the start value z
on the left:
{{{
op(...op(op(z, x1), x2), ..., xn)
}}}
where x,,1,,, ..., x,,n,,
are the elements of this iterable collection.
Applies a binary operator to all elements of this iterable collection and a start value, going right to left
Applies a binary operator to all elements of this iterable collection and a start value, going right to left.
Note: :\
is alternate syntax for foldRight
; xs :\ z
is the same as xs foldRight z
.
Note: will not terminate for infinite-sized collections.
Note: might return different results for different runs, unless the underlying collection type is ordered. or the operator is associative and commutative.
the result type of the binary operator.
the start value
the binary operator
the result of inserting op
between consecutive elements of this iterable collection$,
going right to left with the start value z
on the right:
{{{
op(x1, op(x2, ... op(xn, z)...))
}}}
where x,,1,,, ..., x,,n,,
are the elements of this iterable collection.
Appends all elements of this iterable collection to a string builder
Appends all elements of this iterable collection to a string builder.
The written text consists of the string representations (w.r.t. the method toString
)
of all elements of this iterable collection without any separator string.
the string builder to which elements are appended.
the string builder b
to which elements were appended.
Appends all elements of this iterable collection to a string builder using a separator string
Appends all elements of this iterable collection to a string builder using a separator string.
The written text consists of the string representations (w.r.t. the method toString
)
of all elements of this iterable collection, separated by the string sep
.
the string builder to which elements are appended.
the separator string.
the string builder b
to which elements were appended.
Appends all elements of this iterable collection to a string builder using start, end, and separator strings
Appends all elements of this iterable collection to a string builder using start, end, and separator strings.
The written text begins with the string start
and ends with the string
end
. Inside, the string representations (w.r.t. the method toString
)
of all elements of this iterable collection are separated by the string sep
.
the string builder to which elements are appended.
the starting string.
the separator string.
the ending string.
the string builder b
to which elements were appended.
Method called from equality methods, so that user-defined subclasses can refuse to be equal to other collections of the same kind
Method called from equality methods, so that user-defined subclasses can refuse to be equal to other collections of the same kind.
The object with which this iterable collection should be compared
true
, if this iterable collection can possibly equal that
, false
otherwise. The test
takes into consideration only the run-time types of objects but ignores their elements.
The factory companion object that builds instances of class Iterable
The factory companion object that builds instances of class Iterable.
[use case] Copies elements of this iterable collection to an array
Copies elements of this iterable collection to an array.
Fills the given array xs
with at most len
elements of
this iterable collection, starting at position start
.
Copying will stop once either the end of the current iterable collection is reached,
or the end of the array is reached, or len
elements have been copied.
the array to fill.
the starting index.
the maximal number of elements to copy.
Copies elements of this iterable collection to an array
Copies elements of this iterable collection to an array.
Fills the given array xs
with at most len
elements of
this iterable collection, starting at position start
.
Copying will stop once either the end of the current iterable collection is reached,
or the end of the array is reached, or len
elements have been copied.
Note: will not terminate for infinite-sized collections.
the type of the elements of the array.
the array to fill.
the starting index.
the maximal number of elements to copy.
[use case] Copies elements of this iterable collection to an array
Copies elements of this iterable collection to an array.
Fills the given array xs
with all elements of
this iterable collection, starting at position 0
.
Copying will stop once either the end of the current iterable collection is reached,
or the end of the array is reached.
the array to fill.
Copies elements of this iterable collection to an array
Copies elements of this iterable collection to an array.
Fills the given array xs
with all elements of
this iterable collection, starting at position 0
.
Copying will stop once either the end of the current iterable collection is reached,
or the end of the array is reached.
Note: will not terminate for infinite-sized collections.
the type of the elements of the array.
the array to fill.
[use case] Copies elements of this iterable collection to an array
Copies elements of this iterable collection to an array.
Fills the given array xs
with all elements of
this iterable collection, starting at position start
.
Copying will stop once either the end of the current iterable collection is reached,
or the end of the array is reached.
the array to fill.
the starting index.
Copies elements of this iterable collection to an array
Copies elements of this iterable collection to an array.
Fills the given array xs
with all elements of
this iterable collection, starting at position start
.
Copying will stop once either the end of the current iterable collection is reached,
or the end of the array is reached.
Note: will not terminate for infinite-sized collections.
the type of the elements of the array.
the array to fill.
the starting index.
Copies all elements of this iterable collection to a buffer
Copies all elements of this iterable collection to a buffer.
Note: will not terminate for infinite-sized collections.
The buffer to which elements are copied.
Counts the number of elements in the iterable collection which satisfy a predicate
Counts the number of elements in the iterable collection which satisfy a predicate.
the predicate used to test elements.
the number of elements satisfying the predicate p
.
Selects all elements except first n ones
Selects all elements except first n ones.
Note: might return different results for different runs, unless the underlying collection type is ordered.
the number of elements to drop from this iterable collection.
a iterable collection consisting of all elements of this iterable collection except the first n
ones, or else the
empty iterable collection, if this iterable collection has less than n
elements.
Selects all elements except first n ones
Selects all elements except first n ones.
Note: might return different results for different runs, unless the underlying collection type is ordered.
The number of elements to take
a iterable collection consisting of all elements of this iterable collection except the first n
ones, or else the
empty iterable collection, if this iterable collection has less than n
elements.
Drops longest prefix of elements that satisfy a predicate
Drops longest prefix of elements that satisfy a predicate.
Note: might return different results for different runs, unless the underlying collection type is ordered.
The predicate used to test elements.
the longest suffix of this iterable collection whose first element
does not satisfy the predicate p
.
This method is used to compare the receiver object (this
)
with the argument object (arg0
) for equivalence
This method is used to compare the receiver object (this
)
with the argument object (arg0
) for equivalence.
The default implementations of this method is an equivalence relation:
x
of type Any
,
x.equals(x)
should return true
.x
and y
of type
Any
, x.equals(y)
should return true
if and only
if y.equals(x)
returns true
.x
, y
, and z
of type AnyRef
if x.equals(y)
returns true
and
y.equals(z)
returns
true
, then x.equals(z)
should return true
.
If you override this method, you should verify that
your implementation remains an equivalence relation.
Additionally, when overriding this method it is often necessary to
override hashCode
to ensure that objects that are
"equal" (o1.equals(o2)
returns true
)
hash to the same Int
(o1.hashCode.equals(o2.hashCode)
).
the object to compare against this object for equality.
true
if the receiver object is equivalent to the argument; false
otherwise.
Tests whether a predicate holds for some of the elements of this iterable collection
Tests whether a predicate holds for some of the elements of this iterable collection.
Note: may not terminate for infinite-sized collections.
the predicate used to test elements.
true
if the given predicate p
holds for some of the elements
of this iterable collection, otherwise false
.
Selects all elements of this iterable collection which satisfy a predicate
Selects all elements of this iterable collection which satisfy a predicate.
the predicate used to test elements.
a new iterable collection consisting of all elements of this iterable collection that satisfy the given
predicate p
. The order of the elements is preserved.
Selects all elements of this iterable collection which do not satisfy a predicate
Selects all elements of this iterable collection which do not satisfy a predicate.
the predicate used to test elements.
a new iterable collection consisting of all elements of this iterable collection that do not satisfy the given
predicate p
. The order of the elements is preserved.
Finds the first element of the iterable collection satisfying a predicate, if any
Finds the first element of the iterable collection satisfying a predicate, if any.
Note: may not terminate for infinite-sized collections.
Note: might return different results for different runs, unless the underlying collection type is ordered.
the predicate used to test elements.
an option value containing the first element in the iterable collection
that satisfies p
, or None
if none exists.
None
if iterable is empty
None
if iterable is empty.
[use case] Builds a new collection by applying a function to all elements of this iterable collection and concatenating the results
Builds a new collection by applying a function to all elements of this iterable collection and concatenating the results.
the element type of the returned collection.
the function to apply to each element.
a new iterable collection resulting from applying the given collection-valued function
f
to each element of this iterable collection and concatenating the results.
Builds a new collection by applying a function to all elements of this iterable collection and concatenating the results
Builds a new collection by applying a function to all elements of this iterable collection and concatenating the results.
the element type of the returned collection.
the class of the returned collection. Where possible, That
is
the same class as the current collection class Repr
, but this
depends on the element type B
being admissible for that class,
which means that an implicit instance of type CanBuildFrom[Repr, B, That]
is found.
the function to apply to each element.
an implicit value of class CanBuildFrom
which determines the
result class That
from the current representation type Repr
and
and the new element type B
.
a new collection of type That
resulting from applying the given collection-valued function
f
to each element of this iterable collection and concatenating the results.
[use case] Converts this iterable collection of traversable collections into a iterable collection in which all element collections are concatenated
Converts this iterable collection of traversable collections into a iterable collection in which all element collections are concatenated.
the type of the elements of each traversable collection.
a new iterable collection resulting from concatenating all element iterable collections.
Converts this iterable collection of traversable collections into a iterable collection in which all element collections are concatenated
Converts this iterable collection of traversable collections into a iterable collection in which all element collections are concatenated.
the type of the elements of each traversable collection.
an implicit conversion which asserts that the element type of this
iterable collection is a Traversable
.
a new iterable collection resulting from concatenating all element iterable collections.
Applies a binary operator to a start value and all elements of this iterable collection, going left to right
Applies a binary operator to a start value and all elements of this iterable collection, going left to right.
Note: will not terminate for infinite-sized collections.
Note: might return different results for different runs, unless the underlying collection type is ordered. or the operator is associative and commutative.
the result type of the binary operator.
the start value.
the binary operator.
the result of inserting op
between consecutive elements of this iterable collection$,
going left to right with the start value z
on the left:
{{{
op(...op(z, x1), x2, ..., xn)
}}}
where x,,1,,, ..., x,,n,,
are the elements of this iterable collection.
Applies a binary operator to all elements of this iterable collection and a start value, going right to left
Applies a binary operator to all elements of this iterable collection and a start value, going right to left.
Note: will not terminate for infinite-sized collections.
Note: might return different results for different runs, unless the underlying collection type is ordered. or the operator is associative and commutative.
the result type of the binary operator.
the start value.
the binary operator.
the result of inserting op
between consecutive elements of this iterable collection$,
going right to left with the start value z
on the right:
{{{
op(x1, op(x2, ... op(xn, z)...))
}}}
where x,,1,,, ..., x,,n,,
are the elements of this iterable collection.
Tests whether a predicate holds for all elements of this iterable collection
Tests whether a predicate holds for all elements of this iterable collection.
Note: may not terminate for infinite-sized collections.
the predicate used to test elements.
true
if the given predicate p
holds for all elements
of this iterable collection, otherwise false
.
[use case] Applies a function f
to all elements of this iterable collection
Applies a function f
to all elements of this iterable collection.
the function that is applied for its side-effect to every element.
The result of function f
is discarded.
Applies a function f
to all elements of this iterable collection
Applies a function f
to all elements of this iterable collection.
the function that is applied for its side-effect to every element.
The result of function f
is discarded.
The generic builder that builds instances of Iterable at arbitrary element types
The generic builder that builds instances of Iterable at arbitrary element types.
Partitions this iterable collection into a map of iterable collections according to some discriminator function
Partitions this iterable collection into a map of iterable collections according to some discriminator function.
Note: this method is not re-implemented by views. This means when applied to a view it will always force the view and return a new iterable collection.
the type of keys returned by the discriminator function.
the discriminator function.
A map from keys to iterable collections such that the following invariant holds:
{{{
(xs partition f)(k) = xs filter (x => f(x) == k)
}}}
That is, every key k
is bound to a iterable collection of those elements x
for which f(x)
equals k
.
Partitions elements in fixed size iterable collections
Partitions elements in fixed size iterable collections.
the number of elements per group
An iterator producing iterable collections of size size
, except the
last will be truncated if the elements don't divide evenly.
Tests whether this iterable collection is known to have a finite size
Tests whether this iterable collection is known to have a finite size.
All strict collections are known to have finite size. For a non-strict collection
such as Stream
, the predicate returns true
if all elements have been computed.
It returns false
if the stream is not yet evaluated to the end.
Note: many collection methods will not work on collections of infinite sizes.
Returns a hash code value for the object
Returns a hash code value for the object.
The default hashing algorithm is platform dependent.
Note that it is allowed for two objects to have identical hash
codes (o1.hashCode.equals(o2.hashCode)
) yet not be
equal (o1.equals(o2)
returns false
). A
degenerate implementation could always return 0
.
However, it is required that if two objects are equal
(o1.equals(o2)
returns true
) that they
have identical hash codes
(o1.hashCode.equals(o2.hashCode)
). Therefore, when
overriding this method, be sure to verify that the behavior is
consistent with the equals
method.
Selects the first element of this iterable collection
Selects the first element of this iterable collection.
Note: might return different results for different runs, unless the underlying collection type is ordered.
Optionally selects the first element
Optionally selects the first element.
Note: might return different results for different runs, unless the underlying collection type is ordered.
Selects all elements except the last
Selects all elements except the last.
Note: might return different results for different runs, unless the underlying collection type is ordered.
Tests whether this iterable collection is empty
Tests whether this iterable collection is empty.
Creates a new iterator over all elements contained in this iterable object
Creates a new iterator over all elements contained in this iterable object.
Selects the last element
Selects the last element.
Note: might return different results for different runs, unless the underlying collection type is ordered.
Optionally selects the last element
Optionally selects the last element.
Note: might return different results for different runs, unless the underlying collection type is ordered.
[use case] Builds a new collection by applying a function to all elements of this iterable collection
Builds a new collection by applying a function to all elements of this iterable collection.
the element type of the returned collection.
the function to apply to each element.
a new iterable collection resulting from applying the given function
f
to each element of this iterable collection and collecting the results.
Builds a new collection by applying a function to all elements of this iterable collection
Builds a new collection by applying a function to all elements of this iterable collection.
the element type of the returned collection.
the class of the returned collection. Where possible, That
is
the same class as the current collection class Repr
, but this
depends on the element type B
being admissible for that class,
which means that an implicit instance of type CanBuildFrom[Repr, B, That]
is found.
the function to apply to each element.
an implicit value of class CanBuildFrom
which determines the
result class That
from the current representation type Repr
and
and the new element type B
.
a new collection of type That
resulting from applying the given function
f
to each element of this iterable collection and collecting the results.
Finds the largest element
Finds the largest element.
The type over which the ordering is defined.
An ordering to be used for comparing elements.
the largest element of this iterable collection with respect to the ordering cmp
.
[use case] Finds the largest element
Finds the largest element.
[use case] Finds the smallest element
Finds the smallest element.
Finds the smallest element
Finds the smallest element.
The type over which the ordering is defined.
An ordering to be used for comparing elements.
the smallest element of this iterable collection with respect to the ordering cmp
.
Displays all elements of this iterable collection in a string
Displays all elements of this iterable collection in a string.
Displays all elements of this iterable collection in a string using a separator string
Displays all elements of this iterable collection in a string using a separator string.
the separator string.
a string representation of this iterable collection. In the resulting string
the string representations (w.r.t. the method toString
)
of all elements of this iterable collection are separated by the string sep
.
Displays all elements of this iterable collection in a string using start, end, and separator strings
Displays all elements of this iterable collection in a string using start, end, and separator strings.
the starting string.
the separator string.
the ending string.
a string representation of this iterable collection. The resulting string
begins with the string start
and ends with the string
end
. Inside, the string representations (w.r.t. the method toString
)
of all elements of this iterable collection are separated by the string sep
.
Tests whether the iterable collection is not empty
Tests whether the iterable collection is not empty.
[use case] Builds a new collection by applying a partial function to all elements of this iterable collection on which the function is defined
Builds a new collection by applying a partial function to all elements of this iterable collection on which the function is defined.
the element type of the returned collection.
the partial function which filters and maps the iterable collection.
a new iterable collection resulting from applying the given partial function
pf
to each element on which it is defined and collecting the results.
The order of the elements is preserved.
Builds a new collection by applying a partial function to all elements of this iterable collection on which the function is defined
Builds a new collection by applying a partial function to all elements of this iterable collection on which the function is defined.
the element type of the returned collection.
the class of the returned collection. Where possible, That
is
the same class as the current collection class Repr
, but this
depends on the element type B
being admissible for that class,
which means that an implicit instance of type CanBuildFrom[Repr, B, That]
is found.
the partial function which filters and maps the iterable collection.
an implicit value of class CanBuildFrom
which determines the
result class That
from the current representation type Repr
and
and the new element type B
.
a new collection of type That
resulting from applying the partial function
pf
to each element on which it is defined and collecting the results.
The order of the elements is preserved.
Partitions this iterable collection in two iterable collections according to a predicate
Partitions this iterable collection in two iterable collections according to a predicate.
the predicate on which to partition.
a pair of iterable collections: the first iterable collection consists of all elements that
satisfy the predicate p
and the second iterable collection consists of all elements
that don't. The relative order of the elements in the resulting iterable collections
is the same as in the original iterable collection.
[use case] Multiplies up the elements of this collection
Multiplies up the elements of this collection.
Multiplies up the elements of this collection
Multiplies up the elements of this collection.
the result type of the *
operator.
an implicit parameter defining a set of numeric operations
which includes the *
operator to be used in forming the product.
the product of all elements of this iterable collection with respect to the *
operator in num
.
returns a projection that can be used to call non-strict filter
,map
, and flatMap
methods that build projections
of the collection
returns a projection that can be used to call non-strict filter
,map
, and flatMap
methods that build projections
of the collection.
Applies a binary operator to all elements of this iterable collection, going left to right
Applies a binary operator to all elements of this iterable collection, going left to right.
Note: will not terminate for infinite-sized collections.
Note: might return different results for different runs, unless the underlying collection type is ordered. or the operator is associative and commutative.
the result type of the binary operator.
the binary operator.
the result of inserting op
between consecutive elements of this iterable collection$,
going left to right:
{{{
op(...(op(x1, x2), ... ) , xn)
}}}
where x,,1,,, ..., x,,n,,
are the elements of this iterable collection.
Optionally applies a binary operator to all elements of this iterable collection, going left to right
Optionally applies a binary operator to all elements of this iterable collection, going left to right.
Note: will not terminate for infinite-sized collections.
Note: might return different results for different runs, unless the underlying collection type is ordered. or the operator is associative and commutative.
the result type of the binary operator.
the binary operator.
an option value containing the result of reduceLeft(op)
is this iterable collection is nonempty,
None
otherwise.
Applies a binary operator to all elements of this iterable collection, going right to left
Applies a binary operator to all elements of this iterable collection, going right to left.
Note: will not terminate for infinite-sized collections.
Note: might return different results for different runs, unless the underlying collection type is ordered. or the operator is associative and commutative.
the result type of the binary operator.
the binary operator.
the result of inserting op
between consecutive elements of this iterable collection$,
going right to left:
{{{
op(x1, op(x2, ..., op(xn-1, xn)...))
}}}
where x,,1,,, ..., x,,n,,
are the elements of this iterable collection.
Optionally applies a binary operator to all elements of this iterable collection, going right to left
Optionally applies a binary operator to all elements of this iterable collection, going right to left.
Note: will not terminate for infinite-sized collections.
Note: might return different results for different runs, unless the underlying collection type is ordered. or the operator is associative and commutative.
the result type of the binary operator.
the binary operator.
an option value containing the result of reduceRight(op)
is this iterable collection is nonempty,
None
otherwise.
The collection of type iterable collection underlying this TraversableLike
object
The collection of type iterable collection underlying this TraversableLike
object.
By default this is implemented as the TraversableLike
object itself, but this can be overridden.
[use case] Checks if the other iterable collection contains the same elements in the same order as this iterable collection
Checks if the other iterable collection contains the same elements in the same order as this iterable collection.
the collection to compare with.
true
, if both collections contain the same elements in the same order, false
otherwise.
Checks if the other iterable collection contains the same elements in the same order as this iterable collection
Checks if the other iterable collection contains the same elements in the same order as this iterable collection.
Note: might return different results for different runs, unless the underlying collection type is ordered.
Note: will not terminate for infinite-sized collections.
the type of the elements of collection that
.
the collection to compare with.
true
, if both collections contain the same elements in the same order, false
otherwise.
The size of this iterable collection
The size of this iterable collection.
Note: will not terminate for infinite-sized collections.
Selects an interval of elements
Selects an interval of elements.
Note: c.slice(from, to)
is equivalent to (but possibly more efficient than)
c.drop(from).take(to - from)
Note: might return different results for different runs, unless the underlying collection type is ordered.
the index of the first returned element in this iterable collection.
the index one past the last returned element in this iterable collection.
a iterable collection containing the elements starting at index from
and extending up to (but not including) index until
of this iterable collection.
Groups elements in fixed size blocks by passing a "sliding window" over them (as opposed to partitioning them, as is done in grouped
Groups elements in fixed size blocks by passing a "sliding window" over them (as opposed to partitioning them, as is done in grouped.)
the number of elements per group
An iterator producing iterable collections of size size
, except the
last will be truncated if the elements don't divide evenly.
Spits this iterable collection into a prefix/suffix pair according to a predicate
Spits this iterable collection into a prefix/suffix pair according to a predicate.
Note: c span p
is equivalent to (but possibly more efficient than)
(c takeWhile p, c dropWhile p)
, provided the evaluation of the predicate p
does not cause any side-effects.
Note: might return different results for different runs, unless the underlying collection type is ordered.
the test predicate
a pair consisting of the longest prefix of this iterable collection whose
elements all satisfy p
, and the rest of this iterable collection.
Splits this iterable collection into two at a given position
Splits this iterable collection into two at a given position.
Note: c splitAt n
is equivalent to (but possibly more efficient than)
(c take n, c drop n)
.
Note: might return different results for different runs, unless the underlying collection type is ordered.
the position at which to split.
a pair of iterable collections consisting of the first n
elements of this iterable collection, and the other elements.
Defines the prefix of this object's toString
representation
Defines the prefix of this object's toString
representation.
[use case] Sums up the elements of this collection
Sums up the elements of this collection.
Sums up the elements of this collection
Sums up the elements of this collection.
the result type of the +
operator.
an implicit parameter defining a set of numeric operations
which includes the +
operator to be used in forming the sum.
the sum of all elements of this iterable collection with respect to the +
operator in num
.
Selects all elements except the first
Selects all elements except the first.
Note: might return different results for different runs, unless the underlying collection type is ordered.
Selects first n elements
Selects first n elements.
Note: might return different results for different runs, unless the underlying collection type is ordered.
Tt number of elements to take from this iterable collection.
a iterable collection consisting only of the first n
elements of this iterable collection, or else the
whole iterable collection, if it has less than n
elements.
Selects last n elements
Selects last n elements.
Note: might return different results for different runs, unless the underlying collection type is ordered.
the number of elements to take
a iterable collection consisting only of the last n
elements of this iterable collection, or else the
whole iterable collection, if it has less than n
elements.
Takes longest prefix of elements that satisfy a predicate
Takes longest prefix of elements that satisfy a predicate.
Note: might return different results for different runs, unless the underlying collection type is ordered.
The predicate used to test elements.
the longest prefix of this iterable collection whose elements all satisfy
the predicate p
.
[use case] Converts this iterable collection to an array
Converts this iterable collection to an array.
Note: will not terminate for infinite-sized collections.
Converts this iterable collection to an array
Converts this iterable collection to an array.
Note: will not terminate for infinite-sized collections.
the type of the elements of the array. A ClassManifest
for this type must
be available.
an array containing all elements of this iterable collection.
Converts this iterable collection to an indexed sequence
Converts this iterable collection to an indexed sequence.
Note: will not terminate for infinite-sized collections.
Converts this iterable collection to an iterable collection
Converts this iterable collection to an iterable collection.
Note: will not terminate for infinite-sized collections.
Converts this iterable collection to a list
Converts this iterable collection to a list.
Note: will not terminate for infinite-sized collections.
Converts this iterable collection to a map
Converts this iterable collection to a map. This method is unavailable unless the elements are members of Tuple2, each ((K, V)) becoming a key-value pair in the map. Duplicate keys will be overwritten by later keys: if this is an unordered collection, which key is in the resulting map is undefined.
Note: will not terminate for infinite-sized collections.
Converts this iterable collection to a sequence
Converts this iterable collection to a sequence.
Note: will not terminate for infinite-sized collections.
Converts this iterable collection to a set
Converts this iterable collection to a set.
Note: will not terminate for infinite-sized collections.
Converts this iterable collection to a stream
Converts this iterable collection to a stream.
Note: will not terminate for infinite-sized collections.
Converts this iterable collection to a string
Converts this iterable collection to a string
Transposes this iterable collection of traversable collections into
Transposes this iterable collection of traversable collections into
Converts this iterable collection of pairs into two collections of the first and second halfs of each pair
Converts this iterable collection of pairs into two collections of the first and second halfs of each pair.
an implicit conversion which asserts that the element type of this iterable collection is a pair.
a pair iterable collections, containing the first, respectively second half of each element pair of this iterable collection.
Creates a non-strict view of a slice of this iterable collection
Creates a non-strict view of a slice of this iterable collection.
Note: the difference between view
and slice
is that view
produces
a view of the current iterable collection, whereas slice
produces a new iterable collection.
Note: view(from, to)
is equivalent to view.slice(from, to)
Note: might return different results for different runs, unless the underlying collection type is ordered.
the index of the first element of the view
the index of the element following the view
a non-strict view of a slice of this iterable collection, starting at index from
and extending up to (but not including) index until
.
Creates a non-strict view of this iterable collection
Creates a non-strict view of this iterable collection.
Creates a non-strict filter of this iterable collection
Creates a non-strict filter of this iterable collection.
Note: the difference between c filter p
and c withFilter p
is that
the former creates a new collection, whereas the latter only restricts
the domain of subsequent map
, flatMap
, foreach
, and withFilter
operations.
Note: might return different results for different runs, unless the underlying collection type is ordered.
the predicate used to test elements.
an object of class WithFilter
, which supports
map
, flatMap
, foreach
, and withFilter
operations.
All these operations apply to those elements of this iterable collection which
satify the predicate p
.
[use case] Returns a iterable collection formed from this iterable collection and another iterable collection by combining corresponding elements in pairs
Returns a iterable collection formed from this iterable collection and another iterable collection by combining corresponding elements in pairs. If one of the two collections is longer than the other, its remaining elements are ignored.
the type of the second half of the returned pairs
The iterable providing the second half of each result pair
a new iterable collection containing pairs consisting of
corresponding elements of this iterable collection and that
. The length
of the returned collection is the minimum of the lengths of this iterable collection$ and that
.
Returns a iterable collection formed from this iterable collection and another iterable collection by combining corresponding elements in pairs
Returns a iterable collection formed from this iterable collection and another iterable collection by combining corresponding elements in pairs. If one of the two collections is longer than the other, its remaining elements are ignored.
Note: might return different results for different runs, unless the underlying collection type is ordered.
the type of the first half of the returned pairs (this is always a supertype
of the collection's element type A
).
the type of the second half of the returned pairs
the class of the returned collection. Where possible, That
is
the same class as the current collection class Repr
, but this
depends on the element type (A1, B)
being admissible for that class,
which means that an implicit instance of type CanBuildFrom[Repr, (A1, B), That]
.
is found.
The iterable providing the second half of each result pair
an implicit value of class CanBuildFrom
which determines the
result class That
from the current representation type Repr
and the new element type (A1, B)
.
a new collection of type That
containing pairs consisting of
corresponding elements of this iterable collection and that
. The length
of the returned collection is the minimum of the lengths of this iterable collection$ and that
.
[use case] Returns a iterable collection formed from this iterable collection and another iterable collection by combining corresponding elements in pairs
Returns a iterable collection formed from this iterable collection and another iterable collection by combining corresponding elements in pairs. If one of the two collections is shorter than the other, placeholder elements are used to extend the shorter collection to the length of the longer.
the type of the second half of the returned pairs
The iterable providing the second half of each result pair
the element to be used to fill up the result if this iterable collection is shorter than that
.
the element to be used to fill up the result if that
is shorter than this iterable collection.
a new iterable collection containing pairs consisting of
corresponding elements of this iterable collection and that
. The length
of the returned collection is the maximum of the lengths of this iterable collection$ and that
.
If this iterable collection is shorter than that
, thisElem
values are used to pad the result.
If that
is shorter than this iterable collection, thatElem
values are used to pad the result.
Returns a iterable collection formed from this iterable collection and another iterable collection by combining corresponding elements in pairs
Returns a iterable collection formed from this iterable collection and another iterable collection by combining corresponding elements in pairs. If one of the two collections is shorter than the other, placeholder elements are used to extend the shorter collection to the length of the longer.
Note: might return different results for different runs, unless the underlying collection type is ordered.
the iterable providing the second half of each result pair
the element to be used to fill up the result if this iterable collection is shorter than that
.
the element to be used to fill up the result if that
is shorter than this iterable collection.
a new collection of type That
containing pairs consisting of
corresponding elements of this iterable collection and that
. The length
of the returned collection is the maximum of the lengths of this iterable collection$ and that
.
If this iterable collection is shorter than that
, thisElem
values are used to pad the result.
If that
is shorter than this iterable collection, thatElem
values are used to pad the result.
[use case] Zips this iterable collection with its indices
Zips this iterable collection with its indices.
Zips this iterable collection with its indices
Zips this iterable collection with its indices.
Note: might return different results for different runs, unless the underlying collection type is ordered.
the type of the first half of the returned pairs (this is always a supertype
of the collection's element type A
).
the class of the returned collection. Where possible, That
is
the same class as the current collection class Repr
, but this
depends on the element type (A1, Int)
being admissible for that class,
which means that an implicit instance of type CanBuildFrom[Repr, (A1, Int), That]
.
is found.
A new collection of type That
containing pairs consisting of all elements of this
iterable collection paired with their index. Indices start at 0
.