o != arg0
is the same as !(o == (arg0))
.
o != arg0
is the same as !(o == (arg0))
.
the object to compare against this object for dis-equality.
false
if the receiver object is equivalent to the argument; true
otherwise.
o == arg0
is the same as if (o eq null) arg0 eq null else o.equals(arg0)
.
o == arg0
is the same as if (o eq null) arg0 eq null else o.equals(arg0)
.
the object to compare against this object for equality.
true
if the receiver object is equivalent to the argument; false
otherwise.
o == arg0
is the same as o.equals(arg0)
.
o == arg0
is the same as o.equals(arg0)
.
the object to compare against this object for equality.
true
if the receiver object is equivalent to the argument; false
otherwise.
Creates an array of Unit
objects
Creates an array of Unit
objects
Creates an array of Double
objects
Creates an array of Double
objects
Creates an array of Float
objects
Creates an array of Float
objects
Creates an array of Long
objects
Creates an array of Long
objects
Creates an array of Int
objects
Creates an array of Int
objects
Creates an array of Char
objects
Creates an array of Char
objects
Creates an array of Short
objects
Creates an array of Short
objects
Creates an array of Byte
objects
Creates an array of Byte
objects
Creates an array of Boolean
objects
Creates an array of Boolean
objects
Creates an array with given elements.
Creates an array with given elements.
the elements to put in the array
an array containing all elements from xs.
This method is used to cast the receiver object to be of type T0
.
This method is used to cast the receiver object to be of type T0
.
Note that the success of a cast at runtime is modulo Scala's erasure semantics. Therefore the expression1.asInstanceOf[String]
will throw a ClassCastException
at runtime, while the expressionList(1).asInstanceOf[List[String]]
will not. In the latter example, because the type argument is erased as
part of compilation it is not possible to check whether the contents of the list are of the requested typed.
the receiver object.
This method creates and returns a copy of the receiver object.
This method creates and returns a copy of the receiver object.
The default implementation of the clone
method is platform dependent.
a copy of the receiver object.
Concatenates all arrays into a single array.
Concatenates all arrays into a single array.
the given arrays
the array created from concatenating xss
Copy one array to another.
Copy one array to another.
Equivalent to Java's
System.arraycopy(src, srcPos, dest, destPos, length)
,
except that this also works for polymorphic and boxed arrays.
Note that the passed-in dest
array will be modified by this call.
the source array.
starting position in the source array.
destination array.
starting position in the destination array.
the number of array elements to be copied.
java.lang.System#arraycopy
Returns an array of length 0
Returns an array of length 0
This method is used to test whether the argument (arg0
) is a reference to the
receiver object (this
).
This method is used to test whether the argument (arg0
) is a reference to the
receiver object (this
).
The eq
method implements an [http://en.wikipedia.org/wiki/Equivalence_relation equivalence relation] on
non-null instances of AnyRef
:
* It is reflexive: for any non-null instance x
of type AnyRef
, x.eq(x)
returns true
.
* It is symmetric: for any non-null instances x
and y
of type AnyRef
, x.eq(y)
returns true
if and
only if y.eq(x)
returns true
.
* It is transitive: for any non-null instances x
, y
, and z
of type AnyRef
if x.eq(y)
returns true
and y.eq(z)
returns true
, then x.eq(z)
returns true
.
Additionally, the eq
method has three other properties.
* It is consistent: for any non-null instances x
and y
of type AnyRef
, multiple invocations of
x.eq(y)
consistently returns true
or consistently returns false
.
* For any non-null instance x
of type AnyRef
, x.eq(null)
and null.eq(x)
returns false
.
* null.eq(null)
returns true
.
When overriding the equals
or hashCode
methods, it is important to ensure that their behavior is
consistent with reference equality. Therefore, if two objects are references to each other (o1 eq o2
), they
should be equal to each other (o1 == o2
) and they should hash to the same value (o1.hashCode == o2.hashCode
).
the object to compare against this object for reference equality.
true
if the argument is a reference to the receiver object; false
otherwise.
This method is used to compare the receiver object (this
) with the argument object (arg0
) for equivalence.
This method is used to compare the receiver object (this
) with the argument object (arg0
) for equivalence.
The default implementations of this method is an [http://en.wikipedia.org/wiki/Equivalence_relation equivalence
relation]:
* It is reflexive: for any instance x
of type Any
, x.equals(x)
should return true
.
* It is symmetric: for any instances x
and y
of type Any
, x.equals(y)
should return true
if and
only if y.equals(x)
returns true
.
* It is transitive: for any instances x
, y
, and z
of type AnyRef
if x.equals(y)
returns true
and
y.equals(z)
returns true
, then x.equals(z)
should return true
.
If you override this method, you should verify that your implementation remains an equivalence relation.
Additionally, when overriding this method it is often necessary to override hashCode
to ensure that objects
that are "equal" (o1.equals(o2)
returns true
) hash to the same
scala.Int
(o1.hashCode.equals(o2.hashCode)
).
the object to compare against this object for equality.
true
if the receiver object is equivalent to the argument; false
otherwise.
A builder factory that generates a generic array.
A builder factory that generates a generic array. Called instead of Array.newBuilder if the element type of an array does not have a class manifest. Note that fallbackBuilder factory needs an implicit parameter (otherwise it would not be dominated in implicit search by Array.canBuildFrom). We make sure that that implicit search is always successfull.
Returns a five-dimensional array that contains the results of some element computation a number of times.
Returns a five-dimensional array that contains the results of some element computation a number of times.
the number of elements in the 1st dimension
the number of elements in the 2nd dimension
the number of elements in the 3nd dimension
the number of elements in the 4th dimension
the number of elements in the 5th dimension
the element computation
Returns a four-dimensional array that contains the results of some element computation a number of times.
Returns a four-dimensional array that contains the results of some element computation a number of times.
the number of elements in the 1st dimension
the number of elements in the 2nd dimension
the number of elements in the 3nd dimension
the number of elements in the 4th dimension
the element computation
Returns a three-dimensional array that contains the results of some element computation a number of times.
Returns a three-dimensional array that contains the results of some element computation a number of times.
the number of elements in the 1st dimension
the number of elements in the 2nd dimension
the number of elements in the 3nd dimension
the element computation
Returns a two-dimensional array that contains the results of some element computation a number of times.
Returns a two-dimensional array that contains the results of some element computation a number of times.
the number of elements in the 1st dimension
the number of elements in the 2nd dimension
the element computation
Returns an array that contains the results of some element computation a number of times.
Returns an array that contains the results of some element computation a number of times.
Note that this means that elem
is computed a total of n times:
scala> Array.fill(3){ java.lang.Math.random } res3: Array[Double] = Array(0.365461167592537, 1.550395944913685E-4, 0.7907242137333306)
the number of elements desired
the element computation
an Array of size n, where each element contains the result of computing
elem
.
This method is called by the garbage collector on the receiver object when garbage collection determines that there are no more references to the object.
This method is called by the garbage collector on the receiver object when garbage collection determines that there are no more references to the object.
The details of when and if the finalize
method are invoked, as well as the interaction between finalize
and non-local returns and exceptions, are all platform dependent.
Creates an array containing the values of a given function f
over given range [0..n1, 0..n2, 0..n3, 0..n4, 0..n5)
Creates an array containing the values of a given function f
over given range [0..n1, 0..n2, 0..n3, 0..n4, 0..n5)
use Array.tabulate' instead
Creates an array containing the values of a given function f
over given range [0..n1, 0..n2, 0..n3, 0..n4)
Creates an array containing the values of a given function f
over given range [0..n1, 0..n2, 0..n3, 0..n4)
use Array.tabulate' instead
Creates an array containing the values of a given function f
over given range [0..n1, 0..n2, 0..n3)
Creates an array containing the values of a given function f
over given range [0..n1, 0..n2, 0..n3)
use Array.tabulate' instead
Creates an array containing the values of a given function f
over given range [0..n1, 0..n2)
Creates an array containing the values of a given function f
over given range [0..n1, 0..n2)
use Array.tabulate' instead
Creates an array containing the values of a given function f
over given range [0..n)
Creates an array containing the values of a given function f
over given range [0..n)
use Array.tabulate' instead
Returns a representation that corresponds to the dynamic class of the receiver object.
Returns a representation that corresponds to the dynamic class of the receiver object.
The nature of the representation is platform dependent.
a representation that corresponds to the dynamic class of the receiver object.
Returns a hash code value for the object.
Returns a hash code value for the object.
The default hashing algorithm is platform dependent.
Note that it is allowed for two objects to have identical hash codes (o1.hashCode.equals(o2.hashCode)
) yet
not be equal (o1.equals(o2)
returns false
). A degenerate implementation could always return 0
.
However, it is required that if two objects are equal (o1.equals(o2)
returns true
) that they have
identical hash codes (o1.hashCode.equals(o2.hashCode)
). Therefore, when overriding this method, be sure
to verify that the behavior is consistent with the equals
method.
the hash code value for the object.
This method is used to test whether the dynamic type of the receiver object is T0
.
This method is used to test whether the dynamic type of the receiver object is T0
.
Note that the test result of the test is modulo Scala's erasure semantics. Therefore the expression1.isInstanceOf[String]
will return false
, while the expression List(1).isInstanceOf[List[String]]
will
return true
. In the latter example, because the type argument is erased as part of compilation it is not
possible to check whether the contents of the list are of the requested typed.
true
if the receiver object is an instance of erasure of type T0
; false
otherwise.
Returns an array containing repeated applications of a function to a start value.
Returns an array containing repeated applications of a function to a start value.
the start value of the array
the number of elements returned by the array
the function that is repeatedly applied
the array returning len
values in the sequence start, f(start), f(f(start)), ...
Creates an array containing several copies of an element.
Creates an array containing several copies of an element.
the length of the resulting array
the element composing the resulting array
an array composed of n elements all equal to elem
use Array.fill' instead
o.ne(arg0)
is the same as !(o.eq(arg0))
.
o.ne(arg0)
is the same as !(o.eq(arg0))
.
the object to compare against this object for reference dis-equality.
false
if the argument is not a reference to the receiver object; true
otherwise.
Returns a new ArrayBuilder.
Returns a new ArrayBuilder.
Wakes up a single thread that is waiting on the receiver object's monitor.
Wakes up a single thread that is waiting on the receiver object's monitor.
Wakes up all threads that are waiting on the receiver object's monitor.
Wakes up all threads that are waiting on the receiver object's monitor.
Creates a 5-dimensional array
Creates a 5-dimensional array
Creates a 4-dimensional array
Creates a 4-dimensional array
Creates a 3-dimensional array
Creates a 3-dimensional array
Creates a 2-dimensional array
Creates a 2-dimensional array
Creates array with given dimensions
Creates array with given dimensions
Returns an array containing equally spaced values in some integer interval.
Returns an array containing equally spaced values in some integer interval.
the start value of the array
the end value of the array, exclusive (in other words, this is the first value not returned)
the increment value of the array (may not be zero)
the array with values in start, start + step, ...
up to, but excluding end
Returns an array containing a sequence of increasing integers in a range.
Returns an array containing a sequence of increasing integers in a range.
the end value of the array, exclusive (in other words, this is the first value not returned)
the array with values in range start, start + 1, ..., end - 1
up to, but excluding, end
.
Returns a five-dimensional array containing values of a given function over ranges of integer values starting from 0.
Returns a five-dimensional array containing values of a given function over ranges of integer values starting from 0.
the number of elements in the 1st dimension
the number of elements in the 2nd dimension
the number of elements in the 3nd dimension
the number of elements in the 4th dimension
the number of elements in the 5th dimension
The function computing element values
Returns a four-dimensional array containing values of a given function over ranges of integer values starting from 0.
Returns a four-dimensional array containing values of a given function over ranges of integer values starting from 0.
the number of elements in the 1st dimension
the number of elements in the 2nd dimension
the number of elements in the 3nd dimension
the number of elements in the 4th dimension
The function computing element values
Returns a three-dimensional array containing values of a given function over ranges of integer values starting from 0.
Returns a three-dimensional array containing values of a given function over ranges of integer values starting from 0.
the number of elements in the 1st dimension
the number of elements in the 2nd dimension
the number of elements in the 3nd dimension
The function computing element values
Returns a two-dimensional array containing values of a given function over ranges of integer values starting from 0.
Returns a two-dimensional array containing values of a given function over ranges of integer values starting from 0.
the number of elements in the 1st dimension
the number of elements in the 2nd dimension
The function computing element values
Returns an array containing values of a given function over a range of integer values starting from 0.
Returns an array containing values of a given function over a range of integer values starting from 0.
The number of elements in the array
The function computing element values
A traversable consisting of elements f(0),f(1), ..., f(n - 1)
Returns a string representation of the object.
Returns a string representation of the object.
The default representation is platform dependent.
a string representation of the object.
Called in a pattern match like { case Array(x,y,z) => println('3 elements')}
.
Called in a pattern match like { case Array(x,y,z) => println('3 elements')}
.
the selector value
sequence wrapped in a Some, if x is a Seq, otherwise None
Utility methods for operating on arrays.
version
1.0