Test two objects for inequality.
Test two objects for inequality.
true
if !(this == that), false otherwise.
Equivalent to x.hashCode
except for boxed numeric types.
Equivalent to x.hashCode
except for boxed numeric types.
For numerics, it returns a hash value which is consistent
with value equality: if two value type instances compare
as true, then ## will produce the same hash value for each
of them.
a hash value consistent with ==
Test two objects for equality.
Test two objects for equality.
true
if the receiver object is equivalent to the argument; false
otherwise.
Cast the receiver object to be of type T0
.
Cast the receiver object to be of type T0
.
Note that the success of a cast at runtime is modulo Scala's erasure semantics.
Therefore the expression 1.asInstanceOf[String]
will throw a ClassCastException
at
runtime, while the expression List(1).asInstanceOf[List[String]]
will not.
In the latter example, because the type argument is erased as part of compilation it is
not possible to check whether the contents of the list are of the requested type.
the receiver object.
Create a copy of the receiver object.
Tests whether the argument (arg0
) is a reference to the receiver object (this
).
Tests whether the argument (arg0
) is a reference to the receiver object (this
).
The eq
method implements an equivalence relation on
non-null instances of AnyRef
, and has three additional properties:
x
and y
of type AnyRef
, multiple invocations of
x.eq(y)
consistently returns true
or consistently returns false
.x
of type AnyRef
, x.eq(null)
and null.eq(x)
returns false
.null.eq(null)
returns true
. When overriding the equals
or hashCode
methods, it is important to ensure that their behavior is
consistent with reference equality. Therefore, if two objects are references to each other (o1 eq o2
), they
should be equal to each other (o1 == o2
) and they should hash to the same value (o1.hashCode == o2.hashCode
).
true
if the argument is a reference to the receiver object; false
otherwise.
The equality method for reference types.
Called by the garbage collector on the receiver object when there are no more references to the object.
Called by the garbage collector on the receiver object when there are no more references to the object.
The details of when and if the finalize
method is invoked, as
well as the interaction between finalize
and non-local returns
and exceptions, are all platform dependent.
Return all matches of this regexp in given character sequence as an iterator
Return optionally first matching string of this regexp in given character sequence, None if it does not exist.
Return optionally first match of this regexp in given character sequence, None if it does not exist.
Return optionally match of this regexp at the beginning of the given character sequence, or None if regexp matches no prefix of the character sequence.
Return optionally match of this regexp at the beginning of the given character sequence, or None if regexp matches no prefix of the character sequence.
A representation that corresponds to the dynamic class of the receiver object.
A representation that corresponds to the dynamic class of the receiver object.
The nature of the representation is platform dependent.
a representation that corresponds to the dynamic class of the receiver object.
The hashCode method for reference types.
Test whether the dynamic type of the receiver object is T0
.
Test whether the dynamic type of the receiver object is T0
.
Note that the result of the test is modulo Scala's erasure semantics.
Therefore the expression 1.isInstanceOf[String]
will return false
, while the
expression List(1).isInstanceOf[List[String]]
will return true
.
In the latter example, because the type argument is erased as part of compilation it is
not possible to check whether the contents of the list are of the specified type.
true
if the receiver object is an instance of erasure of type T0
; false
otherwise.
Equivalent to !(this eq that)
.
Equivalent to !(this eq that)
.
true
if the argument is not a reference to the receiver object; false
otherwise.
Wakes up a single thread that is waiting on the receiver object's monitor.
Wakes up a single thread that is waiting on the receiver object's monitor.
Wakes up all threads that are waiting on the receiver object's monitor.
Wakes up all threads that are waiting on the receiver object's monitor.
The compiled pattern
Replaces all matches using a replacer function.
Replaces all matches using a replacer function.
The string to match.
The function which maps a match to another string.
The target string after replacements.
Replaces all matches by a string.
Replaces all matches by a string.
The string to match
The string that will replace each match
The resulting string
Replaces the first match by a string.
Replaces the first match by a string.
The string to match
The string that will replace the match
The resulting string
Splits the provided character sequence around matches of this regexp.
Splits the provided character sequence around matches of this regexp.
The character sequence to split
The array of strings computed by splitting the input around matches of this regexp
The string defining the regular expression
Tries to match target (whole match) and returns the matches.
Tries to match target (whole match) and returns the matches.
The string to match
The matches
This class provides methods for creating and using regular expressions. It is based on the regular expressions of the JDK since 1.4.
You can use special pattern syntax construct
(?idmsux-idmsux)
to switch various regex compilation options likeCASE_INSENSITIVE
orUNICODE_CASE
. Seejava.util.regex.Pattern
javadoc for details.1.1, 29/01/2008