The type implementing this traversable
The type implementing this traversable
A class supporting filtered operations.
Test two objects for inequality.
Test two objects for inequality.
true
if !(this == that), false otherwise.
Equivalent to x.hashCode
except for boxed numeric types.
Equivalent to x.hashCode
except for boxed numeric types.
For numerics, it returns a hash value which is consistent
with value equality: if two value type instances compare
as true, then ## will produce the same hash value for each
of them.
a hash value consistent with ==
Computes the intersection between this bitset and another bitset by performing a bitwise "and".
Computes the intersection between this bitset and another bitset by performing a bitwise "and".
a new bitset consisting of all elements that are both in this
bitset and in the given bitset other
.
Computes the intersection between this set and another set.
Computes the intersection between this set and another set.
Note: Same as intersect
.
the set to intersect with.
a new set consisting of all elements that are both in this
set and in the given set that
.
Computes the difference of this bitset and another bitset by performing a bitwise "and-not".
Computes the difference of this bitset and another bitset by performing a bitwise "and-not".
a bitset containing those bits of this
bitset that are not also contained in the given bitset other
.
The difference of this set and another set.
The difference of this set and another set.
Note: Same as diff
.
the set of elements to exclude.
a set containing those elements of this
set that are not also contained in the given set that
.
Creates a new set consisting of all the elements of this set and two or more specified elements.
Creates a new set consisting of all the elements of this set and two or more specified elements.
Note that duplicates (elements for which equals
yields true) will be
removed, but it is not specified whether it will be an element of this
set or a newly added element.
the first element to add.
the second element to add.
the remaining elements to add.
a new set consisting of all the elements of this set, elem1
,
elem2
and those in elems
.
Creates a new set consisting of all the elements of this set and elem
.
Creates a new set consisting of all the elements of this set and elem
.
Note that duplicates (elements for which equals
yields true) will be
removed, but it is not specified whether it will be an element of this
set or a newly added element.
the element to add.
a new set consisting of elements of this set and elem
.
"As of 2.8, this operation creates a new set. To add an element as a\n"+ "side effect to an existing set and return that set itself, use +=."
Creates a new set consisting of all the elements of this set and those provided by the specified traversable object.
Creates a new set consisting of all the elements of this set and those provided by the specified traversable object.
Note that duplicates (elements for which equals
yields true) will be
removed, but it is not specified whether it will be an element of this
set or a newly added element.
the traversable object.
a new set consisting of elements of this set and those in xs
.
[use case] Concatenates this bitset with the elements of a traversable collection.
Concatenates this bitset with the elements of a traversable collection.
the element type of the returned collection.
the traversable to append.
a new collection of type That
which contains all elements
of this bitset followed by all elements of that
.
Concatenates this bitset with the elements of a traversable collection.
Concatenates this bitset with the elements of a traversable collection.
the element type of the returned collection.
the class of the returned collection. In the standard library configuration,
That
is always BitSet[B]
because an implicit of type CanBuildFrom[BitSet, B, BitSet]
is defined in object BitSet
.
the traversable to append.
an implicit value of class CanBuildFrom
which determines the
result class That
from the current representation type Repr
and the new element type B
. This is usually the canBuildFrom
value
defined in object BitSet
.
a new collection of type That
which contains all elements
of this bitset followed by all elements of that
.
This overload exists because: for the implementation of ++: we should reuse that of ++ because many collections override it with more efficient versions.
This overload exists because: for the implementation of ++: we should reuse that of ++ because many collections override it with more efficient versions. Since TraversableOnce has no '++' method, we have to implement that directly, but Traversable and down can use the overload.
[use case] Concatenates this bitset with the elements of a traversable collection.
Concatenates this bitset with the elements of a traversable collection. It differs from ++ in that the right operand determines the type of the resulting collection rather than the left one.
the element type of the returned collection.
the traversable to append.
a new collection of type That
which contains all elements
of this bitset followed by all elements of that
.
Concatenates this bitset with the elements of a traversable collection.
Concatenates this bitset with the elements of a traversable collection. It differs from ++ in that the right operand determines the type of the resulting collection rather than the left one.
the element type of the returned collection.
the class of the returned collection. In the standard library configuration,
That
is always BitSet[B]
because an implicit of type CanBuildFrom[BitSet, B, BitSet]
is defined in object BitSet
.
the traversable to append.
an implicit value of class CanBuildFrom
which determines the
result class That
from the current representation type Repr
and the new element type B
. This is usually the canBuildFrom
value
defined in object BitSet
.
a new collection of type That
which contains all elements
of this bitset followed by all elements of that
.
adds all elements produced by a TraversableOnce to this bitset.
adds all elements produced by a TraversableOnce to this bitset.
the bitset itself.
Adds a single element to the set.
adds two or more elements to this bitset.
adds two or more elements to this bitset.
the first element to add.
the second element to add.
the remaining elements to add.
the bitset itself
Creates a new set consisting of all the elements of this set except the two or more specified elements.
Creates a new set consisting of all the elements of this set except the two or more specified elements.
the first element to remove.
the second element to remove.
the remaining elements to remove.
a new set consisting of all the elements of this set except
elem1
, elem2
and elems
.
"As of 2.8, this operation creates a new set. To remove the elements as a\n"+ "side effect to an existing set and return that set itself, use -=."
Creates a new set consisting of all the elements of this set except elem
.
Creates a new set consisting of all the elements of this set except elem
.
the element to remove.
a new set consisting of all the elements of this set except elem
.
"As of 2.8, this operation creates a new set. To remove the element as a\n"+ "side effect to an existing set and return that set itself, use -=."
Creates a new set consisting of all the elements of this set except those provided by the specified traversable object.
Creates a new set consisting of all the elements of this set except those provided by the specified traversable object.
the traversable object.
a new set consisting of all the elements of this set except
elements from xs
.
"As of 2.8, this operation creates a new set. To remove the elements as a\n"+ "side effect to an existing set and return that set itself, use --=."
Removes all elements produced by an iterator from this bitset.
Removes all elements produced by an iterator from this bitset.
the bitset itself
Removes a single element from this bitset.
Removes a single element from this bitset.
the element to remove.
the bitset itself
Removes two or more elements from this bitset.
Removes two or more elements from this bitset.
the first element to remove.
the second element to remove.
the remaining elements to remove.
the bitset itself
Applies a binary operator to a start value and all elements of this bitset, going left to right.
Applies a binary operator to a start value and all elements of this bitset, going left to right.
Note: /:
is alternate syntax for foldLeft
; z /: xs
is the same as
xs foldLeft z
.
the result type of the binary operator.
the start value.
the binary operator.
the result of inserting op
between consecutive elements of this bitset,
going left to right with the start value z
on the left:
op(...op(op(z, x,,1,,), x,,2,,), ..., x,,n,,)
where x,,1,,, ..., x,,n,,
are the elements of this bitset.
A syntactic sugar for out of order folding.
A syntactic sugar for out of order folding. See fold
.
Applies a binary operator to all elements of this bitset and a start value, going right to left.
Applies a binary operator to all elements of this bitset and a start value, going right to left.
Note: :\
is alternate syntax for foldRight
; xs :\ z
is the same as
xs foldRight z
.
the result type of the binary operator.
the start value
the binary operator
the result of inserting op
between consecutive elements of this bitset,
going right to left with the start value z
on the right:
op(x,,1,,, op(x,,2,,, ... op(x,,n,,, z)...))
where x,,1,,, ..., x,,n,,
are the elements of this bitset.
Send a message to this scriptable object.
Send a message to this scriptable object.
the message to send.
Test two objects for equality.
Test two objects for equality.
true
if the receiver object is equivalent to the argument; false
otherwise.
Computes the symmetric difference of this bitset and another bitset by performing a bitwise "exclusive-or".
Computes the symmetric difference of this bitset and another bitset by performing a bitwise "exclusive-or".
a bitset containing those bits of this bitset or the other bitset that are not contained in both bitsets.
Adds an element to this bitset.
Appends all elements of this bitset to a string builder using start, end, and separator strings.
Appends all elements of this bitset to a string builder using start, end,
and separator strings.
The written text begins with the string start
and ends with the string
end
. Inside, the string representations (w.r.t. the method toString
)
of all elements of this bitset are separated by the string sep
.
the starting string.
the separator string.
the ending string.
the string builder b
to which elements were appended.
Appends all elements of this bitset to a string builder.
Appends all elements of this bitset to a string builder.
The written text consists of the string representations (w.r.t. the method
toString
) of all elements of this bitset without any separator string.
the string builder to which elements are appended.
the string builder b
to which elements were appended.
Appends all elements of this bitset to a string builder using a separator string.
Appends all elements of this bitset to a string builder using a separator
string. The written text consists of the string representations (w.r.t.
the method toString
) of all elements of this bitset, separated by the
string sep
.
the string builder to which elements are appended.
the separator string.
the string builder b
to which elements were appended.
Aggregates the results of applying an operator to subsequent elements.
Aggregates the results of applying an operator to subsequent elements.
This is a more general form of fold
and reduce
. It has similar semantics, but does
not require the result to be a supertype of the element type. It traverses the elements in
different partitions sequentially, using seqop
to update the result, and then
applies combop
to results from different partitions. The implementation of this
operation may operate on an arbitrary number of collection partitions, so combop
may be invoked arbitrary number of times.
For example, one might want to process some elements and then produce a Set
. In this
case, seqop
would process an element and append it to the list, while combop
would concatenate two lists from different partitions together. The initial value
z
would be an empty set.
pc.aggregate(Set[Int]())(_ += process(_), _ ++ _)
Another example is calculating geometric mean from a collection of doubles (one would typically require big doubles for this).
the initial value for the accumulated result of the partition - this
will typically be the neutral element for the seqop
operator (e.g.
Nil
for list concatenation or 0
for summation)
an operator used to accumulate results within a partition
an associative operator used to combine results from different partitions
Composes two instances of Function1 in a new Function1, with this function applied first.
Composes two instances of Function1 in a new Function1, with this function applied first.
the result type of function g
a function R => A
a new function f
such that f(x) == g(apply(x))
Tests if some element is contained in this set.
Tests if some element is contained in this set.
This method is equivalent to contains
. It allows sets to be interpreted as predicates.
the element to test for membership.
true
if elem
is contained in this set, false
otherwise.
Cast the receiver object to be of type T0
.
Cast the receiver object to be of type T0
.
Note that the success of a cast at runtime is modulo Scala's erasure semantics.
Therefore the expression 1.asInstanceOf[String]
will throw a ClassCastException
at
runtime, while the expression List(1).asInstanceOf[List[String]]
will not.
In the latter example, because the type argument is erased as part of compilation it is
not possible to check whether the contents of the list are of the requested type.
the receiver object.
Method called from equality methods, so that user-defined subclasses can refuse to be equal to other collections of the same kind.
Method called from equality methods, so that user-defined subclasses can refuse to be equal to other collections of the same kind.
The object with which this bitset should be compared
true
, if this bitset can possibly equal that
, false
otherwise. The test
takes into consideration only the run-time types of objects but ignores their elements.
Removes all elements from the set.
Create a copy of the receiver object.
[use case] Builds a new collection by applying a partial function to all elements of this bitset on which the function is defined.
Builds a new collection by applying a partial function to all elements of this bitset on which the function is defined.
the element type of the returned collection.
the partial function which filters and maps the bitset.
a new collection of type That
resulting from applying the partial function
pf
to each element on which it is defined and collecting the results.
The order of the elements is preserved.
Builds a new collection by applying a partial function to all elements of this bitset on which the function is defined.
Builds a new collection by applying a partial function to all elements of this bitset on which the function is defined.
the element type of the returned collection.
the class of the returned collection. In the standard library configuration,
That
is always BitSet[B]
because an implicit of type CanBuildFrom[BitSet, B, BitSet]
is defined in object BitSet
.
the partial function which filters and maps the bitset.
an implicit value of class CanBuildFrom
which determines the
result class That
from the current representation type Repr
and the new element type B
. This is usually the canBuildFrom
value
defined in object BitSet
.
a new collection of type That
resulting from applying the partial function
pf
to each element on which it is defined and collecting the results.
The order of the elements is preserved.
Finds the first element of the bitset for which the given partial function is defined, and applies the partial function to it.
Finds the first element of the bitset for which the given partial function is defined, and applies the partial function to it.
the partial function
an option value containing pf applied to the first
value for which it is defined, or None
if none exists.
Seq("a", 1, 5L).collectFirst({ case x: Int => x*10 }) = Some(10)
The factory companion object that builds instances of class BitSet.
The factory companion object that builds instances of class BitSet.
(or its Iterable
superclass where class BitSet is not a Seq
.)
Composes two instances of Function1 in a new Function1, with this function applied last.
Composes two instances of Function1 in a new Function1, with this function applied last.
the type to which function g
can be applied
a function A => T1
a new function f
such that f(x) == apply(g(x))
Tests if some element is contained in this set.
Tests if some element is contained in this set.
the element to test for membership.
true
if elem
is contained in this set, false
otherwise.
[use case] Copies elements of this bitset to an array.
Copies elements of this bitset to an array.
Fills the given array xs
with at most len
elements of
this bitset, starting at position start
.
Copying will stop once either the end of the current bitset is reached,
or the end of the array is reached, or len
elements have been copied.
the array to fill.
the starting index.
the maximal number of elements to copy.
Copies elements of this bitset to an array.
Copies elements of this bitset to an array.
Fills the given array xs
with at most len
elements of
this bitset, starting at position start
.
Copying will stop once either the end of the current bitset is reached,
or the end of the array is reached, or len
elements have been copied.
the type of the elements of the array.
the array to fill.
the starting index.
the maximal number of elements to copy.
[use case] Copies values of this bitset to an array.
Copies values of this bitset to an array.
Fills the given array xs
with values of this bitset.
Copying will stop once either the end of the current bitset is reached,
or the end of the array is reached.
the array to fill.
Copies values of this bitset to an array.
Copies values of this bitset to an array.
Fills the given array xs
with values of this bitset.
Copying will stop once either the end of the current bitset is reached,
or the end of the array is reached.
the type of the elements of the array.
the array to fill.
[use case] Copies values of this bitset to an array.
Copies values of this bitset to an array.
Fills the given array xs
with values of this bitset, beginning at index start
.
Copying will stop once either the end of the current bitset is reached,
or the end of the array is reached.
the array to fill.
the starting index.
Copies values of this bitset to an array.
Copies values of this bitset to an array.
Fills the given array xs
with values of this bitset, beginning at index start
.
Copying will stop once either the end of the current bitset is reached,
or the end of the array is reached.
the type of the elements of the array.
the array to fill.
the starting index.
Copies all elements of this bitset to a buffer.
Copies all elements of this bitset to a buffer.
The buffer to which elements are copied.
Counts the number of elements in the bitset which satisfy a predicate.
Counts the number of elements in the bitset which satisfy a predicate.
the predicate used to test elements.
the number of elements satisfying the predicate p
.
Computes the difference of this set and another set.
Computes the difference of this set and another set.
the set of elements to exclude.
a set containing those elements of this
set that are not also contained in the given set that
.
Selects all elements except first n ones.
Selects all elements except first n ones.
the number of elements to drop from this bitset.
a bitset consisting of all elements of this bitset except the first n
ones, or else the
empty bitset, if this bitset has less than n
elements.
Selects all elements except last n ones.
Selects all elements except last n ones.
The number of elements to take
a bitset consisting of all elements of this bitset except the last n
ones, or else the
empty bitset, if this bitset has less than n
elements.
Drops longest prefix of elements that satisfy a predicate.
Drops longest prefix of elements that satisfy a predicate.
The predicate used to test elements.
the longest suffix of this bitset whose first element
does not satisfy the predicate p
.
The empty set of the same type as this set
The empty set of the same type as this set
an empty set of type This
.
Tests whether the argument (arg0
) is a reference to the receiver object (this
).
Tests whether the argument (arg0
) is a reference to the receiver object (this
).
The eq
method implements an equivalence relation on
non-null instances of AnyRef
, and has three additional properties:
x
and y
of type AnyRef
, multiple invocations of
x.eq(y)
consistently returns true
or consistently returns false
.x
of type AnyRef
, x.eq(null)
and null.eq(x)
returns false
.null.eq(null)
returns true
. When overriding the equals
or hashCode
methods, it is important to ensure that their behavior is
consistent with reference equality. Therefore, if two objects are references to each other (o1 eq o2
), they
should be equal to each other (o1 == o2
) and they should hash to the same value (o1.hashCode == o2.hashCode
).
true
if the argument is a reference to the receiver object; false
otherwise.
Compares this set with another object for equality.
Compares this set with another object for equality.
Note: This operation contains an unchecked cast: if that
is a set, it will assume with an unchecked cast
that it has the same element type as this set.
Any subsequent ClassCastException is treated as a false
result.
the other object
true
if that
is a set which contains the same elements
as this set.
Tests whether a predicate holds for some of the elements of this bitset.
Tests whether a predicate holds for some of the elements of this bitset.
the predicate used to test elements.
true
if the given predicate p
holds for some of the
elements of this bitset, otherwise false
.
Selects all elements of this bitset which satisfy a predicate.
Selects all elements of this bitset which satisfy a predicate.
the predicate used to test elements.
a new bitset consisting of all elements of this bitset that satisfy the given
predicate p
. The order of the elements is preserved.
Selects all elements of this bitset which do not satisfy a predicate.
Selects all elements of this bitset which do not satisfy a predicate.
the predicate used to test elements.
a new bitset consisting of all elements of this bitset that do not satisfy the given
predicate p
. The order of the elements is preserved.
Called by the garbage collector on the receiver object when there are no more references to the object.
Called by the garbage collector on the receiver object when there are no more references to the object.
The details of when and if the finalize
method is invoked, as
well as the interaction between finalize
and non-local returns
and exceptions, are all platform dependent.
Finds the first element of the bitset satisfying a predicate, if any.
Finds the first element of the bitset satisfying a predicate, if any.
the predicate used to test elements.
an option value containing the first element in the bitset
that satisfies p
, or None
if none exists.
[use case] Builds a new collection by applying a function to all elements of this bitset and concatenating the results.
Builds a new collection by applying a function to all elements of this bitset and concatenating the results.
the element type of the returned collection.
the function to apply to each element.
a new collection of type That
resulting from applying the given collection-valued function
f
to each element of this bitset and concatenating the results.
Builds a new collection by applying a function to all elements of this bitset and concatenating the results.
Builds a new collection by applying a function to all elements of this bitset and concatenating the results.
the element type of the returned collection.
the class of the returned collection. In the standard library configuration,
That
is always BitSet[B]
because an implicit of type CanBuildFrom[BitSet, B, BitSet]
is defined in object BitSet
.
the function to apply to each element.
an implicit value of class CanBuildFrom
which determines the
result class That
from the current representation type Repr
and the new element type B
. This is usually the canBuildFrom
value
defined in object BitSet
.
a new collection of type That
resulting from applying the given collection-valued function
f
to each element of this bitset and concatenating the results.
[use case] Converts this bitset of traversable collections into a bitset in which all element collections are concatenated.
Converts this bitset of traversable collections into a bitset in which all element collections are concatenated.
the type of the elements of each traversable collection.
a new bitset resulting from concatenating all element bitsets.
Converts this bitset of traversable collections into a bitset in which all element collections are concatenated.
Converts this bitset of traversable collections into a bitset in which all element collections are concatenated.
the type of the elements of each traversable collection.
an implicit conversion which asserts that the element
type of this bitset is a Traversable
.
a new bitset resulting from concatenating all element bitsets.
Folds the elements of this sequence using the specified associative binary operator.
Folds the elements of this sequence using the specified associative binary operator. The order in which the elements are reduced is unspecified and may be nondeterministic.
Note this method has a different signature than the foldLeft
and foldRight
methods of the trait Traversable
.
The result of folding may only be a supertype of this parallel collection's
type parameter T
.
a neutral element for the fold operation, it may be added to the result
an arbitrary number of times, not changing the result (e.g. Nil
for list concatenation,
0 for addition, or 1 for multiplication)
a binary operator that must be associative
the result of applying fold operator op
between all the elements and z
Applies a binary operator to a start value and all elements of this bitset, going left to right.
Applies a binary operator to a start value and all elements of this bitset, going left to right.
the result type of the binary operator.
the start value.
the binary operator.
the result of inserting op
between consecutive elements of this bitset,
going left to right with the start value z
on the left:
op(...op(z, x,,1,,), x,,2,,, ..., x,,n,,)
where x,,1,,, ..., x,,n,,
are the elements of this bitset.
Applies a binary operator to all elements of this bitset and a start value, going right to left.
Applies a binary operator to all elements of this bitset and a start value, going right to left.
the result type of the binary operator.
the start value.
the binary operator.
the result of inserting op
between consecutive elements of this bitset,
going right to left with the start value z
on the right:
op(x,,1,,, op(x,,2,,, ... op(x,,n,,, z)...))
where x,,1,,, ..., x,,n,,
are the elements of this bitset.
Tests whether a predicate holds for all elements of this bitset.
Tests whether a predicate holds for all elements of this bitset.
the predicate used to test elements.
true
if the given predicate p
holds for all elements
of this bitset, otherwise false
.
[use case] Applies a function f
to all elements of this bitset.
Applies a function f
to all elements of this bitset.
the function that is applied for its side-effect to every element.
The result of function f
is discarded.
Applies a function f
to all elements of this bitset.
Applies a function f
to all elements of this bitset.
Note: this method underlies the implementation of most other bulk operations. Subclasses should re-implement this method if a more efficient implementation exists.
the function that is applied for its side-effect to every element.
The result of function f
is discarded.
Creates a new set of this kind from an array of longs
Creates a new set of this kind from an array of longs
The generic builder that builds instances of BitSet at arbitrary element types.
The generic builder that builds instances of BitSet at arbitrary element types.
A representation that corresponds to the dynamic class of the receiver object.
A representation that corresponds to the dynamic class of the receiver object.
The nature of the representation is platform dependent.
a representation that corresponds to the dynamic class of the receiver object.
Partitions this bitset into a map of bitsets according to some discriminator function.
Partitions this bitset into a map of bitsets according to some discriminator function.
Note: this method is not re-implemented by views. This means when applied to a view it will always force the view and return a new bitset.
the type of keys returned by the discriminator function.
the discriminator function.
A map from keys to bitsets such that the following invariant holds:
(xs partition f)(k) = xs filter (x => f(x) == k)
That is, every key k
is bound to a bitset of those elements x
for which f(x)
equals k
.
Partitions elements in fixed size bitsets.
Partitions elements in fixed size bitsets.
the number of elements per group
An iterator producing bitsets of size size
, except the
last will be truncated if the elements don't divide evenly.
Iterator#grouped
Tests whether this bitset is known to have a finite size.
Tests whether this bitset is known to have a finite size.
All strict collections are known to have finite size. For a non-strict collection
such as Stream
, the predicate returns true
if all elements have been computed.
It returns false
if the stream is not yet evaluated to the end.
Note: many collection methods will not work on collections of infinite sizes.
true
if this collection is known to have finite size, false
otherwise.
The hashCode method for reference types.
The hashCode method for reference types. See hashCode in Any.
the hash code value for this object.
Selects the first element of this bitset.
Selects the first element of this bitset.
the first element of this bitset.
Optionally selects the first element.
Optionally selects the first element.
the first element of this bitset if it is nonempty, None
if it is empty.
Selects all elements except the last.
Selects all elements except the last.
a bitset consisting of all elements of this bitset except the last one.
Iterates over the inits of this bitset.
Iterates over the inits of this bitset. The first value will be this
bitset and the final one will be an empty bitset, with the intervening
values the results of successive applications of init
.
an iterator over all the inits of this bitset
List(1,2,3).inits = Iterator(List(1,2,3), List(1,2), List(1), Nil)
Computes the intersection between this set and another set.
Computes the intersection between this set and another set.
the set to intersect with.
a new set consisting of all elements that are both in this
set and in the given set that
.
Tests if this set is empty.
Tests if this set is empty.
true
if there is no element in the set, false
otherwise.
Test whether the dynamic type of the receiver object is T0
.
Test whether the dynamic type of the receiver object is T0
.
Note that the result of the test is modulo Scala's erasure semantics.
Therefore the expression 1.isInstanceOf[String]
will return false
, while the
expression List(1).isInstanceOf[List[String]]
will return true
.
In the latter example, because the type argument is erased as part of compilation it is
not possible to check whether the contents of the list are of the specified type.
true
if the receiver object is an instance of erasure of type T0
; false
otherwise.
Tests whether this bitset can be repeatedly traversed.
Tests whether this bitset can be repeatedly traversed.
true
Creates a new iterator over all elements contained in this iterable object.
Creates a new iterator over all elements contained in this iterable object.
the new iterator
Selects the last element.
Optionally selects the last element.
Optionally selects the last element.
the last element of this bitset$ if it is nonempty, None
if it is empty.
[use case] Builds a new collection by applying a function to all elements of this bitset.
Builds a new collection by applying a function to all elements of this bitset.
the element type of the returned collection.
the function to apply to each element.
a new collection of type That
resulting from applying the given function
f
to each element of this bitset and collecting the results.
Builds a new collection by applying a function to all elements of this bitset.
Builds a new collection by applying a function to all elements of this bitset.
the element type of the returned collection.
the class of the returned collection. In the standard library configuration,
That
is always BitSet[B]
because an implicit of type CanBuildFrom[BitSet, B, BitSet]
is defined in object BitSet
.
the function to apply to each element.
an implicit value of class CanBuildFrom
which determines the
result class That
from the current representation type Repr
and the new element type B
. This is usually the canBuildFrom
value
defined in object BitSet
.
a new collection of type That
resulting from applying the given function
f
to each element of this bitset and collecting the results.
"Set.map now returns a Set, so it will discard duplicate values."
Creates a new builder by applying a transformation function to the results of this builder.
Creates a new builder by applying a transformation function to the results of this builder.
the type of collection returned by f
.
the transformation function.
a new builder which is the same as the current builder except that a transformation function is applied to this builder's result.
[use case] Finds the largest element.
Finds the largest element.
the largest element of this bitset with respect to the ordering cmp
.
Finds the largest element.
Finds the largest element.
The type over which the ordering is defined.
An ordering to be used for comparing elements.
the largest element of this bitset with respect to the ordering cmp
.
[use case] Finds the smallest element.
Finds the smallest element.
the smallest element of this bitset with respect to the ordering cmp
.
Finds the smallest element.
Finds the smallest element.
The type over which the ordering is defined.
An ordering to be used for comparing elements.
the smallest element of this bitset with respect to the ordering cmp
.
Displays all elements of this bitset in a string.
Displays all elements of this bitset in a string.
a string representation of this bitset. In the resulting string
the string representations (w.r.t. the method toString
)
of all elements of this bitset follow each other without any
separator string.
Displays all elements of this bitset in a string using a separator string.
Displays all elements of this bitset in a string using a separator string.
the separator string.
a string representation of this bitset. In the resulting string
the string representations (w.r.t. the method toString
)
of all elements of this bitset are separated by the string sep
.
List(1, 2, 3).mkString("|") = "1|2|3"
Displays all elements of this bitset in a string using start, end, and separator strings.
Displays all elements of this bitset in a string using start, end, and separator strings.
the starting string.
the separator string.
the ending string.
a string representation of this bitset. The resulting string
begins with the string start
and ends with the string
end
. Inside, the string representations (w.r.t. the method
toString
) of all elements of this bitset are separated by
the string sep
.
List(1, 2, 3).mkString("(", "; ", ")") = "(1; 2; 3)"
Equivalent to !(this eq that)
.
Equivalent to !(this eq that)
.
true
if the argument is not a reference to the receiver object; false
otherwise.
A common implementation of newBuilder
for all mutable sets
in terms of empty
.
A common implementation of newBuilder
for all mutable sets
in terms of empty
. Overrides the implementation in collection.SetLike
for better efficiency.
Tests whether the bitset is not empty.
Tests whether the bitset is not empty.
true
if the bitset contains at least one element, false
otherwise.
Wakes up a single thread that is waiting on the receiver object's monitor.
Wakes up a single thread that is waiting on the receiver object's monitor.
Wakes up all threads that are waiting on the receiver object's monitor.
Wakes up all threads that are waiting on the receiver object's monitor.
The number of words (each with 64 bits) making up the set
The number of words (each with 64 bits) making up the set
Returns a parallel implementation of this collection.
Returns a parallel implementation of this collection.
For most collection types, this method creates a new parallel collection by copying
all the elements. For these collection, par
takes linear time. Mutable collections
in this category do not produce a mutable parallel collection that has the same
underlying dataset, so changes in one collection will not be reflected in the other one.
Specific collections (e.g. ParArray
or mutable.ParHashMap
) override this default
behaviour by creating a parallel collection which shares the same underlying dataset.
For these collections, par
takes constant or sublinear time.
All parallel collections return a reference to themselves.
a parallel implementation of this collection
The default par
implementation uses the combiner provided by this method
to create a new parallel collection.
The default par
implementation uses the combiner provided by this method
to create a new parallel collection.
a combiner for the parallel collection of type ParRepr
Partitions this bitset in two bitsets according to a predicate.
Partitions this bitset in two bitsets according to a predicate.
the predicate on which to partition.
a pair of bitsets: the first bitset consists of all elements that
satisfy the predicate p
and the second bitset consists of all elements
that don't. The relative order of the elements in the resulting bitsets
is the same as in the original bitset.
[use case] Multiplies up the elements of this collection.
Multiplies up the elements of this collection.
the product of all elements of this bitset with respect to the *
operator in num
.
Multiplies up the elements of this collection.
Multiplies up the elements of this collection.
the result type of the *
operator.
an implicit parameter defining a set of numeric operations
which includes the *
operator to be used in forming the product.
the product of all elements of this bitset with respect to the *
operator in num
.
Reduces the elements of this sequence using the specified associative binary operator.
Reduces the elements of this sequence using the specified associative binary operator.
The order in which operations are performed on elements is unspecified and may be nondeterministic.
Note this method has a different signature than the reduceLeft
and reduceRight
methods of the trait Traversable
.
The result of reducing may only be a supertype of this parallel collection's
type parameter T
.
A binary operator that must be associative.
The result of applying reduce operator op
between all the elements if the collection is nonempty.
Optionally applies a binary operator to all elements of this bitset, going left to right.
Optionally applies a binary operator to all elements of this bitset, going left to right.
the result type of the binary operator.
the binary operator.
an option value containing the result of reduceLeft(op)
is this bitset is nonempty,
None
otherwise.
Optionally reduces the elements of this sequence using the specified associative binary operator.
Optionally reduces the elements of this sequence using the specified associative binary operator.
The order in which operations are performed on elements is unspecified and may be nondeterministic.
Note this method has a different signature than the reduceLeftOption
and reduceRightOption
methods of the trait Traversable
.
The result of reducing may only be a supertype of this parallel collection's
type parameter T
.
A binary operator that must be associative.
An option value containing result of applying reduce operator op
between all
the elements if the collection is nonempty, and None
otherwise.
Applies a binary operator to all elements of this bitset, going right to left.
Applies a binary operator to all elements of this bitset, going right to left.
the result type of the binary operator.
the binary operator.
the result of inserting op
between consecutive elements of this bitset,
going right to left:
op(x,,1,,, op(x,,2,,, ..., op(x,,n-1,,, x,,n,,)...))
where x,,1,,, ..., x,,n,,
are the elements of this bitset.
Optionally applies a binary operator to all elements of this bitset, going right to left.
Optionally applies a binary operator to all elements of this bitset, going right to left.
the result type of the binary operator.
the binary operator.
an option value containing the result of reduceRight(op)
is this bitset is nonempty,
None
otherwise.
Removes an element from this set.
The collection of type bitset underlying this TraversableLike
object.
The collection of type bitset underlying this TraversableLike
object.
By default this is implemented as the TraversableLike
object itself,
but this can be overridden.
The result when this set is used as a builder
Removes all elements from the set for which do not satisfy a predicate.
Removes all elements from the set for which do not satisfy a predicate.
the predicate used to test elements. Only elements for
which p
returns true
are retained in the set; all others
are removed.
[use case] Checks if the other iterable collection contains the same elements in the same order as this bitset.
Checks if the other iterable collection contains the same elements in the same order as this bitset.
the collection to compare with.
true
, if both collections contain the same elements in the same order, false
otherwise.
Checks if the other iterable collection contains the same elements in the same order as this bitset.
Checks if the other iterable collection contains the same elements in the same order as this bitset.
the type of the elements of collection that
.
the collection to compare with.
true
, if both collections contain the same elements in the same order, false
otherwise.
Computes a prefix scan of the elements of the collection.
Computes a prefix scan of the elements of the collection.
Note: The neutral element z
may be applied more than once.
element type of the resulting collection
type of the resulting collection
neutral element for the operator op
the associative operator for the scan
combiner factory which provides a combiner
a new bitset containing the prefix scan of the elements in this bitset
Produces a collection containing cummulative results of applying the operator going left to right.
Produces a collection containing cummulative results of applying the operator going left to right.
the type of the elements in the resulting collection
the actual type of the resulting collection
the initial value
the binary operator applied to the intermediate result and the element
an implicit value of class CanBuildFrom
which determines the
result class That
from the current representation type Repr
and the new element type B
. This is usually the canBuildFrom
value
defined in object BitSet
.
collection with intermediate results
Produces a collection containing cummulative results of applying the operator going right to left.
Produces a collection containing cummulative results of applying the operator going right to left. The head of the collection is the last cummulative result.
Example:
List(1, 2, 3, 4).scanRight(0)(_ + _) == List(10, 9, 7, 4, 0)
the type of the elements in the resulting collection
the actual type of the resulting collection
the initial value
the binary operator applied to the intermediate result and the element
an implicit value of class CanBuildFrom
which determines the
result class That
from the current representation type Repr
and the new element type B
. This is usually the canBuildFrom
value
defined in object BitSet
.
collection with intermediate results
"This scanRight definition has changed in 2.9.\n" + "The previous behavior can be reproduced with scanRight.reverse."
A version of this collection with all of the operations implemented sequentially (i.
A version of this collection with all of the operations implemented sequentially (i.e. in a single-threaded manner).
This method returns a reference to this collection. In parallel collections, it is redefined to return a sequential implementation of this collection. In both cases, it has O(1) complexity.
a sequential view of the collection.
The size of this bitset.
The size of this bitset.
the number of elements in this bitset.
Gives a hint that one expects the result
of this builder
to have the same size as the given collection, plus some delta.
Gives a hint that one expects the result
of this builder
to have the same size as the given collection, plus some delta. This will
provide a hint only if the collection is known to have a cheap
size
method. Currently this is assumed to be the case if and only if
the collection is of type IndexedSeqLike
.
Some builder classes
will optimize their representation based on the hint. However,
builder implementations are still required to work correctly even if the hint is
wrong, i.e. a different number of elements is added.
the collection which serves as a hint for the result's size.
a correction to add to the coll.size
to produce the size hint.
Gives a hint how many elements are expected to be added
when the next result
is called.
Gives a hint how many elements are expected to be added
when the next result
is called. Some builder classes
will optimize their representation based on the hint. However,
builder implementations are still required to work correctly even if the hint is
wrong, i.e. a different number of elements is added.
the hint how many elements will be added.
Gives a hint how many elements are expected to be added
when the next result
is called, together with an upper bound
given by the size of some other collection.
Gives a hint how many elements are expected to be added
when the next result
is called, together with an upper bound
given by the size of some other collection. Some builder classes
will optimize their representation based on the hint. However,
builder implementations are still required to work correctly even if the hint is
wrong, i.e. a different number of elements is added.
the hint how many elements will be added.
the bounding collection. If it is an IndexedSeqLike, then sizes larger than collection's size are reduced.
Selects an interval of elements.
Selects an interval of elements. The returned collection is made up
of all elements x
which satisfy the invariant:
from <= indexOf(x) < until
the lowest index to include from this bitset.
the highest index to EXCLUDE from this bitset.
a bitset containing the elements greater than or equal to
index from
extending up to (but not including) index until
of this bitset.
Groups elements in fixed size blocks by passing a "sliding window" over them (as opposed to partitioning them, as is done in grouped.
Groups elements in fixed size blocks by passing a "sliding window" over them (as opposed to partitioning them, as is done in grouped.)
the number of elements per group
An iterator producing bitsets of size size
, except the
last and the only element will be truncated if there are
fewer elements than size.
Iterator#sliding
Splits this bitset into a prefix/suffix pair according to a predicate.
Splits this bitset into a prefix/suffix pair according to a predicate.
Note: c span p
is equivalent to (but possibly more efficient than)
(c takeWhile p, c dropWhile p)
, provided the evaluation of the
predicate p
does not cause any side-effects.
the test predicate
a pair consisting of the longest prefix of this bitset whose
elements all satisfy p
, and the rest of this bitset.
Splits this bitset into two at a given position.
Splits this bitset into two at a given position.
Note: c splitAt n
is equivalent to (but possibly more efficient than)
(c take n, c drop n)
.
the position at which to split.
a pair of bitsets consisting of the first n
elements of this bitset, and the other elements.
Defines the prefix of this object's toString
representation.
Defines the prefix of this object's toString
representation.
a string representation which starts the result of toString
applied to this set.
Unless overridden this is simply "Set"
.
Tests whether this bitset is a subset of another bitset.
Tests whether this bitset is a subset of another bitset.
true
if this bitset is a subset of other
, i.e. if
every bit of this set is also an element in other
.
Tests whether this set is a subset of another set.
Tests whether this set is a subset of another set.
the set to test.
true
if this set is a subset of that
, i.e. if
every element of this set is also an element of that
.
An iterator over all subsets of this set.
An iterator over all subsets of this set of the given size.
An iterator over all subsets of this set of the given size. If the requested size is impossible, an empty iterator is returned.
the size of the subsets.
the iterator.
[use case] Sums up the elements of this collection.
Sums up the elements of this collection.
the sum of all elements of this bitset with respect to the +
operator in num
.
Sums up the elements of this collection.
Sums up the elements of this collection.
the result type of the +
operator.
an implicit parameter defining a set of numeric operations
which includes the +
operator to be used in forming the sum.
the sum of all elements of this bitset with respect to the +
operator in num
.
Selects all elements except the first.
Selects all elements except the first.
a bitset consisting of all elements of this bitset except the first one.
Iterates over the tails of this bitset.
Iterates over the tails of this bitset. The first value will be this
bitset and the final one will be an empty bitset, with the intervening
values the results of successive applications of tail
.
an iterator over all the tails of this bitset
List(1,2,3).tails = Iterator(List(1,2,3), List(2,3), List(3), Nil)
Selects first n elements.
Selects first n elements.
Tt number of elements to take from this bitset.
a bitset consisting only of the first n
elements of this bitset,
or else the whole bitset, if it has less than n
elements.
Selects last n elements.
Selects last n elements.
the number of elements to take
a bitset consisting only of the last n
elements of this bitset, or else the
whole bitset, if it has less than n
elements.
Takes longest prefix of elements that satisfy a predicate.
Takes longest prefix of elements that satisfy a predicate.
The predicate used to test elements.
the longest prefix of this bitset whose elements all satisfy
the predicate p
.
The underlying collection seen as an instance of BitSet
.
The underlying collection seen as an instance of BitSet
.
By default this is implemented as the current collection object itself,
but this can be overridden.
[use case] Converts this bitset to an array.
Converts this bitset to an array.
an array containing all elements of this bitset.
Converts this bitset to an array.
Converts this bitset to an array.
the type of the elements of the array. A ClassManifest
for
this type must be available.
an array containing all elements of this bitset.
Converts this bitset to a mutable buffer.
Converts this bitset to a mutable buffer.
a buffer containing all elements of this bitset.
A conversion from collections of type Repr
to BitSet
objects.
A conversion from collections of type Repr
to BitSet
objects.
By default this is implemented as just a cast, but this can be overridden.
Wraps this bitset as an immutable bitset backed by the array of bits of this bitset.
Wraps this bitset as an immutable bitset backed by the array of bits of this bitset.
an immutable set containing all the elements of this set.
Converts this bitset to an indexed sequence.
Converts this bitset to an indexed sequence.
an indexed sequence containing all elements of this bitset.
Converts this bitset to an iterable collection.
Converts this bitset to an iterable collection. Note that
the choice of target Iterable
is lazy in this default implementation
as this TraversableOnce
may be lazy and unevaluated (i.e. it may
be an iterator which is only traversable once).
an Iterable
containing all elements of this bitset.
Returns an Iterator over the elements in this bitset.
Returns an Iterator over the elements in this bitset. Will return the same Iterator if this instance is already an Iterator.
an Iterator containing all elements of this bitset.
Converts this bitset to a list.
Converts this bitset to a list.
a list containing all elements of this bitset.
[use case] Converts this bitset to a map.
Converts this bitset to a map. This method is unavailable unless the elements are members of Tuple2, each ((T, U)) becoming a key-value pair in the map. Duplicate keys will be overwritten by later keys: if this is an unordered collection, which key is in the resulting map is undefined.
a map containing all elements of this bitset.
Converts this bitset to a map.
Converts this bitset to a map. This method is unavailable unless the elements are members of Tuple2, each ((T, U)) becoming a key-value pair in the map. Duplicate keys will be overwritten by later keys: if this is an unordered collection, which key is in the resulting map is undefined.
a map containing all elements of this bitset.
Overridden for efficiency.
Overridden for efficiency.
a sequence containing all elements of this bitset.
Converts this bitset to a set.
Converts this bitset to a set.
a set containing all elements of this bitset.
Converts this bitset to a stream.
Converts this bitset to a stream.
a stream containing all elements of this bitset.
Creates a String representation of this object.
Creates a String representation of this object. The default representation is platform dependent. On the java platform it is the concatenation of the class name, "@", and the object's hashcode in hexadecimal.
a String representation of the object.
Converts this bitset to an unspecified Traversable.
Converts this bitset to an unspecified Traversable. Will return the same collection if this instance is already Traversable.
a Traversable containing all elements of this bitset.
Transposes this bitset of traversable collections into a bitset of bitsets.
Transposes this bitset of traversable collections into a bitset of bitsets.
the type of the elements of each traversable collection.
an implicit conversion which asserts that the
element type of this bitset is a Traversable
.
a two-dimensional bitset of bitsets which has as nth row the nth column of this bitset.
Computes the union between of set and another set.
Computes the union between of set and another set.
the set to form the union with.
a new set consisting of all elements that are in this
set or in the given set that
.
Converts this bitset of pairs into two collections of the first and second half of each pair.
Converts this bitset of pairs into two collections of the first and second half of each pair.
an implicit conversion which asserts that the element type of this bitset is a pair.
a pair bitsets, containing the first, respectively second half of each element pair of this bitset.
Converts this bitset of triples into three collections of the first, second, and third element of each triple.
Converts this bitset of triples into three collections of the first, second, and third element of each triple.
a triple bitsets, containing the first, second, respectively third member of each element triple of this bitset.
Updates the presence of a single element in this set.
Updates the presence of a single element in this set.
This method allows one to add or remove an element elem
from this set depending on the value of parameter included
.
Typically, one would use the following syntax:
set(elem) = true // adds element set(elem) = false // removes element
the element to be added or removed
a flag indicating whether element should be included or excluded.
Creates a non-strict view of a slice of this bitset.
Creates a non-strict view of a slice of this bitset.
Note: the difference between view
and slice
is that view
produces
a view of the current bitset, whereas slice
produces a new bitset.
Note: view(from, to)
is equivalent to view.slice(from, to)
the index of the first element of the view
the index of the element following the view
a non-strict view of a slice of this bitset, starting at index from
and extending up to (but not including) index until
.
Creates a non-strict view of this bitset.
Creates a non-strict view of this bitset.
a non-strict view of this bitset.
Creates a non-strict filter of this bitset.
Creates a non-strict filter of this bitset.
Note: the difference between c filter p
and c withFilter p
is that
the former creates a new collection, whereas the latter only
restricts the domain of subsequent map
, flatMap
, foreach
,
and withFilter
operations.
the predicate used to test elements.
an object of class WithFilter
, which supports
map
, flatMap
, foreach
, and withFilter
operations.
All these operations apply to those elements of this bitset which
satisfy the predicate p
.
The words at index idx', or 0L if outside the range of the set
'''Note:''' requires
idx >= 0
The words at index idx', or 0L if outside the range of the set
'''Note:''' requires
idx >= 0
[use case] Returns a bitset formed from this bitset and another iterable collection by combining corresponding elements in pairs.
Returns a bitset formed from this bitset and another iterable collection by combining corresponding elements in pairs. If one of the two collections is longer than the other, its remaining elements are ignored.
the type of the second half of the returned pairs
The iterable providing the second half of each result pair
a new collection of type That
containing pairs consisting of
corresponding elements of this bitset and that
. The length
of the returned collection is the minimum of the lengths of this bitset and that
.
Returns a bitset formed from this bitset and another iterable collection by combining corresponding elements in pairs.
Returns a bitset formed from this bitset and another iterable collection by combining corresponding elements in pairs. If one of the two collections is longer than the other, its remaining elements are ignored.
the type of the first half of the returned pairs (this is always a supertype
of the collection's element type A
).
the type of the second half of the returned pairs
the class of the returned collection. Where possible, That
is
the same class as the current collection class Repr
, but this
depends on the element type (A1, B)
being admissible for that class,
which means that an implicit instance of type CanBuildFrom[Repr, (A1, B), That]
.
is found.
The iterable providing the second half of each result pair
an implicit value of class CanBuildFrom
which determines the
result class That
from the current representation type Repr
and the new element type (A1, B)
.
a new collection of type That
containing pairs consisting of
corresponding elements of this bitset and that
. The length
of the returned collection is the minimum of the lengths of this bitset and that
.
[use case] Returns a bitset formed from this bitset and another iterable collection by combining corresponding elements in pairs.
Returns a bitset formed from this bitset and another iterable collection by combining corresponding elements in pairs. If one of the two collections is shorter than the other, placeholder elements are used to extend the shorter collection to the length of the longer.
the iterable providing the second half of each result pair
the element to be used to fill up the result if this bitset is shorter than that
.
the element to be used to fill up the result if that
is shorter than this bitset.
a new collection of type That
containing pairs consisting of
corresponding elements of this bitset and that
. The length
of the returned collection is the maximum of the lengths of this bitset and that
.
If this bitset is shorter than that
, thisElem
values are used to pad the result.
If that
is shorter than this bitset, thatElem
values are used to pad the result.
Returns a bitset formed from this bitset and another iterable collection by combining corresponding elements in pairs.
Returns a bitset formed from this bitset and another iterable collection by combining corresponding elements in pairs. If one of the two collections is shorter than the other, placeholder elements are used to extend the shorter collection to the length of the longer.
the iterable providing the second half of each result pair
the element to be used to fill up the result if this bitset is shorter than that
.
the element to be used to fill up the result if that
is shorter than this bitset.
a new collection of type That
containing pairs consisting of
corresponding elements of this bitset and that
. The length
of the returned collection is the maximum of the lengths of this bitset and that
.
If this bitset is shorter than that
, thisElem
values are used to pad the result.
If that
is shorter than this bitset, thatElem
values are used to pad the result.
[use case] Zips this bitset with its indices.
Zips this bitset with its indices.
A new collection of type That
containing pairs consisting of all elements of this
bitset paired with their index. Indices start at 0
.
Zips this bitset with its indices.
Zips this bitset with its indices.
the type of the first half of the returned pairs (this is always a supertype
of the collection's element type A
).
the class of the returned collection. Where possible, That
is
the same class as the current collection class Repr
, but this
depends on the element type (A1, Int)
being admissible for that class,
which means that an implicit instance of type CanBuildFrom[Repr, (A1, Int), That]
.
is found.
A new collection of type That
containing pairs consisting of all elements of this
bitset paired with their index. Indices start at 0
.
Computes the union between this bitset and another bitset by performing a bitwise "or".
Computes the union between this bitset and another bitset by performing a bitwise "or".
the bitset to form the union with.
a new bitset consisting of all bits that are in this
bitset or in the given bitset other
.
Computes the union between this set and another set.
Computes the union between this set and another set.
Note: Same as union
.
the set to form the union with.
a new set consisting of all elements that are in this
set or in the given set that
.
This method is an alias for intersect
.
This method is an alias for intersect
.
It computes an intersection with set that
.
It removes all the elements that are not present in that
.
the set to intersect with
use & instead
use iterator' instead
use head' instead
None
if iterable is empty.
None
if iterable is empty.
use headOption' instead
returns a projection that can be used to call non-strict filter
,
map
, and flatMap
methods that build projections
of the collection.
returns a projection that can be used to call non-strict filter
,
map
, and flatMap
methods that build projections
of the collection.
use view' instead
A class for mutable bitsets.
Bitsets are sets of non-negative integers which are represented as variable-size arrays of bits packed into 64-bit words. The memory footprint of a bitset is determined by the largest number stored in it.