breeze.optimize

StochasticAveragedGradient

class StochasticAveragedGradient[T] extends FirstOrderMinimizer[T, BatchDiffFunction[T]]

Linear Supertypes
FirstOrderMinimizer[T, BatchDiffFunction[T]], SerializableLogging, Serializable, Serializable, Minimizer[T, BatchDiffFunction[T]], AnyRef, Any
Ordering
  1. Alphabetic
  2. By inheritance
Inherited
  1. StochasticAveragedGradient
  2. FirstOrderMinimizer
  3. SerializableLogging
  4. Serializable
  5. Serializable
  6. Minimizer
  7. AnyRef
  8. Any
  1. Hide All
  2. Show all
Learn more about member selection
Visibility
  1. Public
  2. All

Instance Constructors

  1. new StochasticAveragedGradient(maxIter: Int = -1, initialStepSize: Double = 0.25, tuneStepFrequency: Int = 10, l2Regularization: Double = 0.0)(implicit vs: MutableInnerProductModule[T, Double])

Type Members

  1. case class History(stepSize: Double, range: IndexedSeq[Int], currentSum: T, previousGradients: IndexedSeq[T], nextPos: Int) extends Product with Serializable

    Any history the derived minimization function needs to do its updates.

  2. case class State(x: T, value: Double, grad: T, adjustedValue: Double, adjustedGradient: T, iter: Int, initialAdjVal: Double, history: History, fVals: IndexedSeq[Double] = ..., numImprovementFailures: Int = 0, searchFailed: Boolean = false) extends Product with Serializable

    Tracks the information about the optimizer, including the current point, its value, gradient, and then any history.

Value Members

  1. final def !=(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  2. final def !=(arg0: Any): Boolean

    Definition Classes
    Any
  3. final def ##(): Int

    Definition Classes
    AnyRef → Any
  4. final def ==(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  5. final def ==(arg0: Any): Boolean

    Definition Classes
    Any
  6. def adjust(newX: T, newGrad: T, newVal: Double): (Double, T)

    Attributes
    protected
    Definition Classes
    StochasticAveragedGradientFirstOrderMinimizer
  7. def adjustFunction(f: BatchDiffFunction[T]): BatchDiffFunction[T]

    Attributes
    protected
    Definition Classes
    FirstOrderMinimizer
  8. final def asInstanceOf[T0]: T0

    Definition Classes
    Any
  9. def calculateObjective(f: BatchDiffFunction[T], x: T, history: History): (Double, T)

    Attributes
    protected
    Definition Classes
    StochasticAveragedGradientFirstOrderMinimizer
  10. def chooseDescentDirection(state: State, f: BatchDiffFunction[T]): T

    Attributes
    protected
    Definition Classes
    StochasticAveragedGradientFirstOrderMinimizer
  11. def clone(): AnyRef

    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  12. def determineStepSize(state: State, f: BatchDiffFunction[T], direction: T): Double

    Attributes
    protected
    Definition Classes
    StochasticAveragedGradientFirstOrderMinimizer
  13. final def eq(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  14. def equals(arg0: Any): Boolean

    Definition Classes
    AnyRef → Any
  15. def finalize(): Unit

    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  16. final def getClass(): Class[_]

    Definition Classes
    AnyRef → Any
  17. def hashCode(): Int

    Definition Classes
    AnyRef → Any
  18. def initialHistory(f: BatchDiffFunction[T], init: T): History

    Attributes
    protected
    Definition Classes
    StochasticAveragedGradientFirstOrderMinimizer
  19. def initialState(f: BatchDiffFunction[T], init: T): State

    Attributes
    protected
    Definition Classes
    FirstOrderMinimizer
  20. final def isInstanceOf[T0]: Boolean

    Definition Classes
    Any
  21. def iterations(f: BatchDiffFunction[T], init: T): Iterator[State]

    Definition Classes
    FirstOrderMinimizer
  22. def logger: LazyLogger

    Attributes
    protected
    Definition Classes
    SerializableLogging
  23. val minImprovementWindow: Int

    Definition Classes
    FirstOrderMinimizer
  24. def minimize(f: BatchDiffFunction[T], init: T): T

    Definition Classes
    FirstOrderMinimizerMinimizer
  25. def minimizeAndReturnState(f: BatchDiffFunction[T], init: T): State

    Definition Classes
    FirstOrderMinimizer
  26. final def ne(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  27. final def notify(): Unit

    Definition Classes
    AnyRef
  28. final def notifyAll(): Unit

    Definition Classes
    AnyRef
  29. val numberOfImprovementFailures: Int

    Definition Classes
    FirstOrderMinimizer
  30. final def synchronized[T0](arg0: ⇒ T0): T0

    Definition Classes
    AnyRef
  31. def takeStep(state: State, dir: T, stepSize: Double): T

    Attributes
    protected
    Definition Classes
    StochasticAveragedGradientFirstOrderMinimizer
  32. def toString(): String

    Definition Classes
    AnyRef → Any
  33. def updateFValWindow(oldState: State, newAdjVal: Double): IndexedSeq[Double]

    Attributes
    protected
    Definition Classes
    FirstOrderMinimizer
  34. def updateHistory(newX: T, newGrad: T, newVal: Double, f: BatchDiffFunction[T], oldState: State): History

    Attributes
    protected
    Definition Classes
    StochasticAveragedGradientFirstOrderMinimizer
  35. final def wait(): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  36. final def wait(arg0: Long, arg1: Int): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  37. final def wait(arg0: Long): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )

Inherited from FirstOrderMinimizer[T, BatchDiffFunction[T]]

Inherited from SerializableLogging

Inherited from Serializable

Inherited from Serializable

Inherited from Minimizer[T, BatchDiffFunction[T]]

Inherited from AnyRef

Inherited from Any

Ungrouped