Trait

scalaz.MonadPlus

MonadPlusLaw

Related Doc: package MonadPlus

Permalink

trait MonadPlusLaw extends EmptyLaw with MonadLaw

Source
MonadPlus.scala
Linear Supertypes
Known Subclasses
Ordering
  1. Alphabetic
  2. By Inheritance
Inherited
  1. MonadPlusLaw
  2. MonadLaw
  3. BindLaw
  4. ApplicativeLaw
  5. ApplyLaw
  6. FunctorLaw
  7. InvariantFunctorLaw
  8. EmptyLaw
  9. PlusLaw
  10. AnyRef
  11. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. All

Value Members

  1. final def !=(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  2. final def ##(): Int

    Permalink
    Definition Classes
    AnyRef → Any
  3. final def ==(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  4. def apLikeDerived[A, B](fa: F[A], f: F[(A) ⇒ B])(implicit FB: Equal[F[B]]): Boolean

    Permalink

    ap is consistent with bind.

    ap is consistent with bind.

    Definition Classes
    BindLaw
  5. final def asInstanceOf[T0]: T0

    Permalink
    Definition Classes
    Any
  6. def associative[A](f1: F[A], f2: F[A], f3: F[A])(implicit FA: Equal[F[A]]): Boolean

    Permalink
    Definition Classes
    PlusLaw
  7. def associativeBind[A, B, C](fa: F[A], f: (A) ⇒ F[B], g: (B) ⇒ F[C])(implicit FC: Equal[F[C]]): Boolean

    Permalink

    As with semigroups, monadic effects only change when their order is changed, not when the order in which they're combined changes.

    As with semigroups, monadic effects only change when their order is changed, not when the order in which they're combined changes.

    Definition Classes
    BindLaw
  8. def clone(): AnyRef

    Permalink
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  9. def composite[A, B, C](fa: F[A], f1: (A) ⇒ B, f2: (B) ⇒ C)(implicit FC: Equal[F[C]]): Boolean

    Permalink

    A series of maps may be freely rewritten as a single map on a composed function.

    A series of maps may be freely rewritten as a single map on a composed function.

    Definition Classes
    FunctorLaw
  10. def composition[A, B, C](fbc: F[(B) ⇒ C], fab: F[(A) ⇒ B], fa: F[A])(implicit FC: Equal[F[C]]): Boolean

    Permalink

    Lifted functions can be fused.

    Lifted functions can be fused.

    Definition Classes
    ApplyLaw
  11. def emptyMap[A](f1: (A) ⇒ A)(implicit FA: Equal[F[A]]): Boolean

    Permalink

    empty[A] is a polymorphic value over A.

  12. final def eq(arg0: AnyRef): Boolean

    Permalink
    Definition Classes
    AnyRef
  13. def equals(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  14. def finalize(): Unit

    Permalink
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  15. final def getClass(): Class[_]

    Permalink
    Definition Classes
    AnyRef → Any
  16. def hashCode(): Int

    Permalink
    Definition Classes
    AnyRef → Any
  17. def homomorphism[A, B](ab: (A) ⇒ B, a: A)(implicit FB: Equal[F[B]]): Boolean

    Permalink

    point distributes over function applications.

    point distributes over function applications.

    Definition Classes
    ApplicativeLaw
  18. def identity[A](fa: F[A])(implicit FA: Equal[F[A]]): Boolean

    Permalink

    The identity function, lifted, is a no-op.

    The identity function, lifted, is a no-op.

    Definition Classes
    FunctorLaw
  19. def identityAp[A](fa: F[A])(implicit FA: Equal[F[A]]): Boolean

    Permalink

    point(identity) is a no-op.

    point(identity) is a no-op.

    Definition Classes
    ApplicativeLaw
  20. def interchange[A, B](f: F[(A) ⇒ B], a: A)(implicit FB: Equal[F[B]]): Boolean

    Permalink

    point is a left and right identity, F-wise.

    point is a left and right identity, F-wise.

    Definition Classes
    ApplicativeLaw
  21. def invariantComposite[A, B, C](fa: F[A], f1: (A) ⇒ B, g1: (B) ⇒ A, f2: (B) ⇒ C, g2: (C) ⇒ B)(implicit FC: Equal[F[C]]): Boolean

    Permalink
    Definition Classes
    InvariantFunctorLaw
  22. def invariantIdentity[A](fa: F[A])(implicit FA: Equal[F[A]]): Boolean

    Permalink
    Definition Classes
    InvariantFunctorLaw
  23. final def isInstanceOf[T0]: Boolean

    Permalink
    Definition Classes
    Any
  24. def leftIdentity[A, B](a: A, f: (A) ⇒ F[B])(implicit FB: Equal[F[B]]): Boolean

    Permalink

    Lifted f applied to pure a is just f(a).

    Lifted f applied to pure a is just f(a).

    Definition Classes
    MonadLaw
  25. def leftPlusIdentity[A](f1: F[A])(implicit FA: Equal[F[A]]): Boolean

    Permalink
    Definition Classes
    EmptyLaw
  26. def leftZero[A](f: (A) ⇒ F[A])(implicit FA: Equal[F[A]]): Boolean

    Permalink

    empty short-circuits its right.

  27. def mapLikeDerived[A, B](f: (A) ⇒ B, fa: F[A])(implicit FB: Equal[F[B]]): Boolean

    Permalink

    map is like the one derived from point and ap.

    map is like the one derived from point and ap.

    Definition Classes
    ApplicativeLaw
  28. final def ne(arg0: AnyRef): Boolean

    Permalink
    Definition Classes
    AnyRef
  29. final def notify(): Unit

    Permalink
    Definition Classes
    AnyRef
  30. final def notifyAll(): Unit

    Permalink
    Definition Classes
    AnyRef
  31. def rightIdentity[A](a: F[A])(implicit FA: Equal[F[A]]): Boolean

    Permalink

    Lifted point is a no-op.

    Lifted point is a no-op.

    Definition Classes
    MonadLaw
  32. def rightPlusIdentity[A](f1: F[A])(implicit FA: Equal[F[A]]): Boolean

    Permalink
    Definition Classes
    EmptyLaw
  33. final def synchronized[T0](arg0: ⇒ T0): T0

    Permalink
    Definition Classes
    AnyRef
  34. def toString(): String

    Permalink
    Definition Classes
    AnyRef → Any
  35. final def wait(): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  36. final def wait(arg0: Long, arg1: Int): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  37. final def wait(arg0: Long): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )

Inherited from MonadPlus.MonadLaw

Inherited from MonadPlus.BindLaw

Inherited from MonadPlus.ApplicativeLaw

Inherited from MonadPlus.ApplyLaw

Inherited from MonadPlus.FunctorLaw

Inherited from MonadPlus.EmptyLaw

Inherited from MonadPlus.PlusLaw

Inherited from AnyRef

Inherited from Any

Ungrouped