Trait/Object

scalaz

Distributive

Related Docs: object Distributive | package scalaz

Permalink

trait Distributive[F[_]] extends Functor[F]

Dual of scalaz.Traverse. To transform F[G[B]] to G[F[B]], you may use Traverse[F] and Applicative[G], but alternatively Functor[F] and Distributive[G], which permits greater sharing and nonstrictness.

Self Type
Distributive[F]
Source
Distributive.scala
Linear Supertypes
Ordering
  1. Alphabetic
  2. By Inheritance
Inherited
  1. Distributive
  2. Functor
  3. InvariantFunctor
  4. AnyRef
  5. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. All

Type Members

  1. class Distribution[G[_]] extends AnyRef

    Permalink
  2. trait FunctorLaw extends InvariantFunctorLaw

    Permalink
    Definition Classes
    Functor
  3. trait InvariantFunctorLaw extends AnyRef

    Permalink
    Definition Classes
    InvariantFunctor

Abstract Value Members

  1. abstract def distributeImpl[G[_], A, B](fa: G[A])(f: (A) ⇒ F[B])(implicit arg0: Functor[G]): F[G[B]]

    Permalink
  2. abstract def map[A, B](fa: F[A])(f: (A) ⇒ B): F[B]

    Permalink

    Lift f into F and apply to F[A].

    Lift f into F and apply to F[A].

    Definition Classes
    Functor

Concrete Value Members

  1. final def !=(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  2. final def ##(): Int

    Permalink
    Definition Classes
    AnyRef → Any
  3. final def ==(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  4. def apply[A, B](fa: F[A])(f: (A) ⇒ B): F[B]

    Permalink

    Alias for map.

    Alias for map.

    Definition Classes
    Functor
  5. final def asInstanceOf[T0]: T0

    Permalink
    Definition Classes
    Any
  6. def bicompose[G[_, _]](implicit arg0: Bifunctor[G]): Bifunctor[[α, β]F[G[α, β]]]

    Permalink

    The composition of Functor F and Bifunctor G, [x, y]F[G[x, y]], is a Bifunctor

    The composition of Functor F and Bifunctor G, [x, y]F[G[x, y]], is a Bifunctor

    Definition Classes
    Functor
  7. def clone(): AnyRef

    Permalink
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  8. def compose[G[_]](implicit G0: Distributive[G]): Distributive[[α]F[G[α]]]

    Permalink

    The composition of Distributives F and G, [x]F[G[x]], is a Distributive

  9. def compose[G[_]](implicit G0: Functor[G]): Functor[[α]F[G[α]]]

    Permalink

    The composition of Functors F and G, [x]F[G[x]], is a Functor

    The composition of Functors F and G, [x]F[G[x]], is a Functor

    Definition Classes
    Functor
  10. def cosequence[G[_], A](fa: G[F[A]])(implicit arg0: Functor[G]): F[G[A]]

    Permalink
  11. def counzip[A, B](a: \/[F[A], F[B]]): F[\/[A, B]]

    Permalink
    Definition Classes
    Functor
  12. def distribute[G[_], A, B](fa: G[A])(f: (A) ⇒ F[B])(implicit arg0: Functor[G]): F[G[B]]

    Permalink
  13. def distribution[G[_]](implicit arg0: Functor[G]): Distribution[G]

    Permalink
  14. final def eq(arg0: AnyRef): Boolean

    Permalink
    Definition Classes
    AnyRef
  15. def equals(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  16. def finalize(): Unit

    Permalink
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  17. def fpair[A](fa: F[A]): F[(A, A)]

    Permalink

    Twin all As in fa.

    Twin all As in fa.

    Definition Classes
    Functor
  18. def fproduct[A, B](fa: F[A])(f: (A) ⇒ B): F[(A, B)]

    Permalink

    Pair all As in fa with the result of function application.

    Pair all As in fa with the result of function application.

    Definition Classes
    Functor
  19. def functorLaw: FunctorLaw

    Permalink
    Definition Classes
    Functor
  20. val functorSyntax: FunctorSyntax[F]

    Permalink
    Definition Classes
    Functor
  21. final def getClass(): Class[_]

    Permalink
    Definition Classes
    AnyRef → Any
  22. def hashCode(): Int

    Permalink
    Definition Classes
    AnyRef → Any
  23. def icompose[G[_]](implicit G0: Contravariant[G]): Contravariant[[α]F[G[α]]]

    Permalink

    The composition of Functor F and Contravariant G, [x]F[G[x]], is contravariant.

    The composition of Functor F and Contravariant G, [x]F[G[x]], is contravariant.

    Definition Classes
    Functor
  24. def invariantFunctorLaw: InvariantFunctorLaw

    Permalink
    Definition Classes
    InvariantFunctor
  25. val invariantFunctorSyntax: InvariantFunctorSyntax[F]

    Permalink
    Definition Classes
    InvariantFunctor
  26. final def isInstanceOf[T0]: Boolean

    Permalink
    Definition Classes
    Any
  27. def lift[A, B](f: (A) ⇒ B): (F[A]) ⇒ F[B]

    Permalink

    Lift f into F.

    Lift f into F.

    Definition Classes
    Functor
  28. def mapply[A, B](a: A)(f: F[(A) ⇒ B]): F[B]

    Permalink

    Lift apply(a), and apply the result to f.

    Lift apply(a), and apply the result to f.

    Definition Classes
    Functor
  29. final def ne(arg0: AnyRef): Boolean

    Permalink
    Definition Classes
    AnyRef
  30. final def notify(): Unit

    Permalink
    Definition Classes
    AnyRef
  31. final def notifyAll(): Unit

    Permalink
    Definition Classes
    AnyRef
  32. def product[G[_]](implicit G0: Distributive[G]): Distributive[[α](F[α], G[α])]

    Permalink

    The product of Distributives F and G, [x](F[x], G[x]]), is a Distributive

  33. def product[G[_]](implicit G0: Functor[G]): Functor[[α](F[α], G[α])]

    Permalink

    The product of Functors F and G, [x](F[x], G[x]]), is a Functor

    The product of Functors F and G, [x](F[x], G[x]]), is a Functor

    Definition Classes
    Functor
  34. def strengthL[A, B](a: A, f: F[B]): F[(A, B)]

    Permalink

    Inject a to the left of Bs in f.

    Inject a to the left of Bs in f.

    Definition Classes
    Functor
  35. def strengthR[A, B](f: F[A], b: B): F[(A, B)]

    Permalink

    Inject b to the right of As in f.

    Inject b to the right of As in f.

    Definition Classes
    Functor
  36. final def synchronized[T0](arg0: ⇒ T0): T0

    Permalink
    Definition Classes
    AnyRef
  37. def toString(): String

    Permalink
    Definition Classes
    AnyRef → Any
  38. def void[A](fa: F[A]): F[Unit]

    Permalink

    Empty fa of meaningful pure values, preserving its structure.

    Empty fa of meaningful pure values, preserving its structure.

    Definition Classes
    Functor
  39. final def wait(): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  40. final def wait(arg0: Long, arg1: Int): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  41. final def wait(arg0: Long): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  42. def widen[A, B](fa: F[A])(implicit ev: <~<[A, B]): F[B]

    Permalink

    Functors are covariant by nature, so we can treat an F[A] as an F[B] if A is a subtype of B.

    Functors are covariant by nature, so we can treat an F[A] as an F[B] if A is a subtype of B.

    Definition Classes
    Functor
  43. def xmap[A, B](fa: F[A], f: (A) ⇒ B, g: (B) ⇒ A): F[B]

    Permalink

    Converts ma to a value of type F[B] using the provided functions f and g.

    Converts ma to a value of type F[B] using the provided functions f and g.

    Definition Classes
    FunctorInvariantFunctor
  44. def xmapb[A, B](ma: F[A])(b: Bijection[A, B]): F[B]

    Permalink

    Converts ma to a value of type F[B] using the provided bijection.

    Converts ma to a value of type F[B] using the provided bijection.

    Definition Classes
    InvariantFunctor
  45. def xmapi[A, B](ma: F[A])(iso: Isomorphism.<=>[A, B]): F[B]

    Permalink

    Converts ma to a value of type F[B] using the provided isomorphism.

    Converts ma to a value of type F[B] using the provided isomorphism.

    Definition Classes
    InvariantFunctor

Inherited from Functor[F]

Inherited from InvariantFunctor[F]

Inherited from AnyRef

Inherited from Any

Ungrouped