All Classes Interface Summary Class Summary Enum Summary Exception Summary Annotation Types Summary
Class |
Description |
Abort |
Raise a exception to abort the process when called.
|
Abort.Inputs |
|
Abort.Options |
Optional attributes for Abort
|
Abs<T extends TNumber> |
Computes the absolute value of a tensor.
|
Abs.Inputs<T extends TNumber> |
|
AccumulateN<T extends TType> |
Returns the element-wise sum of a list of tensors.
|
AccumulateN.Inputs<T extends TType> |
|
AccumulatorApplyGradient |
Applies a gradient to a given accumulator.
|
AccumulatorApplyGradient.Inputs |
|
AccumulatorNumAccumulated |
Returns the number of gradients aggregated in the given accumulators.
|
AccumulatorNumAccumulated.Inputs |
|
AccumulatorSetGlobalStep |
Updates the accumulator with a new value for global_step.
|
AccumulatorSetGlobalStep.Inputs |
|
AccumulatorTakeGradient<T extends TType> |
Extracts the average gradient in the given ConditionalAccumulator.
|
AccumulatorTakeGradient.Inputs |
|
Acos<T extends TType> |
Computes acos of x element-wise.
|
Acos.Inputs<T extends TType> |
|
Acosh<T extends TType> |
Computes inverse hyperbolic cosine of x element-wise.
|
Acosh.Inputs<T extends TType> |
|
Add<T extends TType> |
Returns x + y element-wise.
|
Add.Inputs<T extends TType> |
|
AddManySparseToTensorsMap |
Add an N -minibatch SparseTensor to a SparseTensorsMap , return N handles.
|
AddManySparseToTensorsMap.Inputs |
|
AddManySparseToTensorsMap.Options |
|
AddN<T extends TType> |
Add all input tensors element wise.
|
AddN.Inputs<T extends TType> |
|
AddSparseToTensorsMap |
Add a SparseTensor to a SparseTensorsMap return its handle.
|
AddSparseToTensorsMap.Inputs |
|
AddSparseToTensorsMap.Options |
|
AdjustContrast<T extends TNumber> |
Adjust the contrast of one or more images.
|
AdjustContrast.Inputs<T extends TNumber> |
|
AdjustHue<T extends TNumber> |
Adjust the hue of one or more images.
|
AdjustHue.Inputs<T extends TNumber> |
|
AdjustSaturation<T extends TNumber> |
Adjust the saturation of one or more images.
|
AdjustSaturation.Inputs<T extends TNumber> |
|
All |
Computes the "logical and" of elements across dimensions of a tensor.
|
All.Inputs |
|
All.Options |
Optional attributes for All
|
AllCandidateSampler |
Generates labels for candidate sampling with a learned unigram distribution.
|
AllCandidateSampler.Inputs |
|
AllCandidateSampler.Options |
|
AllocationDescription |
Protobuf type tensorflow.AllocationDescription
|
AllocationDescription.Builder |
Protobuf type tensorflow.AllocationDescription
|
AllocationDescriptionOrBuilder |
|
AllocationDescriptionProtos |
|
AllocationRecord |
An allocation/de-allocation operation performed by the allocator.
|
AllocationRecord.Builder |
An allocation/de-allocation operation performed by the allocator.
|
AllocationRecordOrBuilder |
|
AllocatorMemoryUsed |
Protobuf type tensorflow.AllocatorMemoryUsed
|
AllocatorMemoryUsed.Builder |
Protobuf type tensorflow.AllocatorMemoryUsed
|
AllocatorMemoryUsedOrBuilder |
|
AllReduce<T extends TNumber> |
Wraps the XLA AllReduce operator
documented at https://www.tensorflow.org/xla/operation_semantics#allreduce.
|
AllReduce.Inputs<T extends TNumber> |
|
AllToAll<T extends TType> |
An Op to exchange data across TPU replicas.
|
AllToAll.Inputs<T extends TType> |
|
Angle<U extends TNumber> |
Returns the argument of a complex number.
|
Angle.Inputs |
|
AnonymousHashTable |
Creates a uninitialized anonymous hash table.
|
AnonymousHashTable.Inputs |
|
AnonymousIterator |
A container for an iterator resource.
|
AnonymousIterator.Inputs |
|
AnonymousMemoryCache |
The AnonymousMemoryCache operation
|
AnonymousMemoryCache.Inputs |
|
AnonymousMultiDeviceIterator |
A container for a multi device iterator resource.
|
AnonymousMultiDeviceIterator.Inputs |
|
AnonymousMutableDenseHashTable |
Creates an empty anonymous mutable hash table that uses tensors as the backing store.
|
AnonymousMutableDenseHashTable.Inputs<T extends TType> |
|
AnonymousMutableDenseHashTable.Options |
|
AnonymousMutableHashTable |
Creates an empty anonymous mutable hash table.
|
AnonymousMutableHashTable.Inputs |
|
AnonymousMutableHashTableOfTensors |
Creates an empty anonymous mutable hash table of vector values.
|
AnonymousMutableHashTableOfTensors.Inputs |
|
AnonymousMutableHashTableOfTensors.Options |
|
AnonymousRandomSeedGenerator |
The AnonymousRandomSeedGenerator operation
|
AnonymousRandomSeedGenerator.Inputs |
|
AnonymousSeedGenerator |
The AnonymousSeedGenerator operation
|
AnonymousSeedGenerator.Inputs |
|
Any |
Computes the "logical or" of elements across dimensions of a tensor.
|
Any.Inputs |
|
Any.Options |
Optional attributes for Any
|
ApiDef |
Used to specify and override the default API & behavior in the
generated code for client languages, from what you would get from
the OpDef alone.
|
ApiDef.Arg |
Protobuf type tensorflow.ApiDef.Arg
|
ApiDef.Arg.Builder |
Protobuf type tensorflow.ApiDef.Arg
|
ApiDef.ArgOrBuilder |
|
ApiDef.Attr |
Description of the graph-construction-time configuration of this
Op.
|
ApiDef.Attr.Builder |
Description of the graph-construction-time configuration of this
Op.
|
ApiDef.AttrOrBuilder |
|
ApiDef.Builder |
Used to specify and override the default API & behavior in the
generated code for client languages, from what you would get from
the OpDef alone.
|
ApiDef.Endpoint |
If you specify any endpoint, this will replace all of the
inherited endpoints.
|
ApiDef.Endpoint.Builder |
If you specify any endpoint, this will replace all of the
inherited endpoints.
|
ApiDef.EndpointOrBuilder |
|
ApiDef.Visibility |
Protobuf enum tensorflow.ApiDef.Visibility
|
ApiDefOrBuilder |
|
ApiDefProtos |
|
ApiDefs |
Protobuf type tensorflow.ApiDefs
|
ApiDefs.Builder |
Protobuf type tensorflow.ApiDefs
|
ApiDefsOrBuilder |
|
ApplyAdadelta<T extends TType> |
Update '*var' according to the adadelta scheme.
|
ApplyAdadelta.Inputs<T extends TType> |
|
ApplyAdadelta.Options |
|
ApplyAdagrad<T extends TType> |
Update '*var' according to the adagrad scheme.
|
ApplyAdagrad.Inputs<T extends TType> |
|
ApplyAdagrad.Options |
|
ApplyAdagradDa<T extends TType> |
Update '*var' according to the proximal adagrad scheme.
|
ApplyAdagradDa.Inputs<T extends TType> |
|
ApplyAdagradDa.Options |
|
ApplyAdagradV2<T extends TType> |
Update '*var' according to the adagrad scheme.
|
ApplyAdagradV2.Inputs<T extends TType> |
|
ApplyAdagradV2.Options |
|
ApplyAdam<T extends TType> |
Update '*var' according to the Adam algorithm.
|
ApplyAdam.Inputs<T extends TType> |
|
ApplyAdam.Options |
|
ApplyAdaMax<T extends TType> |
Update '*var' according to the AdaMax algorithm.
|
ApplyAdaMax.Inputs<T extends TType> |
|
ApplyAdaMax.Options |
|
ApplyAddSign<T extends TType> |
Update '*var' according to the AddSign update.
|
ApplyAddSign.Inputs<T extends TType> |
|
ApplyAddSign.Options |
|
ApplyCenteredRmsProp<T extends TType> |
Update '*var' according to the centered RMSProp algorithm.
|
ApplyCenteredRmsProp.Inputs<T extends TType> |
|
ApplyCenteredRmsProp.Options |
|
ApplyFtrl<T extends TType> |
Update '*var' according to the Ftrl-proximal scheme.
|
ApplyFtrl.Inputs<T extends TType> |
|
ApplyFtrl.Options |
|
ApplyGradientDescent<T extends TType> |
Update '*var' by subtracting 'alpha' * 'delta' from it.
|
ApplyGradientDescent.Inputs<T extends TType> |
|
ApplyGradientDescent.Options |
|
ApplyMomentum<T extends TType> |
Update '*var' according to the momentum scheme.
|
ApplyMomentum.Inputs<T extends TType> |
|
ApplyMomentum.Options |
|
ApplyPowerSign<T extends TType> |
Update '*var' according to the AddSign update.
|
ApplyPowerSign.Inputs<T extends TType> |
|
ApplyPowerSign.Options |
|
ApplyProximalAdagrad<T extends TType> |
Update '*var' and '*accum' according to FOBOS with Adagrad learning rate.
|
ApplyProximalAdagrad.Inputs<T extends TType> |
|
ApplyProximalAdagrad.Options |
|
ApplyProximalGradientDescent<T extends TType> |
Update '*var' as FOBOS algorithm with fixed learning rate.
|
ApplyProximalGradientDescent.Inputs<T extends TType> |
|
ApplyProximalGradientDescent.Options |
|
ApplyRmsProp<T extends TType> |
Update '*var' according to the RMSProp algorithm.
|
ApplyRmsProp.Inputs<T extends TType> |
|
ApplyRmsProp.Options |
|
ApproximateEqual |
Returns the truth value of abs(x-y) < tolerance element-wise.
|
ApproximateEqual.Inputs<T extends TType> |
|
ApproximateEqual.Options |
|
ApproxTopK<T extends TNumber> |
Returns min/max k values and their indices of the input operand in an approximate manner.
|
ApproxTopK.Inputs<T extends TNumber> |
|
ApproxTopK.Options |
|
ArgMax<V extends TNumber> |
Returns the index with the largest value across dimensions of a tensor.
|
ArgMax.Inputs |
|
ArgMin<V extends TNumber> |
Returns the index with the smallest value across dimensions of a tensor.
|
ArgMin.Inputs |
|
Asin<T extends TType> |
Computes the trignometric inverse sine of x element-wise.
|
Asin.Inputs<T extends TType> |
|
Asinh<T extends TType> |
Computes inverse hyperbolic sine of x element-wise.
|
Asinh.Inputs<T extends TType> |
|
AssertCardinalityDataset |
The AssertCardinalityDataset operation
|
AssertCardinalityDataset.Inputs |
|
AssertNextDataset |
A transformation that asserts which transformations happen next.
|
AssertNextDataset |
The ExperimentalAssertNextDataset operation
|
AssertNextDataset.Inputs |
|
AssertNextDataset.Inputs |
|
AssertPrevDataset |
A transformation that asserts which transformations happened previously.
|
AssertPrevDataset.Inputs |
|
AssertThat |
Asserts that the given condition is true.
|
AssertThat.Inputs |
|
AssertThat.Options |
|
AssetFileDef |
An asset file def for a single file or a set of sharded files with the same
name.
|
AssetFileDef.Builder |
An asset file def for a single file or a set of sharded files with the same
name.
|
AssetFileDefOrBuilder |
|
Assign<T extends TType> |
Update 'ref' by assigning 'value' to it.
|
Assign.Inputs<T extends TType> |
|
Assign.Options |
Optional attributes for Assign
|
AssignAdd<T extends TType> |
Update 'ref' by adding 'value' to it.
|
AssignAdd.Inputs<T extends TType> |
|
AssignAdd.Options |
|
AssignAddVariableOp |
Adds a value to the current value of a variable.
|
AssignAddVariableOp.Inputs |
|
AssignSub<T extends TType> |
Update 'ref' by subtracting 'value' from it.
|
AssignSub.Inputs<T extends TType> |
|
AssignSub.Options |
|
AssignSubVariableOp |
Subtracts a value from the current value of a variable.
|
AssignSubVariableOp.Inputs |
|
AssignVariableConcatND |
Concats input tensor across all dimensions.
|
AssignVariableConcatND.Inputs |
|
AssignVariableConcatND.Options |
|
AssignVariableOp |
Assigns a new value to a variable.
|
AssignVariableOp.Inputs |
|
AssignVariableOp.Options |
|
AsString |
Converts each entry in the given tensor to strings.
|
AsString.Inputs |
|
AsString.Options |
|
Atan<T extends TType> |
Computes the trignometric inverse tangent of x element-wise.
|
Atan.Inputs<T extends TType> |
|
Atan2<T extends TNumber> |
Computes arctangent of y/x element-wise, respecting signs of the arguments.
|
Atan2.Inputs<T extends TNumber> |
|
Atanh<T extends TType> |
Computes inverse hyperbolic tangent of x element-wise.
|
Atanh.Inputs<T extends TType> |
|
AttributeMetadata |
Metadata of an op's attribute.
|
AttrValue |
Protocol buffer representing the value for an attr used to configure an Op.
|
AttrValue.Builder |
Protocol buffer representing the value for an attr used to configure an Op.
|
AttrValue.ListValue |
LINT.IfChange
|
AttrValue.ListValue.Builder |
LINT.IfChange
|
AttrValue.ListValueOrBuilder |
|
AttrValue.ValueCase |
|
AttrValueOrBuilder |
|
AttrValueProtos |
|
AudioOps |
An API for building audio operations as Op s
|
AudioSpectrogram |
Produces a visualization of audio data over time.
|
AudioSpectrogram.Inputs |
|
AudioSpectrogram.Options |
|
AudioSummary |
Outputs a Summary protocol buffer with audio.
|
AudioSummary.Inputs |
|
AudioSummary.Options |
|
AutoParallelOptions |
Protobuf type tensorflow.AutoParallelOptions
|
AutoParallelOptions.Builder |
Protobuf type tensorflow.AutoParallelOptions
|
AutoParallelOptionsOrBuilder |
|
AutoShardDataset |
Creates a dataset that shards the input dataset.
|
AutoShardDataset |
Creates a dataset that shards the input dataset.
|
AutoShardDataset.Inputs |
|
AutoShardDataset.Inputs |
|
AutoShardDataset.Options |
|
AutoShardDataset.Options |
|
AutoShardPolicy |
Represents the type of auto-sharding we enable.
|
AutotuneAlgorithm |
Algorithm used for model autotuning optimization.
|
AutotuneOptions |
next: 5
|
AutotuneOptions.Builder |
next: 5
|
AutotuneOptions.OptionalAutotuneAlgorithmCase |
|
AutotuneOptions.OptionalCpuBudgetCase |
|
AutotuneOptions.OptionalEnabledCase |
|
AutotuneOptions.OptionalRamBudgetCase |
|
AutotuneOptionsOrBuilder |
|
AvailableDeviceInfo |
Matches DeviceAttributes
|
AvailableDeviceInfo.Builder |
Matches DeviceAttributes
|
AvailableDeviceInfoOrBuilder |
|
AvgPool<T extends TNumber> |
Performs average pooling on the input.
|
AvgPool.Inputs<T extends TNumber> |
|
AvgPool.Options |
|
AvgPool3d<T extends TNumber> |
Performs 3D average pooling on the input.
|
AvgPool3d.Inputs<T extends TNumber> |
|
AvgPool3d.Options |
|
AvgPool3dGrad<T extends TNumber> |
Computes gradients of average pooling function.
|
AvgPool3dGrad.Inputs<T extends TNumber> |
|
AvgPool3dGrad.Options |
|
AvgPoolGrad<T extends TNumber> |
Computes gradients of the average pooling function.
|
AvgPoolGrad.Inputs<T extends TNumber> |
|
AvgPoolGrad.Options |
|
BandedTriangularSolve<T extends TType> |
The BandedTriangularSolve operation
|
BandedTriangularSolve.Inputs<T extends TType> |
|
BandedTriangularSolve.Options |
|
BandPart<T extends TType> |
Copy a tensor setting everything outside a central band in each innermost matrix to zero.
|
BandPart.Inputs<T extends TType,U extends TNumber> |
|
Barrier |
Defines a barrier that persists across different graph executions.
|
Barrier.Inputs |
|
Barrier.Options |
|
BarrierClose |
Closes the given barrier.
|
BarrierClose.Inputs |
|
BarrierClose.Options |
|
BarrierIncompleteSize |
Computes the number of incomplete elements in the given barrier.
|
BarrierIncompleteSize.Inputs |
|
BarrierInsertMany |
For each key, assigns the respective value to the specified component.
|
BarrierInsertMany.Inputs |
|
BarrierReadySize |
Computes the number of complete elements in the given barrier.
|
BarrierReadySize.Inputs |
|
BarrierTakeMany |
Takes the given number of completed elements from a barrier.
|
BarrierTakeMany.Inputs |
|
BarrierTakeMany.Options |
|
BaseGradientAdapter |
Helper base class for custom gradient adapters INTERNAL USE ONLY
|
Batch |
Batches all input tensors nondeterministically.
|
Batch.Inputs |
|
Batch.Options |
Optional attributes for Batch
|
BatchCholesky<T extends TNumber> |
The BatchCholesky operation
|
BatchCholesky.Inputs<T extends TNumber> |
|
BatchCholeskyGrad<T extends TNumber> |
The BatchCholeskyGrad operation
|
BatchCholeskyGrad.Inputs<T extends TNumber> |
|
BatchDataset |
Creates a dataset that batches batch_size elements from input_dataset .
|
BatchDataset.Inputs |
|
BatchDataset.Options |
|
BatchFft |
The BatchFFT operation
|
BatchFft.Inputs |
|
BatchFft2d |
The BatchFFT2D operation
|
BatchFft2d.Inputs |
|
BatchFft3d |
The BatchFFT3D operation
|
BatchFft3d.Inputs |
|
BatchFunction |
Batches all the inputs tensors to the computation done by the function.
|
BatchFunction.Inputs |
|
BatchFunction.Options |
|
BatchIfft |
The BatchIFFT operation
|
BatchIfft.Inputs |
|
BatchIfft2d |
The BatchIFFT2D operation
|
BatchIfft2d.Inputs |
|
BatchIfft3d |
The BatchIFFT3D operation
|
BatchIfft3d.Inputs |
|
BatchMatMul<V extends TType> |
Multiplies slices of two tensors in batches.
|
BatchMatMul.Inputs |
|
BatchMatMul.Options |
|
BatchMatrixBandPart<T extends TType> |
The BatchMatrixBandPart operation
|
BatchMatrixBandPart.Inputs<T extends TType> |
|
BatchMatrixDeterminant<T extends TType> |
The BatchMatrixDeterminant operation
|
BatchMatrixDeterminant.Inputs<T extends TType> |
|
BatchMatrixDiag<T extends TType> |
The BatchMatrixDiag operation
|
BatchMatrixDiag.Inputs<T extends TType> |
|
BatchMatrixDiagPart<T extends TType> |
The BatchMatrixDiagPart operation
|
BatchMatrixDiagPart.Inputs<T extends TType> |
|
BatchMatrixInverse<T extends TNumber> |
The BatchMatrixInverse operation
|
BatchMatrixInverse.Inputs<T extends TNumber> |
|
BatchMatrixInverse.Options |
|
BatchMatrixSetDiag<T extends TType> |
The BatchMatrixSetDiag operation
|
BatchMatrixSetDiag.Inputs<T extends TType> |
|
BatchMatrixSolve<T extends TNumber> |
The BatchMatrixSolve operation
|
BatchMatrixSolve.Inputs<T extends TNumber> |
|
BatchMatrixSolve.Options |
|
BatchMatrixSolveLs<T extends TNumber> |
The BatchMatrixSolveLs operation
|
BatchMatrixSolveLs.Inputs<T extends TNumber> |
|
BatchMatrixSolveLs.Options |
|
BatchMatrixTriangularSolve<T extends TNumber> |
The BatchMatrixTriangularSolve operation
|
BatchMatrixTriangularSolve.Inputs<T extends TNumber> |
|
BatchMatrixTriangularSolve.Options |
|
BatchNormWithGlobalNormalization<T extends TType> |
Batch normalization.
|
BatchNormWithGlobalNormalization.Inputs<T extends TType> |
|
BatchNormWithGlobalNormalizationGrad<T extends TType> |
Gradients for batch normalization.
|
BatchNormWithGlobalNormalizationGrad.Inputs<T extends TType> |
|
BatchSelfAdjointEig<T extends TNumber> |
The BatchSelfAdjointEigV2 operation
|
BatchSelfAdjointEig.Inputs<T extends TNumber> |
|
BatchSelfAdjointEig.Options |
|
BatchSvd<T extends TType> |
The BatchSvd operation
|
BatchSvd.Inputs<T extends TType> |
|
BatchSvd.Options |
|
BatchToSpace<T extends TType> |
BatchToSpace for 4-D tensors of type T.
|
BatchToSpace.Inputs<T extends TType> |
|
BatchToSpaceNd<T extends TType> |
BatchToSpace for N-D tensors of type T.
|
BatchToSpaceNd.Inputs<T extends TType> |
|
BenchmarkEntries |
Protobuf type tensorflow.BenchmarkEntries
|
BenchmarkEntries.Builder |
Protobuf type tensorflow.BenchmarkEntries
|
BenchmarkEntriesOrBuilder |
|
BenchmarkEntry |
Each unit test or benchmark in a test or benchmark run provides
some set of information.
|
BenchmarkEntry.Builder |
Each unit test or benchmark in a test or benchmark run provides
some set of information.
|
BenchmarkEntryOrBuilder |
|
BesselI0<T extends TNumber> |
The BesselI0 operation
|
BesselI0.Inputs<T extends TNumber> |
|
BesselI0e<T extends TNumber> |
The BesselI0e operation
|
BesselI0e.Inputs<T extends TNumber> |
|
BesselI1<T extends TNumber> |
The BesselI1 operation
|
BesselI1.Inputs<T extends TNumber> |
|
BesselI1e<T extends TNumber> |
The BesselI1e operation
|
BesselI1e.Inputs<T extends TNumber> |
|
BesselJ0<T extends TNumber> |
The BesselJ0 operation
|
BesselJ0.Inputs<T extends TNumber> |
|
BesselJ1<T extends TNumber> |
The BesselJ1 operation
|
BesselJ1.Inputs<T extends TNumber> |
|
BesselK0<T extends TNumber> |
The BesselK0 operation
|
BesselK0.Inputs<T extends TNumber> |
|
BesselK0e<T extends TNumber> |
The BesselK0e operation
|
BesselK0e.Inputs<T extends TNumber> |
|
BesselK1<T extends TNumber> |
The BesselK1 operation
|
BesselK1.Inputs<T extends TNumber> |
|
BesselK1e<T extends TNumber> |
The BesselK1e operation
|
BesselK1e.Inputs<T extends TNumber> |
|
BesselY0<T extends TNumber> |
The BesselY0 operation
|
BesselY0.Inputs<T extends TNumber> |
|
BesselY1<T extends TNumber> |
The BesselY1 operation
|
BesselY1.Inputs<T extends TNumber> |
|
Betainc<T extends TNumber> |
Compute the regularized incomplete beta integral \(I_x(a, b)\).
|
Betainc.Inputs<T extends TNumber> |
|
BfcMemoryMapProtos |
|
BiasAdd<T extends TType> |
Adds bias to value .
|
BiasAdd.Inputs<T extends TType> |
|
BiasAdd.Options |
|
BiasAddGrad<T extends TType> |
The backward operation for "BiasAdd" on the "bias" tensor.
|
BiasAddGrad.Inputs<T extends TType> |
|
BiasAddGrad.Options |
|
Bincount<T extends TNumber> |
Counts the number of occurrences of each value in an integer array.
|
Bincount.Inputs<T extends TNumber> |
|
BinSummary |
Protobuf type tensorflow.BinSummary
|
BinSummary.Builder |
Protobuf type tensorflow.BinSummary
|
BinSummaryOrBuilder |
|
Bitcast<U extends TType> |
Bitcasts a tensor from one type to another without copying data.
|
Bitcast.Inputs |
|
BitwiseAnd<T extends TNumber> |
Elementwise computes the bitwise AND of x and y .
|
BitwiseAnd.Inputs<T extends TNumber> |
|
BitwiseOps |
An API for building bitwise operations as Op s
|
BitwiseOr<T extends TNumber> |
Elementwise computes the bitwise OR of x and y .
|
BitwiseOr.Inputs<T extends TNumber> |
|
BitwiseXor<T extends TNumber> |
Elementwise computes the bitwise XOR of x and y .
|
BitwiseXor.Inputs<T extends TNumber> |
|
BlockLSTM<T extends TNumber> |
Computes the LSTM cell forward propagation for all the time steps.
|
BlockLSTM.Inputs<T extends TNumber> |
|
BlockLSTM.Options |
|
BlockLSTMGrad<T extends TNumber> |
Computes the LSTM cell backward propagation for the entire time sequence.
|
BlockLSTMGrad.Inputs<T extends TNumber> |
|
BooleanMask |
|
BooleanMask.Options |
|
BooleanMaskUpdate |
|
BooleanMaskUpdate.Options |
|
BoostedTreesAggregateStats |
Aggregates the summary of accumulated stats for the batch.
|
BoostedTreesAggregateStats.Inputs |
|
BoostedTreesBucketize |
Bucketize each feature based on bucket boundaries.
|
BoostedTreesBucketize.Inputs |
|
BoostedTreesCalculateBestFeatureSplit |
Calculates gains for each feature and returns the best possible split information for the feature.
|
BoostedTreesCalculateBestFeatureSplit.Inputs |
|
BoostedTreesCalculateBestFeatureSplit.Options |
|
BoostedTreesCalculateBestFeatureSplitV2 |
Calculates gains for each feature and returns the best possible split information for each node.
|
BoostedTreesCalculateBestFeatureSplitV2.Inputs |
|
BoostedTreesCalculateBestGainsPerFeature |
Calculates gains for each feature and returns the best possible split information for the feature.
|
BoostedTreesCalculateBestGainsPerFeature.Inputs |
|
BoostedTreesCenterBias |
Calculates the prior from the training data (the bias) and fills in the first node with the logits' prior.
|
BoostedTreesCenterBias.Inputs |
|
BoostedTreesCreateEnsemble |
Creates a tree ensemble model and returns a handle to it.
|
BoostedTreesCreateEnsemble.Inputs |
|
BoostedTreesCreateQuantileStreamResource |
Create the Resource for Quantile Streams.
|
BoostedTreesCreateQuantileStreamResource.Inputs |
|
BoostedTreesCreateQuantileStreamResource.Options |
|
BoostedTreesDeserializeEnsemble |
Deserializes a serialized tree ensemble config and replaces current tree
ensemble.
|
BoostedTreesDeserializeEnsemble.Inputs |
|
BoostedTreesEnsembleResourceHandleOp |
Creates a handle to a BoostedTreesEnsembleResource
|
BoostedTreesEnsembleResourceHandleOp.Inputs |
|
BoostedTreesEnsembleResourceHandleOp.Options |
|
BoostedTreesExampleDebugOutputs |
Debugging/model interpretability outputs for each example.
|
BoostedTreesExampleDebugOutputs.Inputs |
|
BoostedTreesFlushQuantileSummaries |
Flush the quantile summaries from each quantile stream resource.
|
BoostedTreesFlushQuantileSummaries.Inputs |
|
BoostedTreesGetEnsembleStates |
Retrieves the tree ensemble resource stamp token, number of trees and growing statistics.
|
BoostedTreesGetEnsembleStates.Inputs |
|
BoostedTreesMakeQuantileSummaries |
Makes the summary of quantiles for the batch.
|
BoostedTreesMakeQuantileSummaries.Inputs |
|
BoostedTreesMakeStatsSummary |
Makes the summary of accumulated stats for the batch.
|
BoostedTreesMakeStatsSummary.Inputs |
|
BoostedTreesPredict |
Runs multiple additive regression ensemble predictors on input instances and
computes the logits.
|
BoostedTreesPredict.Inputs |
|
BoostedTreesQuantileStreamResourceAddSummaries |
Add the quantile summaries to each quantile stream resource.
|
BoostedTreesQuantileStreamResourceAddSummaries.Inputs |
|
BoostedTreesQuantileStreamResourceDeserialize |
Deserialize bucket boundaries and ready flag into current QuantileAccumulator.
|
BoostedTreesQuantileStreamResourceDeserialize.Inputs |
|
BoostedTreesQuantileStreamResourceFlush |
Flush the summaries for a quantile stream resource.
|
BoostedTreesQuantileStreamResourceFlush.Inputs |
|
BoostedTreesQuantileStreamResourceFlush.Options |
|
BoostedTreesQuantileStreamResourceGetBucketBoundaries |
Generate the bucket boundaries for each feature based on accumulated summaries.
|
BoostedTreesQuantileStreamResourceGetBucketBoundaries.Inputs |
|
BoostedTreesQuantileStreamResourceHandleOp |
Creates a handle to a BoostedTreesQuantileStreamResource.
|
BoostedTreesQuantileStreamResourceHandleOp.Inputs |
|
BoostedTreesQuantileStreamResourceHandleOp.Options |
|
BoostedTreesSerializeEnsemble |
Serializes the tree ensemble to a proto.
|
BoostedTreesSerializeEnsemble.Inputs |
|
BoostedTreesSparseAggregateStats |
Aggregates the summary of accumulated stats for the batch.
|
BoostedTreesSparseAggregateStats.Inputs |
|
BoostedTreesSparseCalculateBestFeatureSplit |
Calculates gains for each feature and returns the best possible split information for the feature.
|
BoostedTreesSparseCalculateBestFeatureSplit.Inputs |
|
BoostedTreesSparseCalculateBestFeatureSplit.Options |
|
BoostedTreesTrainingPredict |
Runs multiple additive regression ensemble predictors on input instances and
computes the update to cached logits.
|
BoostedTreesTrainingPredict.Inputs |
|
BoostedTreesUpdateEnsemble |
Updates the tree ensemble by either adding a layer to the last tree being grown
or by starting a new tree.
|
BoostedTreesUpdateEnsemble.Inputs |
|
BoostedTreesUpdateEnsembleV2 |
Updates the tree ensemble by adding a layer to the last tree being grown
or by starting a new tree.
|
BoostedTreesUpdateEnsembleV2.Inputs |
|
BoostedTreesUpdateEnsembleV2.Options |
|
BoundedTensorSpecProto |
A protobuf to represent tf.BoundedTensorSpec.
|
BoundedTensorSpecProto.Builder |
A protobuf to represent tf.BoundedTensorSpec.
|
BoundedTensorSpecProtoOrBuilder |
|
BroadcastDynamicShape<T extends TNumber> |
Return the shape of s0 op s1 with broadcast.
|
BroadcastDynamicShape.Inputs<T extends TNumber> |
|
BroadcastGradientArgs<T extends TNumber> |
Return the reduction indices for computing gradients of s0 op s1 with broadcast.
|
BroadcastGradientArgs.Inputs<T extends TNumber> |
|
BroadcastHelper<T extends TType> |
Helper operator for performing XLA-style broadcasts
Broadcasts lhs and rhs to the same rank, by adding size 1 dimensions to
whichever of lhs and rhs has the lower rank, using XLA's broadcasting rules
for binary operators.
|
BroadcastHelper.Inputs<T extends TType> |
|
BroadcastTo<T extends TType> |
Broadcast an array for a compatible shape.
|
BroadcastTo.Inputs<T extends TType> |
|
Bucketize |
Bucketizes 'input' based on 'boundaries'.
|
Bucketize.Inputs |
|
BuildConfiguration |
Protobuf type tensorflow.BuildConfiguration
|
BuildConfiguration.Builder |
Protobuf type tensorflow.BuildConfiguration
|
BuildConfigurationOrBuilder |
|
BundleEntryProto |
Describes the metadata related to a checkpointed tensor.
|
BundleEntryProto.Builder |
Describes the metadata related to a checkpointed tensor.
|
BundleEntryProtoOrBuilder |
|
BundleHeaderProto |
Special header that is associated with a bundle.
|
BundleHeaderProto.Builder |
Special header that is associated with a bundle.
|
BundleHeaderProto.Endianness |
An enum indicating the endianness of the platform that produced this
bundle.
|
BundleHeaderProtoOrBuilder |
|
BytesList |
LINT.IfChange
Containers to hold repeated fundamental values.
|
BytesList.Builder |
LINT.IfChange
Containers to hold repeated fundamental values.
|
BytesListOrBuilder |
|
BytesProducedStatsDataset |
Records the bytes size of each element of input_dataset in a StatsAggregator.
|
BytesProducedStatsDataset |
Records the bytes size of each element of input_dataset in a StatsAggregator.
|
BytesProducedStatsDataset.Inputs |
|
BytesProducedStatsDataset.Inputs |
|
CacheDataset |
The CacheDatasetV2 operation
|
CacheDataset.Inputs |
|
CacheDataset.Options |
|
CallableOptions |
Defines a subgraph in another `GraphDef` as a set of feed points and nodes
to be fetched or executed.
|
CallableOptions.Builder |
Defines a subgraph in another `GraphDef` as a set of feed points and nodes
to be fetched or executed.
|
CallableOptionsOrBuilder |
|
CapturedTensor |
Protobuf type tensorflow.CapturedTensor
|
CapturedTensor.Builder |
Protobuf type tensorflow.CapturedTensor
|
CapturedTensorOrBuilder |
|
CardinalityOptions |
next: 2
|
CardinalityOptions.Builder |
next: 2
|
CardinalityOptions.ComputeLevel |
Protobuf enum tensorflow.data.CardinalityOptions.ComputeLevel
|
CardinalityOptionsOrBuilder |
|
Case |
An n-way switch statement which calls a single branch function.
|
Case.Options |
Optional attributes for Case
|
Cast<U extends TType> |
Cast x of type SrcT to y of DstT.
|
Cast.Inputs |
|
Cast.Options |
Optional attributes for Cast
|
Ceil<T extends TNumber> |
Returns element-wise smallest integer not less than x.
|
Ceil.Inputs<T extends TNumber> |
|
CheckNumerics<T extends TNumber> |
Checks a tensor for NaN, -Inf and +Inf values.
|
CheckNumerics.Inputs<T extends TNumber> |
|
Cholesky<T extends TType> |
Computes the Cholesky decomposition of one or more square matrices.
|
Cholesky.Inputs<T extends TType> |
|
CholeskyGrad<T extends TNumber> |
Computes the reverse mode backpropagated gradient of the Cholesky algorithm.
|
CholeskyGrad.Inputs<T extends TNumber> |
|
ChooseFastestBranchDataset |
The ChooseFastestBranchDataset operation
|
ChooseFastestBranchDataset.Inputs |
|
ChooseFastestDataset |
The ChooseFastestDataset operation
|
ChooseFastestDataset |
The ExperimentalChooseFastestDataset operation
|
ChooseFastestDataset.Inputs |
|
ChooseFastestDataset.Inputs |
|
ClipByValue<T extends TType> |
Clips tensor values to a specified min and max.
|
ClipByValue.Inputs<T extends TType> |
|
CloseSummaryWriter |
The CloseSummaryWriter operation
|
CloseSummaryWriter.Inputs |
|
ClusterDef |
Defines a TensorFlow cluster as a set of jobs.
|
ClusterDef.Builder |
Defines a TensorFlow cluster as a set of jobs.
|
ClusterDefOrBuilder |
|
ClusterDeviceFilters |
Defines the device filters for jobs in a cluster.
|
ClusterDeviceFilters.Builder |
Defines the device filters for jobs in a cluster.
|
ClusterDeviceFiltersOrBuilder |
|
ClusterOutput<T extends TType> |
Operator that connects the output of an XLA computation to other consumer graph nodes.
|
ClusterOutput.Inputs<T extends TType> |
|
ClusterProtos |
|
Code |
The canonical error codes for TensorFlow APIs.
|
CodeLocation |
Code location information: A stack trace with host-name information.
|
CodeLocation.Builder |
Code location information: A stack trace with host-name information.
|
CodeLocationOrBuilder |
|
CollateTPUEmbeddingMemory |
An op that merges the string-encoded memory config protos from all hosts.
|
CollateTPUEmbeddingMemory.Inputs |
|
CollectionDef |
CollectionDef should cover most collections.
|
CollectionDef.AnyList |
AnyList is used for collecting Any protos.
|
CollectionDef.AnyList.Builder |
AnyList is used for collecting Any protos.
|
CollectionDef.AnyListOrBuilder |
|
CollectionDef.Builder |
CollectionDef should cover most collections.
|
CollectionDef.BytesList |
BytesList is used for collecting strings and serialized protobufs.
|
CollectionDef.BytesList.Builder |
BytesList is used for collecting strings and serialized protobufs.
|
CollectionDef.BytesListOrBuilder |
|
CollectionDef.FloatList |
FloatList is used for collecting float values.
|
CollectionDef.FloatList.Builder |
FloatList is used for collecting float values.
|
CollectionDef.FloatListOrBuilder |
|
CollectionDef.Int64List |
Int64List is used for collecting int, int64 and long values.
|
CollectionDef.Int64List.Builder |
Int64List is used for collecting int, int64 and long values.
|
CollectionDef.Int64ListOrBuilder |
|
CollectionDef.KindCase |
|
CollectionDef.NodeList |
NodeList is used for collecting nodes in graph.
|
CollectionDef.NodeList.Builder |
NodeList is used for collecting nodes in graph.
|
CollectionDef.NodeListOrBuilder |
|
CollectionDefOrBuilder |
|
CollectiveAllToAll<T extends TNumber> |
Mutually exchanges multiple tensors of identical type and shape.
|
CollectiveAllToAll.Inputs<T extends TNumber> |
|
CollectiveAllToAll.Options |
|
CollectiveAssignGroup |
Assign group keys based on group assignment.
|
CollectiveAssignGroup.Inputs |
|
CollectiveBcastRecv<U extends TType> |
Receives a tensor value broadcast from another device.
|
CollectiveBcastRecv.Inputs |
|
CollectiveBcastRecv.Options |
|
CollectiveBcastSend<T extends TType> |
Broadcasts a tensor value to one or more other devices.
|
CollectiveBcastSend.Inputs<T extends TType> |
|
CollectiveBcastSend.Options |
|
CollectiveGather<T extends TNumber> |
Mutually accumulates multiple tensors of identical type and shape.
|
CollectiveGather.Inputs<T extends TNumber> |
|
CollectiveGather.Options |
|
CollectiveInitializeCommunicator |
Initializes a group for collective operations.
|
CollectiveInitializeCommunicator.Inputs |
|
CollectiveInitializeCommunicator.Options |
|
CollectivePermute<T extends TType> |
An Op to permute tensors across replicated TPU instances.
|
CollectivePermute.Inputs<T extends TType> |
|
CollectiveReduce<T extends TNumber> |
Mutually reduces multiple tensors of identical type and shape.
|
CollectiveReduce.Inputs<T extends TNumber> |
|
CollectiveReduce.Options |
|
CombinedNonMaxSuppression |
Greedily selects a subset of bounding boxes in descending order of score,
This operation performs non_max_suppression on the inputs per batch, across
all classes.
|
CombinedNonMaxSuppression.Inputs |
|
CombinedNonMaxSuppression.Options |
|
CommitId |
Protobuf type tensorflow.CommitId
|
CommitId.Builder |
Protobuf type tensorflow.CommitId
|
CommitId.KindCase |
|
CommitIdOrBuilder |
|
CompilationResult |
Returns the result of a TPU compilation.
|
CompilationResult.Inputs |
|
Compile |
Compiles a computations for execution on one or more TPU devices.
|
Compile.Inputs |
|
CompileSucceededAssert |
Asserts that compilation succeeded.
|
CompileSucceededAssert.Inputs |
|
Complex<U extends TType> |
Converts two real numbers to a complex number.
|
Complex.Inputs<T extends TNumber> |
|
ComplexAbs<U extends TNumber> |
Computes the complex absolute value of a tensor.
|
ComplexAbs.Inputs |
|
CompositeTensorVariant |
|
CompositeTensorVariant.CompositeTensorVariantMetadata |
Metadata for CompositeTensorVariant, used when serializing as Variant.
|
CompositeTensorVariant.CompositeTensorVariantMetadata.Builder |
Metadata for CompositeTensorVariant, used when serializing as Variant.
|
CompositeTensorVariant.CompositeTensorVariantMetadataOrBuilder |
|
CompositeTensorVariantFromComponents |
Encodes an ExtensionType value into a variant scalar Tensor.
|
CompositeTensorVariantFromComponents.Inputs |
|
CompositeTensorVariantToComponents |
Decodes a variant scalar Tensor into an ExtensionType value.
|
CompositeTensorVariantToComponents.Inputs |
|
CompressElement |
Compresses a dataset element.
|
CompressElement.Inputs |
|
Compute_func_Pointer_TF_OpKernelContext |
|
ComputeAccidentalHits |
Computes the ids of the positions in sampled_candidates that match true_labels.
|
ComputeAccidentalHits.Inputs |
|
ComputeAccidentalHits.Options |
|
ComputeBatchSize |
Computes the static batch size of a dataset sans partial batches.
|
ComputeBatchSize.Inputs |
|
Concat<T extends TType> |
Concatenates tensors along one dimension.
|
Concat.Inputs<T extends TType> |
|
ConcatenateDataset |
Creates a dataset that concatenates input_dataset with another_dataset .
|
ConcatenateDataset.Inputs |
|
ConcatenateDataset.Options |
|
ConcatND<T extends TType> |
Concats input tensor across all dimensions.
|
ConcatND.Inputs<T extends TType> |
|
ConcatND.Options |
|
ConcreteFunction |
A graph that can be invoked as a single function, with an input and output signature.
|
CondContextDef |
Protocol buffer representing a CondContext object.
|
CondContextDef.Builder |
Protocol buffer representing a CondContext object.
|
CondContextDefOrBuilder |
|
ConditionalAccumulator |
A conditional accumulator for aggregating gradients.
|
ConditionalAccumulator.Inputs |
|
ConditionalAccumulator.Options |
|
ConfigProto |
Session configuration parameters.
|
ConfigProto.Builder |
Session configuration parameters.
|
ConfigProto.Experimental |
Everything inside Experimental is subject to change and is not subject
to API stability guarantees in
https://www.tensorflow.org/guide/version_compat.
|
ConfigProto.Experimental.Builder |
Everything inside Experimental is subject to change and is not subject
to API stability guarantees in
https://www.tensorflow.org/guide/version_compat.
|
ConfigProto.Experimental.MlirBridgeRollout |
An enum that describes the state of the MLIR bridge rollout.
|
ConfigProto.ExperimentalOrBuilder |
|
ConfigProtoOrBuilder |
|
ConfigProtos |
|
ConfigureAndInitializeGlobalTPU |
An op that sets up the centralized structures for a distributed TPU system.
|
ConfigureAndInitializeGlobalTPU.Inputs |
|
ConfigureDistributedTPU |
Sets up the centralized structures for a distributed TPU system.
|
ConfigureDistributedTPU.Inputs |
|
ConfigureDistributedTPU.Options |
|
ConfigureTPUEmbedding |
Sets up TPUEmbedding in a distributed TPU system.
|
ConfigureTPUEmbedding.Inputs |
|
ConfigureTPUEmbeddingHost |
An op that configures the TPUEmbedding software on a host.
|
ConfigureTPUEmbeddingHost.Inputs |
|
ConfigureTPUEmbeddingMemory |
An op that configures the TPUEmbedding software on a host.
|
ConfigureTPUEmbeddingMemory.Inputs |
|
Conj<T extends TType> |
Returns the complex conjugate of a complex number.
|
Conj.Inputs<T extends TType> |
|
ConjugateTranspose<T extends TType> |
Shuffle dimensions of x according to a permutation and conjugate the result.
|
ConjugateTranspose.Inputs<T extends TType> |
|
ConnectTPUEmbeddingHosts |
An op that sets up communication between TPUEmbedding host software instances
after ConfigureTPUEmbeddingHost has been called on each host.
|
ConnectTPUEmbeddingHosts.Inputs |
|
Constant<T extends TType> |
An operator producing a constant value.
|
ConsumeMutexLock |
This op consumes a lock created by MutexLock .
|
ConsumeMutexLock.Inputs |
|
ControlFlowContextDef |
Container for any kind of control flow context.
|
ControlFlowContextDef.Builder |
Container for any kind of control flow context.
|
ControlFlowContextDef.CtxtCase |
|
ControlFlowContextDefOrBuilder |
|
ControlFlowProtos |
|
ControlTrigger |
Does nothing.
|
ControlTrigger.Inputs |
|
Conv<W extends TType> |
Wraps the XLA ConvGeneralDilated operator, documented at
https://www.tensorflow.org/performance/xla/operation_semantics#conv_convolution
.
|
Conv.Inputs<V extends TNumber> |
|
Conv.Options |
Optional attributes for Conv
|
Conv2d<T extends TNumber> |
Computes a 2-D convolution given 4-D input and filter tensors.
|
Conv2d.Inputs<T extends TNumber> |
|
Conv2d.Options |
Optional attributes for Conv2d
|
Conv2dBackpropFilter<T extends TNumber> |
Computes the gradients of convolution with respect to the filter.
|
Conv2dBackpropFilter.Inputs<T extends TNumber> |
|
Conv2dBackpropFilter.Options |
|
Conv2dBackpropInput<T extends TNumber> |
Computes the gradients of convolution with respect to the input.
|
Conv2dBackpropInput.Inputs<T extends TNumber> |
|
Conv2dBackpropInput.Options |
|
Conv3d<T extends TNumber> |
Computes a 3-D convolution given 5-D input and filter tensors.
|
Conv3d.Inputs<T extends TNumber> |
|
Conv3d.Options |
Optional attributes for Conv3d
|
Conv3dBackpropFilter<T extends TNumber> |
Computes the gradients of 3-D convolution with respect to the filter.
|
Conv3dBackpropFilter.Inputs<T extends TNumber> |
|
Conv3dBackpropFilter.Options |
|
Conv3dBackpropInput<U extends TNumber> |
Computes the gradients of 3-D convolution with respect to the input.
|
Conv3dBackpropInput.Inputs<U extends TNumber> |
|
Conv3dBackpropInput.Options |
|
CoordinationConfig |
|
CoordinationConfig.CoordinationServiceConfig |
Coordination service configuration parameters.
|
CoordinationConfig.CoordinationServiceConfig.Builder |
Coordination service configuration parameters.
|
CoordinationConfig.CoordinationServiceConfigOrBuilder |
|
Copy<T extends TType> |
Copy a tensor from CPU-to-CPU or GPU-to-GPU.
|
Copy.Inputs<T extends TType> |
|
Copy.Options |
Optional attributes for Copy
|
CopyHost<T extends TType> |
Copy a tensor to host.
|
CopyHost.Inputs<T extends TType> |
|
CopyHost.Options |
|
CopyToMesh<T extends TType> |
The CopyToMesh operation
|
CopyToMesh.Inputs<T extends TType> |
|
CopyToMesh.Options |
|
CorePlatformPayloads |
|
CorePlatformPayloads.ErrorSourceProto |
If included as a payload, this message contains the error source information
where the error was raised.
|
CorePlatformPayloads.ErrorSourceProto.Builder |
If included as a payload, this message contains the error source information
where the error was raised.
|
CorePlatformPayloads.ErrorSourceProto.ErrorSource |
Protobuf enum tensorflow.core.platform.ErrorSourceProto.ErrorSource
|
CorePlatformPayloads.ErrorSourceProtoOrBuilder |
|
Cos<T extends TType> |
Computes cos of x element-wise.
|
Cos.Inputs<T extends TType> |
|
Cosh<T extends TType> |
Computes hyperbolic cosine of x element-wise.
|
Cosh.Inputs<T extends TType> |
|
CostGraphDef |
Protobuf type tensorflow.CostGraphDef
|
CostGraphDef.AggregatedCost |
Total cost of this graph, typically used for balancing decisions.
|
CostGraphDef.AggregatedCost.Builder |
Total cost of this graph, typically used for balancing decisions.
|
CostGraphDef.AggregatedCostOrBuilder |
|
CostGraphDef.Builder |
Protobuf type tensorflow.CostGraphDef
|
CostGraphDef.Node |
Protobuf type tensorflow.CostGraphDef.Node
|
CostGraphDef.Node.Builder |
Protobuf type tensorflow.CostGraphDef.Node
|
CostGraphDef.Node.InputInfo |
Inputs of this node.
|
CostGraphDef.Node.InputInfo.Builder |
Inputs of this node.
|
CostGraphDef.Node.InputInfoOrBuilder |
|
CostGraphDef.Node.OutputInfo |
Outputs of this node.
|
CostGraphDef.Node.OutputInfo.Builder |
Outputs of this node.
|
CostGraphDef.Node.OutputInfoOrBuilder |
|
CostGraphDef.NodeOrBuilder |
|
CostGraphDefOrBuilder |
|
CostGraphProtos |
|
CountUpTo<T extends TNumber> |
Increments 'ref' until it reaches 'limit'.
|
CountUpTo.Inputs<T extends TNumber> |
|
CPUInfo |
Protobuf type tensorflow.CPUInfo
|
CPUInfo.Builder |
Protobuf type tensorflow.CPUInfo
|
CPUInfoOrBuilder |
|
Create_func_TF_OpKernelConstruction |
|
CreateSummaryDbWriter |
The CreateSummaryDbWriter operation
|
CreateSummaryDbWriter.Inputs |
|
CreateSummaryFileWriter |
The CreateSummaryFileWriter operation
|
CreateSummaryFileWriter.Inputs |
|
CropAndResize |
Extracts crops from the input image tensor and resizes them.
|
CropAndResize.Inputs |
|
CropAndResize.Options |
|
CropAndResizeGradBoxes |
Computes the gradient of the crop_and_resize op wrt the input boxes tensor.
|
CropAndResizeGradBoxes.Inputs |
|
CropAndResizeGradBoxes.Options |
|
CropAndResizeGradImage<T extends TNumber> |
Computes the gradient of the crop_and_resize op wrt the input image tensor.
|
CropAndResizeGradImage.Inputs |
|
CropAndResizeGradImage.Options |
|
Cross<T extends TNumber> |
Compute the pairwise cross product.
|
Cross.Inputs<T extends TNumber> |
|
CrossReplicaSum<T extends TNumber> |
An Op to sum inputs across replicated TPU instances.
|
CrossReplicaSum.Inputs<T extends TNumber> |
|
CSRSparseMatrixComponents<T extends TType> |
Reads out the CSR components at batch index .
|
CSRSparseMatrixComponents.Inputs |
|
CSRSparseMatrixToDense<T extends TType> |
Convert a (possibly batched) CSRSparseMatrix to dense.
|
CSRSparseMatrixToDense.Inputs |
|
CSRSparseMatrixToSparseTensor<T extends TType> |
Converts a (possibly batched) CSRSparesMatrix to a SparseTensor.
|
CSRSparseMatrixToSparseTensor.Inputs |
|
CSVDataset |
The CSVDatasetV2 operation
|
CSVDataset |
The ExperimentalCSVDataset operation
|
CSVDataset.Inputs |
|
CSVDataset.Inputs |
|
CtcBeamSearchDecoder<T extends TNumber> |
Performs beam search decoding on the logits given in input.
|
CtcBeamSearchDecoder.Inputs<T extends TNumber> |
|
CtcBeamSearchDecoder.Options |
|
CtcGreedyDecoder<T extends TNumber> |
Performs greedy decoding on the logits given in inputs.
|
CtcGreedyDecoder.Inputs<T extends TNumber> |
|
CtcGreedyDecoder.Options |
|
CtcLoss<T extends TNumber> |
Calculates the CTC Loss (log probability) for each batch entry.
|
CtcLoss.Inputs<T extends TNumber> |
|
CtcLoss.Options |
|
CTCLossV2 |
Calculates the CTC Loss (log probability) for each batch entry.
|
CTCLossV2.Inputs |
|
CTCLossV2.Options |
|
CudnnRNN<T extends TNumber> |
A RNN backed by cuDNN.
|
CudnnRNN.Inputs<T extends TNumber> |
|
CudnnRNN.Options |
|
CudnnRNNBackprop<T extends TNumber> |
Backprop step of CudnnRNNV3.
|
CudnnRNNBackprop.Inputs<T extends TNumber> |
|
CudnnRNNBackprop.Options |
|
CudnnRNNCanonicalToParams<T extends TNumber> |
Converts CudnnRNN params from canonical form to usable form.
|
CudnnRNNCanonicalToParams.Inputs<T extends TNumber> |
|
CudnnRNNCanonicalToParams.Options |
|
CudnnRnnParamsSize<T extends TNumber> |
Computes size of weights that can be used by a Cudnn RNN model.
|
CudnnRnnParamsSize.Inputs |
|
CudnnRnnParamsSize.Options |
|
CudnnRNNParamsToCanonical<T extends TNumber> |
Retrieves CudnnRNN params in canonical form.
|
CudnnRNNParamsToCanonical.Inputs<T extends TNumber> |
|
CudnnRNNParamsToCanonical.Options |
|
Cumprod<T extends TType> |
Compute the cumulative product of the tensor x along axis .
|
Cumprod.Inputs<T extends TType> |
|
Cumprod.Options |
|
Cumsum<T extends TType> |
Compute the cumulative sum of the tensor x along axis .
|
Cumsum.Inputs<T extends TType> |
|
Cumsum.Options |
Optional attributes for Cumsum
|
CumulativeLogsumexp<T extends TNumber> |
Compute the cumulative product of the tensor x along axis .
|
CumulativeLogsumexp.Inputs<T extends TNumber> |
|
CumulativeLogsumexp.Options |
|
CustomCall<T extends TType> |
Wraps the XLA CustomCall operator
documented at https://www.tensorflow.org/xla/operation_semantics#customcall.
|
CustomCall.Inputs |
|
CustomGradient<T extends RawOpInputs> |
|
DataClass |
Protobuf enum tensorflow.DataClass
|
DataFormatDimMap<T extends TNumber> |
Returns the dimension index in the destination data format given the one in
the source data format.
|
DataFormatDimMap.Inputs<T extends TNumber> |
|
DataFormatDimMap.Options |
|
DataFormatVecPermute<T extends TNumber> |
Permute input tensor from src_format to dst_format .
|
DataFormatVecPermute.Inputs<T extends TNumber> |
|
DataFormatVecPermute.Options |
|
DataOps |
An API for building data operations as Op s
|
DataService |
|
DataService.CrossTrainerCacheOptions |
Protobuf type tensorflow.data.CrossTrainerCacheOptions
|
DataService.CrossTrainerCacheOptions.Builder |
Protobuf type tensorflow.data.CrossTrainerCacheOptions
|
DataService.CrossTrainerCacheOptionsOrBuilder |
|
DataService.DataServiceConfig |
Data service config available to the client through GetDataServiceConfig RPC.
|
DataService.DataServiceConfig.Builder |
Data service config available to the client through GetDataServiceConfig RPC.
|
DataService.DataServiceConfigOrBuilder |
|
DataService.DataServiceMetadata |
Metadata related to tf.data service datasets.
|
DataService.DataServiceMetadata.Builder |
Metadata related to tf.data service datasets.
|
DataService.DataServiceMetadata.Compression |
Protobuf enum tensorflow.data.DataServiceMetadata.Compression
|
DataService.DataServiceMetadata.OptionalElementSpecCase |
|
DataService.DataServiceMetadataOrBuilder |
|
DataService.DeploymentMode |
tf.data service deployment mode.
|
DataService.ProcessingModeDef |
Next tag: 2
|
DataService.ProcessingModeDef.Builder |
Next tag: 2
|
DataService.ProcessingModeDef.ShardingPolicy |
Specifies how data is sharded among tf.data service workers.
|
DataService.ProcessingModeDefOrBuilder |
|
DataServiceDataset |
Creates a dataset that reads data from the tf.data service.
|
DataServiceDataset.Inputs |
|
DataServiceDataset.Options |
|
DatasetCardinality |
Returns the cardinality of input_dataset .
|
DatasetCardinality |
Returns the cardinality of input_dataset .
|
DatasetCardinality.Inputs |
|
DatasetCardinality.Inputs |
|
DatasetFromGraph |
Creates a dataset from the given graph_def .
|
DatasetFromGraph.Inputs |
|
DatasetMetadata |
|
DatasetMetadata.Metadata |
next: 2
|
DatasetMetadata.Metadata.Builder |
next: 2
|
DatasetMetadata.MetadataOrBuilder |
|
DatasetOptionsProtos |
|
DatasetToGraph |
Returns a serialized GraphDef representing input_dataset .
|
DatasetToGraph.Inputs |
|
DatasetToGraph.Options |
|
DatasetToSingleElement |
Outputs the single element from the given dataset.
|
DatasetToSingleElement.Inputs |
|
DatasetToSingleElement.Options |
|
DatasetToTfRecord |
Writes the given dataset to the given file using the TFRecord format.
|
DatasetToTFRecord |
Writes the given dataset to the given file using the TFRecord format.
|
DatasetToTfRecord.Inputs |
|
DatasetToTFRecord.Inputs |
|
DataType |
(== suppress_warning documentation-presence ==)
LINT.IfChange
|
Dawsn<T extends TNumber> |
The Dawsn operation
|
Dawsn.Inputs<T extends TNumber> |
|
Deallocator_Pointer_long_Pointer |
|
DebugEvent |
An Event related to the debugging of a TensorFlow program.
|
DebugEvent.Builder |
An Event related to the debugging of a TensorFlow program.
|
DebugEvent.WhatCase |
|
DebugEventOrBuilder |
|
DebugEventProtos |
|
DebuggedDevice |
A device on which ops and/or tensors are instrumented by the debugger.
|
DebuggedDevice.Builder |
A device on which ops and/or tensors are instrumented by the debugger.
|
DebuggedDeviceOrBuilder |
|
DebuggedGraph |
A debugger-instrumented graph.
|
DebuggedGraph.Builder |
A debugger-instrumented graph.
|
DebuggedGraphOrBuilder |
|
DebuggedSourceFile |
Protobuf type tensorflow.DebuggedSourceFile
|
DebuggedSourceFile.Builder |
Protobuf type tensorflow.DebuggedSourceFile
|
DebuggedSourceFileOrBuilder |
|
DebuggedSourceFiles |
Protobuf type tensorflow.DebuggedSourceFiles
|
DebuggedSourceFiles.Builder |
Protobuf type tensorflow.DebuggedSourceFiles
|
DebuggedSourceFilesOrBuilder |
|
DebugGradientIdentity<T extends TType> |
Identity op for gradient debugging.
|
DebugGradientIdentity.Inputs<T extends TType> |
|
DebugGradientRefIdentity<T extends TType> |
Identity op for gradient debugging.
|
DebugGradientRefIdentity.Inputs<T extends TType> |
|
DebugIdentity<T extends TType> |
Debug Identity V2 Op.
|
DebugIdentity.Inputs<T extends TType> |
|
DebugIdentity.Options |
|
DebugMetadata |
Metadata about the debugger and the debugged TensorFlow program.
|
DebugMetadata.Builder |
Metadata about the debugger and the debugged TensorFlow program.
|
DebugMetadataOrBuilder |
|
DebugNanCount |
Debug NaN Value Counter Op.
|
DebugNanCount.Inputs |
|
DebugNanCount.Options |
|
DebugNumericsSummary<U extends TNumber> |
Debug Numeric Summary V2 Op.
|
DebugNumericsSummary.Inputs |
|
DebugNumericsSummary.Options |
|
DebugOptions |
Options for initializing DebuggerState in TensorFlow Debugger (tfdbg).
|
DebugOptions.Builder |
Options for initializing DebuggerState in TensorFlow Debugger (tfdbg).
|
DebugOptionsOrBuilder |
|
DebugProtos |
|
DebugTensorWatch |
Option for watching a node in TensorFlow Debugger (tfdbg).
|
DebugTensorWatch.Builder |
Option for watching a node in TensorFlow Debugger (tfdbg).
|
DebugTensorWatchOrBuilder |
|
DecodeAndCropJpeg |
Decode and Crop a JPEG-encoded image to a uint8 tensor.
|
DecodeAndCropJpeg.Inputs |
|
DecodeAndCropJpeg.Options |
|
DecodeBase64 |
Decode web-safe base64-encoded strings.
|
DecodeBase64.Inputs |
|
DecodeBmp |
Decode the first frame of a BMP-encoded image to a uint8 tensor.
|
DecodeBmp.Inputs |
|
DecodeBmp.Options |
|
DecodeCompressed |
Decompress strings.
|
DecodeCompressed.Inputs |
|
DecodeCompressed.Options |
|
DecodeCsv |
Convert CSV records to tensors.
|
DecodeCsv.Inputs |
|
DecodeCsv.Options |
|
DecodeGif |
Decode the frame(s) of a GIF-encoded image to a uint8 tensor.
|
DecodeGif.Inputs |
|
DecodeImage<T extends TNumber> |
Function for decode_bmp, decode_gif, decode_jpeg, and decode_png.
|
DecodeImage.Inputs |
|
DecodeImage.Options |
|
DecodeJpeg |
Decode a JPEG-encoded image to a uint8 tensor.
|
DecodeJpeg.Inputs |
|
DecodeJpeg.Options |
|
DecodeJsonExample |
Convert JSON-encoded Example records to binary protocol buffer strings.
|
DecodeJsonExample.Inputs |
|
DecodePaddedRaw<T extends TNumber> |
Reinterpret the bytes of a string as a vector of numbers.
|
DecodePaddedRaw.Inputs |
|
DecodePaddedRaw.Options |
|
DecodePng<T extends TNumber> |
Decode a PNG-encoded image to a uint8 or uint16 tensor.
|
DecodePng.Inputs |
|
DecodePng.Options |
|
DecodeProto |
The op extracts fields from a serialized protocol buffers message into tensors.
|
DecodeProto.Inputs |
|
DecodeProto.Options |
|
DecodeRaw<T extends TType> |
Reinterpret the bytes of a string as a vector of numbers.
|
DecodeRaw.Inputs |
|
DecodeRaw.Options |
|
DecodeWav |
Decode a 16-bit PCM WAV file to a float tensor.
|
DecodeWav.Inputs |
|
DecodeWav.Options |
|
DeepCopy<T extends TType> |
Makes a copy of x .
|
DeepCopy.Inputs<T extends TType> |
|
Delete_func_Pointer |
|
DeleteIterator |
A container for an iterator resource.
|
DeleteIterator.Inputs |
|
DeleteMemoryCache |
The DeleteMemoryCache operation
|
DeleteMemoryCache.Inputs |
|
DeleteMultiDeviceIterator |
A container for an iterator resource.
|
DeleteMultiDeviceIterator.Inputs |
|
DeleteRandomSeedGenerator |
The DeleteRandomSeedGenerator operation
|
DeleteRandomSeedGenerator.Inputs |
|
DeleteSeedGenerator |
The DeleteSeedGenerator operation
|
DeleteSeedGenerator.Inputs |
|
DeleteSessionTensor |
Delete the tensor specified by its handle in the session.
|
DeleteSessionTensor.Inputs |
|
DenseBincount<U extends TNumber> |
Counts the number of occurrences of each value in an integer array.
|
DenseBincount.Inputs<T extends TNumber,U extends TNumber> |
|
DenseBincount.Options |
|
DenseCountSparseOutput<U extends TNumber> |
Performs sparse-output bin counting for a tf.tensor input.
|
DenseCountSparseOutput.Inputs<U extends TNumber> |
|
DenseCountSparseOutput.Options |
|
DenseToCSRSparseMatrix |
Converts a dense tensor to a (possibly batched) CSRSparseMatrix.
|
DenseToCSRSparseMatrix.Inputs |
|
DenseToDenseSetOperation<T extends TType> |
Applies set operation along last dimension of 2 Tensor inputs.
|
DenseToDenseSetOperation.Inputs<T extends TType> |
|
DenseToDenseSetOperation.Options |
|
DenseToSparseBatchDataset |
Creates a dataset that batches input elements into a SparseTensor.
|
DenseToSparseBatchDataset |
Creates a dataset that batches input elements into a SparseTensor.
|
DenseToSparseBatchDataset.Inputs |
|
DenseToSparseBatchDataset.Inputs |
|
DenseToSparseSetOperation<T extends TType> |
Applies set operation along last dimension of Tensor and SparseTensor .
|
DenseToSparseSetOperation.Inputs<T extends TType> |
|
DenseToSparseSetOperation.Options |
|
DepthToSpace<T extends TType> |
DepthToSpace for tensors of type T.
|
DepthToSpace.Inputs<T extends TType> |
|
DepthToSpace.Options |
|
DepthwiseConv2dNative<T extends TNumber> |
Computes a 2-D depthwise convolution given 4-D input and filter tensors.
|
DepthwiseConv2dNative.Inputs<T extends TNumber> |
|
DepthwiseConv2dNative.Options |
|
DepthwiseConv2dNativeBackpropFilter<T extends TNumber> |
Computes the gradients of depthwise convolution with respect to the filter.
|
DepthwiseConv2dNativeBackpropFilter.Inputs<T extends TNumber> |
|
DepthwiseConv2dNativeBackpropFilter.Options |
|
DepthwiseConv2dNativeBackpropInput<T extends TNumber> |
Computes the gradients of depthwise convolution with respect to the input.
|
DepthwiseConv2dNativeBackpropInput.Inputs<T extends TNumber> |
|
DepthwiseConv2dNativeBackpropInput.Options |
|
Dequantize<U extends TNumber> |
Dequantize the 'input' tensor into a float or bfloat16 Tensor.
|
Dequantize |
Takes the packed uint32 input and unpacks the input to uint8 to do
Dequantization on device.
|
Dequantize.Inputs |
|
Dequantize.Inputs |
|
Dequantize.Options |
|
DeserializeIterator |
Converts the given variant tensor to an iterator and stores it in the given resource.
|
DeserializeIterator.Inputs |
|
DeserializeManySparse<T extends TType> |
Deserialize and concatenate SparseTensors from a serialized minibatch.
|
DeserializeManySparse.Inputs |
|
DeserializeSparse<U extends TType> |
Deserialize SparseTensor objects.
|
DeserializeSparse.Inputs |
|
DestroyResourceOp |
Deletes the resource specified by the handle.
|
DestroyResourceOp.Inputs |
|
DestroyResourceOp.Options |
|
DestroyTemporaryVariable<T extends TType> |
Destroys the temporary variable and returns its final value.
|
DestroyTemporaryVariable.Inputs<T extends TType> |
|
Det<T extends TType> |
Computes the determinant of one or more square matrices.
|
Det.Inputs<T extends TType> |
|
DeviceAttributes |
Protobuf type tensorflow.DeviceAttributes
|
DeviceAttributes.Builder |
Protobuf type tensorflow.DeviceAttributes
|
DeviceAttributesOrBuilder |
|
DeviceAttributesProtos |
|
DeviceFiltersProtos |
|
DeviceIndex |
Return the index of device the op runs.
|
DeviceIndex.Inputs |
|
DeviceLocality |
Protobuf type tensorflow.DeviceLocality
|
DeviceLocality.Builder |
Protobuf type tensorflow.DeviceLocality
|
DeviceLocalityOrBuilder |
|
DeviceProperties |
Protobuf type tensorflow.DeviceProperties
|
DeviceProperties.Builder |
Protobuf type tensorflow.DeviceProperties
|
DevicePropertiesOrBuilder |
|
DevicePropertiesProtos |
|
DeviceSpec |
Represents a (possibly partial) specification for a TensorFlow device.
|
DeviceSpec.Builder |
|
DeviceSpec.DeviceType |
|
DeviceStepStats |
Protobuf type tensorflow.DeviceStepStats
|
DeviceStepStats.Builder |
Protobuf type tensorflow.DeviceStepStats
|
DeviceStepStatsOrBuilder |
|
DictValue |
Represents a Python dict keyed by `str`.
|
DictValue.Builder |
Represents a Python dict keyed by `str`.
|
DictValueOrBuilder |
|
Digamma<T extends TNumber> |
Computes Psi, the derivative of Lgamma (the log of the absolute value of
Gamma(x) ), element-wise.
|
Digamma.Inputs<T extends TNumber> |
|
Dilation2d<T extends TNumber> |
Computes the grayscale dilation of 4-D input and 3-D filter tensors.
|
Dilation2d.Inputs<T extends TNumber> |
|
Dilation2dBackpropFilter<T extends TNumber> |
Computes the gradient of morphological 2-D dilation with respect to the filter.
|
Dilation2dBackpropFilter.Inputs<T extends TNumber> |
|
Dilation2dBackpropInput<T extends TNumber> |
Computes the gradient of morphological 2-D dilation with respect to the input.
|
Dilation2dBackpropInput.Inputs<T extends TNumber> |
|
DirectedInterleaveDataset |
A substitute for InterleaveDataset on a fixed list of N datasets.
|
DirectedInterleaveDataset |
A substitute for InterleaveDataset on a fixed list of N datasets.
|
DirectedInterleaveDataset.Inputs |
|
DirectedInterleaveDataset.Inputs |
|
DirectedInterleaveDataset.Options |
|
DisableCopyOnRead |
Turns off the copy-on-read mode.
|
DisableCopyOnRead.Inputs |
|
DistributedRuntimePayloads |
|
DistributedRuntimePayloads.GrpcPayloadContainer |
Used to serialize and transmit tensorflow::Status payloads through
grpc::Status `error_details` since grpc::Status lacks payload API.
|
DistributedRuntimePayloads.GrpcPayloadContainer.Builder |
Used to serialize and transmit tensorflow::Status payloads through
grpc::Status `error_details` since grpc::Status lacks payload API.
|
DistributedRuntimePayloads.GrpcPayloadContainerOrBuilder |
|
DistributedRuntimePayloads.GrpcPayloadsLost |
If included as a payload, this message flags the Status to have lost payloads
during the GRPC transmission.
|
DistributedRuntimePayloads.GrpcPayloadsLost.Builder |
If included as a payload, this message flags the Status to have lost payloads
during the GRPC transmission.
|
DistributedRuntimePayloads.GrpcPayloadsLostOrBuilder |
|
DistributedRuntimePayloads.WorkerPossiblyRestarted |
If included as a payload, this message flags the Status to be a possible
outcome of a worker restart.
|
DistributedRuntimePayloads.WorkerPossiblyRestarted.Builder |
If included as a payload, this message flags the Status to be a possible
outcome of a worker restart.
|
DistributedRuntimePayloads.WorkerPossiblyRestartedOrBuilder |
|
DistributeOptions |
next: 3
|
DistributeOptions.Builder |
next: 3
|
DistributeOptions.OptionalNumDevicesCase |
|
DistributeOptionsOrBuilder |
|
Div<T extends TType> |
Returns x / y element-wise.
|
Div.Inputs<T extends TType> |
|
DivNoNan<T extends TType> |
Returns 0 if the denominator is zero.
|
DivNoNan.Inputs<T extends TType> |
|
Dot<V extends TType> |
Wraps the XLA DotGeneral operator, documented at
https://www.tensorflow.org/performance/xla/operation_semantics#dotgeneral
.
|
Dot.Inputs |
|
DrawBoundingBoxes<T extends TNumber> |
Draw bounding boxes on a batch of images.
|
DrawBoundingBoxes.Inputs<T extends TNumber> |
|
DTensorRestore |
The DTensorRestoreV2 operation
|
DTensorRestore.Inputs |
|
DTensorShardedPrefix |
The DTensorShardedPrefix operation
|
DTensorShardedPrefix.Inputs |
|
DtypesOps |
An API for building dtypes operations as Op s
|
DummyIterationCounter |
The DummyIterationCounter operation
|
DummyIterationCounter.Inputs |
|
DummyMemoryCache |
The DummyMemoryCache operation
|
DummyMemoryCache.Inputs |
|
DummySeedGenerator |
The DummySeedGenerator operation
|
DummySeedGenerator.Inputs |
|
DynamicEnqueueTPUEmbeddingArbitraryTensorBatch |
Eases the porting of code that uses tf.nn.embedding_lookup_sparse().
|
DynamicEnqueueTPUEmbeddingArbitraryTensorBatch.Inputs |
|
DynamicEnqueueTPUEmbeddingArbitraryTensorBatch.Options |
|
DynamicPartition<T extends TType> |
Partitions data into num_partitions tensors using indices from partitions .
|
DynamicPartition.Inputs<T extends TType> |
|
DynamicSlice<T extends TType> |
Wraps the XLA DynamicSlice operator, documented at
https://www.tensorflow.org/performance/xla/operation_semantics#dynamicslice
.
|
DynamicSlice.Inputs<T extends TType,U extends TNumber> |
|
DynamicStitch<T extends TType> |
Interleave the values from the data tensors into a single tensor.
|
DynamicStitch.Inputs<T extends TType> |
|
DynamicUpdateSlice<T extends TType> |
Wraps the XLA DynamicUpdateSlice operator, documented at
https://www.tensorflow.org/performance/xla/operation_semantics#dynamicupdateslice
.
|
DynamicUpdateSlice.Inputs<T extends TType> |
|
EagerSession |
An environment for executing TensorFlow operations eagerly.
|
EagerSession.DevicePlacementPolicy |
Controls how to act when we try to run an operation on a given device but some input tensors
are not on that device.
|
EagerSession.Options |
|
EditDistance |
Computes the (possibly normalized) Levenshtein Edit Distance.
|
EditDistance.Inputs<T extends TType> |
|
EditDistance.Options |
|
Eig<U extends TType> |
Computes the eigen decomposition of one or more square matrices.
|
Eig.Inputs |
|
Eig.Options |
Optional attributes for Eig
|
Einsum<T extends TType> |
Tensor contraction according to Einstein summation convention.
|
Einsum<T extends TType> |
An op which supports basic einsum op with 2 inputs and 1 output.
|
Einsum.Inputs<T extends TType> |
|
Einsum.Inputs<T extends TType> |
|
Elu<T extends TNumber> |
Computes the exponential linear function.
|
Elu.Inputs<T extends TNumber> |
|
EluGrad<T extends TNumber> |
Computes gradients for the exponential linear (Elu) operation.
|
EluGrad.Inputs<T extends TNumber> |
|
EmbeddingActivations |
An op enabling differentiation of TPU Embeddings.
|
EmbeddingActivations.Inputs |
|
Empty<T extends TType> |
Creates a tensor with the given shape.
|
Empty.Inputs |
|
Empty.Options |
Optional attributes for Empty
|
EmptyTensorList |
Creates and returns an empty tensor list.
|
EmptyTensorList.Inputs |
|
EmptyTensorMap |
Creates and returns an empty tensor map.
|
EmptyTensorMap.Inputs |
|
EncodeBase64 |
Encode strings into web-safe base64 format.
|
EncodeBase64.Inputs |
|
EncodeBase64.Options |
|
EncodeJpeg |
JPEG-encode an image.
|
EncodeJpeg.Inputs |
|
EncodeJpeg.Options |
|
EncodeJpegVariableQuality |
JPEG encode input image with provided compression quality.
|
EncodeJpegVariableQuality.Inputs |
|
EncodePng |
PNG-encode an image.
|
EncodePng.Inputs |
|
EncodePng.Options |
|
EncodeProto |
The op serializes protobuf messages provided in the input tensors.
|
EncodeProto.Inputs |
|
EncodeProto.Options |
|
EncodeWav |
Encode audio data using the WAV file format.
|
EncodeWav.Inputs |
|
Endpoint |
Annotation used to mark a method of a class annotated with @Operator that should
generate an endpoint into Ops or one of its groups.
|
EnqueueTPUEmbeddingArbitraryTensorBatch |
Eases the porting of code that uses tf.nn.embedding_lookup_sparse().
|
EnqueueTPUEmbeddingArbitraryTensorBatch.Inputs |
|
EnqueueTPUEmbeddingArbitraryTensorBatch.Options |
|
EnqueueTPUEmbeddingBatch |
An op that enqueues a list of input batch tensors to TPUEmbedding.
|
EnqueueTPUEmbeddingBatch.Inputs |
|
EnqueueTPUEmbeddingBatch.Options |
|
EnqueueTPUEmbeddingIntegerBatch |
An op that enqueues a list of input batch tensors to TPUEmbedding.
|
EnqueueTPUEmbeddingIntegerBatch.Inputs |
|
EnqueueTPUEmbeddingIntegerBatch.Options |
|
EnqueueTPUEmbeddingRaggedTensorBatch |
Eases the porting of code that uses tf.nn.embedding_lookup().
|
EnqueueTPUEmbeddingRaggedTensorBatch.Inputs |
|
EnqueueTPUEmbeddingRaggedTensorBatch.Options |
|
EnqueueTPUEmbeddingSparseBatch |
An op that enqueues TPUEmbedding input indices from a SparseTensor.
|
EnqueueTPUEmbeddingSparseBatch.Inputs |
|
EnqueueTPUEmbeddingSparseBatch.Options |
|
EnqueueTPUEmbeddingSparseTensorBatch |
Eases the porting of code that uses tf.nn.embedding_lookup_sparse().
|
EnqueueTPUEmbeddingSparseTensorBatch.Inputs |
|
EnqueueTPUEmbeddingSparseTensorBatch.Options |
|
EnsureShape<T extends TType> |
Ensures that the tensor's shape matches the expected shape.
|
EnsureShape.Inputs<T extends TType> |
|
Enter<T extends TType> |
Creates or finds a child frame, and makes data available to the child frame.
|
Enter.Inputs<T extends TType> |
|
Enter.Options |
Optional attributes for Enter
|
EntryValue |
Protobuf type tensorflow.EntryValue
|
EntryValue.Builder |
Protobuf type tensorflow.EntryValue
|
EntryValue.KindCase |
|
EntryValueOrBuilder |
|
Equal |
Returns the truth value of (x == y) element-wise.
|
Equal.Inputs<T extends TType> |
|
Equal.Options |
Optional attributes for Equal
|
Erf<T extends TNumber> |
|
Erf.Inputs<T extends TNumber> |
|
Erfc<T extends TNumber> |
Computes the complementary error function of x element-wise.
|
Erfc.Inputs<T extends TNumber> |
|
erfinv<T extends TNumber> |
The Erfinv operation
|
erfinv.Inputs<T extends TNumber> |
|
ErrorCodes |
|
ErrorCodesProtos |
|
EuclideanNorm<T extends TType> |
Computes the euclidean norm of elements across dimensions of a tensor.
|
EuclideanNorm.Inputs<T extends TType> |
|
EuclideanNorm.Options |
|
Event |
Protocol buffer representing an event that happened during
the execution of a Brain model.
|
Event.Builder |
Protocol buffer representing an event that happened during
the execution of a Brain model.
|
Event.WhatCase |
|
EventOrBuilder |
|
EventProtos |
|
Example |
Protobuf type tensorflow.Example
|
Example.Builder |
Protobuf type tensorflow.Example
|
ExampleOrBuilder |
|
ExampleParserConfiguration |
Protobuf type tensorflow.ExampleParserConfiguration
|
ExampleParserConfiguration.Builder |
Protobuf type tensorflow.ExampleParserConfiguration
|
ExampleParserConfigurationOrBuilder |
|
ExampleParserConfigurationProtos |
|
ExampleProtos |
|
Execute |
Op that loads and executes a TPU program on a TPU device.
|
Execute.Inputs |
|
ExecuteAndUpdateVariables |
Op that executes a program with optional in-place variable updates.
|
ExecuteAndUpdateVariables.Inputs |
|
ExecuteTPUEmbeddingPartitioner |
An op that executes the TPUEmbedding partitioner on the central configuration
device and computes the HBM size (in bytes) required for TPUEmbedding operation.
|
ExecuteTPUEmbeddingPartitioner.Inputs |
|
Execution |
Data relating to the eager execution of an op or a Graph.
|
Execution.Builder |
Data relating to the eager execution of an op or a Graph.
|
ExecutionEnvironment |
Defines an environment for creating and executing TensorFlow Operation s.
|
ExecutionEnvironment.Types |
|
ExecutionOrBuilder |
|
Exit<T extends TType> |
Exits the current frame to its parent frame.
|
Exit.Inputs<T extends TType> |
|
Exp<T extends TType> |
Computes exponential of x element-wise.
|
Exp.Inputs<T extends TType> |
|
ExpandDims<T extends TType> |
Inserts a dimension of 1 into a tensor's shape.
|
ExpandDims.Inputs<T extends TType> |
|
Expint<T extends TNumber> |
The Expint operation
|
Expint.Inputs<T extends TNumber> |
|
Expm1<T extends TType> |
Computes exp(x) - 1 element-wise.
|
Expm1.Inputs<T extends TType> |
|
ExternalStatePolicy |
Represents how to handle external state during serialization.
|
ExtractGlimpse |
Extracts a glimpse from the input tensor.
|
ExtractGlimpse.Inputs |
|
ExtractGlimpse.Options |
|
ExtractImagePatches<T extends TType> |
Extract patches from images and put them in the "depth" output dimension.
|
ExtractImagePatches.Inputs<T extends TType> |
|
ExtractJpegShape<T extends TNumber> |
Extract the shape information of a JPEG-encoded image.
|
ExtractJpegShape.Inputs |
|
ExtractVolumePatches<T extends TNumber> |
Extract patches from input and put them in the "depth" output dimension.
|
ExtractVolumePatches.Inputs<T extends TNumber> |
|
Fact |
Output a fact about factorials.
|
Fact.Inputs |
|
FakeQuantWithMinMaxArgs |
Fake-quantize the 'inputs' tensor, type float to 'outputs' tensor of same type.
|
FakeQuantWithMinMaxArgs.Inputs |
|
FakeQuantWithMinMaxArgs.Options |
|
FakeQuantWithMinMaxArgsGradient |
Compute gradients for a FakeQuantWithMinMaxArgs operation.
|
FakeQuantWithMinMaxArgsGradient.Inputs |
|
FakeQuantWithMinMaxArgsGradient.Options |
|
FakeQuantWithMinMaxVars |
Fake-quantize the 'inputs' tensor of type float via global float scalars
Fake-quantize the inputs tensor of type float via global float scalars
min and max to outputs tensor of same shape as inputs .
|
FakeQuantWithMinMaxVars.Inputs |
|
FakeQuantWithMinMaxVars.Options |
|
FakeQuantWithMinMaxVarsGradient |
Compute gradients for a FakeQuantWithMinMaxVars operation.
|
FakeQuantWithMinMaxVarsGradient.Inputs |
|
FakeQuantWithMinMaxVarsGradient.Options |
|
FakeQuantWithMinMaxVarsPerChannel |
Fake-quantize the 'inputs' tensor of type float via per-channel floats
Fake-quantize the inputs tensor of type float per-channel and one of the
shapes: [d] , [b, d] [b, h, w, d] via per-channel floats min and max
of shape [d] to outputs tensor of same shape as inputs .
|
FakeQuantWithMinMaxVarsPerChannel.Inputs |
|
FakeQuantWithMinMaxVarsPerChannel.Options |
|
FakeQuantWithMinMaxVarsPerChannelGradient |
Compute gradients for a FakeQuantWithMinMaxVarsPerChannel operation.
|
FakeQuantWithMinMaxVarsPerChannelGradient.Inputs |
|
FakeQuantWithMinMaxVarsPerChannelGradient.Options |
|
Feature |
Containers for non-sequential data.
|
Feature.Builder |
Containers for non-sequential data.
|
Feature.KindCase |
|
FeatureConfiguration |
Protobuf type tensorflow.FeatureConfiguration
|
FeatureConfiguration.Builder |
Protobuf type tensorflow.FeatureConfiguration
|
FeatureConfiguration.ConfigCase |
|
FeatureConfigurationOrBuilder |
|
FeatureList |
Containers for sequential data.
|
FeatureList.Builder |
Containers for sequential data.
|
FeatureListOrBuilder |
|
FeatureLists |
Protobuf type tensorflow.FeatureLists
|
FeatureLists.Builder |
Protobuf type tensorflow.FeatureLists
|
FeatureListsOrBuilder |
|
FeatureOrBuilder |
|
FeatureProtos |
|
Features |
Protobuf type tensorflow.Features
|
Features.Builder |
Protobuf type tensorflow.Features
|
FeaturesOrBuilder |
|
Fft<T extends TType> |
Fast Fourier transform.
|
Fft.Inputs<T extends TType> |
|
Fft2d<T extends TType> |
2D fast Fourier transform.
|
Fft2d.Inputs<T extends TType> |
|
Fft3d<T extends TType> |
3D fast Fourier transform.
|
Fft3d.Inputs<T extends TType> |
|
FifoQueue |
A queue that produces elements in first-in first-out order.
|
FifoQueue.Inputs |
|
FifoQueue.Options |
|
FileSystemSetConfiguration |
Set configuration of the file system.
|
FileSystemSetConfiguration.Inputs |
|
Fill<U extends TType> |
Creates a tensor filled with a scalar value.
|
Fill.Inputs<U extends TType> |
|
FilterByLastComponentDataset |
Creates a dataset containing elements of first component of input_dataset having true in the last component.
|
FilterByLastComponentDataset.Inputs |
|
FilterDataset |
Creates a dataset containing elements of input_dataset matching predicate .
|
FilterDataset.Inputs |
|
FilterDataset.Options |
|
FinalizeDataset |
Creates a dataset by applying tf.data.Options to input_dataset .
|
FinalizeDataset.Inputs |
|
FinalizeDataset.Options |
|
FinalizeTPUEmbedding |
An op that finalizes the TPUEmbedding configuration.
|
FinalizeTPUEmbedding.Inputs |
|
Fingerprint |
Generates fingerprint values.
|
Fingerprint.Inputs |
|
FingerprintDef |
Protocol buffer representing a SavedModel Fingerprint.
|
FingerprintDef.Builder |
Protocol buffer representing a SavedModel Fingerprint.
|
FingerprintDefOrBuilder |
|
FingerprintProtos |
|
FixedLenFeatureProto |
Protobuf type tensorflow.FixedLenFeatureProto
|
FixedLenFeatureProto.Builder |
Protobuf type tensorflow.FixedLenFeatureProto
|
FixedLenFeatureProtoOrBuilder |
|
FixedLengthRecordDataset |
The FixedLengthRecordDatasetV2 operation
|
FixedLengthRecordDataset.Inputs |
|
FixedLengthRecordDataset.Options |
|
FixedLengthRecordReader |
A Reader that outputs fixed-length records from a file.
|
FixedLengthRecordReader.Inputs |
|
FixedLengthRecordReader.Options |
|
FixedUnigramCandidateSampler |
Generates labels for candidate sampling with a learned unigram distribution.
|
FixedUnigramCandidateSampler.Inputs |
|
FixedUnigramCandidateSampler.Options |
|
FlatMapDataset |
Creates a dataset that applies f to the outputs of input_dataset .
|
FlatMapDataset.Inputs |
|
FlatMapDataset.Options |
|
FloatList |
Protobuf type tensorflow.FloatList
|
FloatList.Builder |
Protobuf type tensorflow.FloatList
|
FloatListOrBuilder |
|
Floor<T extends TNumber> |
Returns element-wise largest integer not greater than x.
|
Floor.Inputs<T extends TNumber> |
|
FloorDiv<T extends TType> |
Returns x // y element-wise.
|
FloorDiv.Inputs<T extends TType> |
|
FloorMod<T extends TNumber> |
Returns element-wise remainder of division.
|
FloorMod.Inputs<T extends TNumber> |
|
FlushSummaryWriter |
The FlushSummaryWriter operation
|
FlushSummaryWriter.Inputs |
|
For |
Applies a for loop.
|
For.Inputs |
|
FractionalAvgPool<T extends TNumber> |
Performs fractional average pooling on the input.
|
FractionalAvgPool.Inputs<T extends TNumber> |
|
FractionalAvgPool.Options |
|
FractionalAvgPoolGrad<T extends TNumber> |
Computes gradient of the FractionalAvgPool function.
|
FractionalAvgPoolGrad.Inputs<T extends TNumber> |
|
FractionalAvgPoolGrad.Options |
|
FractionalMaxPool<T extends TNumber> |
Performs fractional max pooling on the input.
|
FractionalMaxPool.Inputs<T extends TNumber> |
|
FractionalMaxPool.Options |
|
FractionalMaxPoolGrad<T extends TNumber> |
Computes gradient of the FractionalMaxPool function.
|
FractionalMaxPoolGrad.Inputs<T extends TNumber> |
|
FractionalMaxPoolGrad.Options |
|
FresnelCos<T extends TNumber> |
The FresnelCos operation
|
FresnelCos.Inputs<T extends TNumber> |
|
FresnelSin<T extends TNumber> |
The FresnelSin operation
|
FresnelSin.Inputs<T extends TNumber> |
|
FullTypeDef |
Highly experimental and very likely to change.
|
FullTypeDef.AttrCase |
|
FullTypeDef.Builder |
Highly experimental and very likely to change.
|
FullTypeDefOrBuilder |
|
FullTypeId |
LINT.IfChange
Experimental.
|
FullTypeProtos |
|
Function |
|
FunctionDef |
A function can be instantiated when the runtime can bind every attr
with a value.
|
FunctionDef.ArgAttrs |
Attributes for function arguments.
|
FunctionDef.ArgAttrs.Builder |
Attributes for function arguments.
|
FunctionDef.ArgAttrsOrBuilder |
|
FunctionDef.Builder |
A function can be instantiated when the runtime can bind every attr
with a value.
|
FunctionDefLibrary |
A library is a set of named functions.
|
FunctionDefLibrary.Builder |
A library is a set of named functions.
|
FunctionDefLibraryOrBuilder |
|
FunctionDefOrBuilder |
|
FunctionProtos |
|
FunctionSpec |
Represents `FunctionSpec` used in `Function`.
|
FunctionSpec.Builder |
Represents `FunctionSpec` used in `Function`.
|
FunctionSpec.JitCompile |
Whether the function should be compiled by XLA.
|
FunctionSpecOrBuilder |
|
FusedBatchNorm<T extends TNumber,U extends TNumber> |
Batch normalization.
|
FusedBatchNorm.Inputs<T extends TNumber,U extends TNumber> |
|
FusedBatchNorm.Options |
|
FusedBatchNormGrad<T extends TNumber,U extends TNumber> |
Gradient for batch normalization.
|
FusedBatchNormGrad.Inputs<T extends TNumber,U extends TNumber> |
|
FusedBatchNormGrad.Options |
|
FusedPadConv2d<T extends TNumber> |
Performs a padding as a preprocess during a convolution.
|
FusedPadConv2d.Inputs<T extends TNumber> |
|
FusedResizeAndPadConv2d<T extends TNumber> |
Performs a resize and padding as a preprocess during a convolution.
|
FusedResizeAndPadConv2d.Inputs<T extends TNumber> |
|
FusedResizeAndPadConv2d.Options |
|
Gather<T extends TType> |
Gather slices from params axis axis according to indices .
|
Gather<T extends TType> |
Wraps the XLA Gather operator documented at
https://www.tensorflow.org/xla/operation_semantics#gather
|
Gather.Inputs<T extends TType> |
|
Gather.Inputs<T extends TType,U extends TNumber> |
|
Gather.Options |
Optional attributes for Gather
|
GatherNd<T extends TType> |
Gather slices from params into a Tensor with shape specified by indices .
|
GatherNd.Inputs<T extends TType> |
|
GenerateBoundingBoxProposals |
This op produces Region of Interests from given bounding boxes(bbox_deltas) encoded wrt anchors according to eq.2 in arXiv:1506.01497
|
GenerateBoundingBoxProposals.Inputs |
|
GenerateBoundingBoxProposals.Options |
|
GenerateVocabRemapping |
Given a path to new and old vocabulary files, returns a remapping Tensor of
length num_new_vocab , where remapping[i] contains the row number in the old
vocabulary that corresponds to row i in the new vocabulary (starting at line
new_vocab_offset and up to num_new_vocab entities), or -1 if entry i
in the new vocabulary is not in the old vocabulary.
|
GenerateVocabRemapping.Inputs |
|
GenerateVocabRemapping.Options |
|
GeneratorDataset |
Creates a dataset that invokes a function to generate elements.
|
GeneratorDataset.Inputs |
|
GeneratorDataset.Options |
|
GetElementAtIndex |
Gets the element at the specified index in a dataset.
|
GetElementAtIndex.Inputs |
|
GetOptions |
Returns the tf.data.Options attached to input_dataset .
|
GetOptions.Inputs |
|
GetSessionHandle |
Store the input tensor in the state of the current session.
|
GetSessionHandle.Inputs |
|
GetSessionTensor<T extends TType> |
Get the value of the tensor specified by its handle.
|
GetSessionTensor.Inputs |
|
GPUInfo |
Protobuf type tensorflow.GPUInfo
|
GPUInfo.Builder |
Protobuf type tensorflow.GPUInfo
|
GPUInfoOrBuilder |
|
GPUOptions |
Protobuf type tensorflow.GPUOptions
|
GPUOptions.Builder |
Protobuf type tensorflow.GPUOptions
|
GPUOptions.Experimental |
Protobuf type tensorflow.GPUOptions.Experimental
|
GPUOptions.Experimental.Builder |
Protobuf type tensorflow.GPUOptions.Experimental
|
GPUOptions.Experimental.VirtualDevices |
Configuration for breaking down a visible GPU into multiple "virtual"
devices.
|
GPUOptions.Experimental.VirtualDevices.Builder |
Configuration for breaking down a visible GPU into multiple "virtual"
devices.
|
GPUOptions.Experimental.VirtualDevicesOrBuilder |
|
GPUOptions.ExperimentalOrBuilder |
|
GPUOptionsOrBuilder |
|
GradFunc |
GradFunc is the signature for all gradient functions in GradOpRegistry.
|
GradientDef |
GradientDef defines the gradient function of a function defined in
a function library.
|
GradientDef.Builder |
GradientDef defines the gradient function of a function defined in
a function library.
|
GradientDefOrBuilder |
|
Gradients |
Adds operations to compute the partial derivatives of sum of y s w.r.t x s, i.e.,
d(y_1 + y_2 + ...)/dx_1, d(y_1 + y_2 + ...)/dx_2...
|
Gradients.Options |
|
GradientScope |
A Scope implementation backed by a native scope.
|
GradOpRegistry |
GradOpRegistry maintains a static registry of gradient functions.
|
Graph |
A data flow graph representing a TensorFlow computation.
|
Graph.WhileSubgraphBuilder |
Used to instantiate an abstract class which overrides the buildSubgraph method to build a
conditional or body subgraph for a while loop.
|
GraphDebugInfo |
Protobuf type tensorflow.GraphDebugInfo
|
GraphDebugInfo.Builder |
Protobuf type tensorflow.GraphDebugInfo
|
GraphDebugInfo.FileLineCol |
This represents a file/line location in the source code.
|
GraphDebugInfo.FileLineCol.Builder |
This represents a file/line location in the source code.
|
GraphDebugInfo.FileLineColOrBuilder |
|
GraphDebugInfo.StackTrace |
This represents a stack trace which is a ordered list of `FileLineCol`.
|
GraphDebugInfo.StackTrace.Builder |
This represents a stack trace which is a ordered list of `FileLineCol`.
|
GraphDebugInfo.StackTraceOrBuilder |
|
GraphDebugInfoOrBuilder |
|
GraphDebugInfoProtos |
|
GraphDef |
Represents the graph of operations
|
GraphDef.Builder |
Represents the graph of operations
|
GraphDefOrBuilder |
|
GraphExecutionTrace |
Data relating to an execution of a Graph (e.g., an eager execution of a
FuncGraph).
|
GraphExecutionTrace.Builder |
Data relating to an execution of a Graph (e.g., an eager execution of a
FuncGraph).
|
GraphExecutionTraceOrBuilder |
|
GraphOpCreation |
The creation of an op in a TensorFlow Graph (e.g., FuncGraph in TF2).
|
GraphOpCreation.Builder |
The creation of an op in a TensorFlow Graph (e.g., FuncGraph in TF2).
|
GraphOpCreationOrBuilder |
|
GraphOperation |
|
GraphOperationBuilder |
|
GraphOptions |
Protobuf type tensorflow.GraphOptions
|
GraphOptions.Builder |
Protobuf type tensorflow.GraphOptions
|
GraphOptionsOrBuilder |
|
GraphProtos |
|
GraphTransferConstNodeInfo |
Protobuf type tensorflow.GraphTransferConstNodeInfo
|
GraphTransferConstNodeInfo.Builder |
Protobuf type tensorflow.GraphTransferConstNodeInfo
|
GraphTransferConstNodeInfoOrBuilder |
|
GraphTransferGraphInputNodeInfo |
Protobuf type tensorflow.GraphTransferGraphInputNodeInfo
|
GraphTransferGraphInputNodeInfo.Builder |
Protobuf type tensorflow.GraphTransferGraphInputNodeInfo
|
GraphTransferGraphInputNodeInfoOrBuilder |
|
GraphTransferGraphOutputNodeInfo |
Protobuf type tensorflow.GraphTransferGraphOutputNodeInfo
|
GraphTransferGraphOutputNodeInfo.Builder |
Protobuf type tensorflow.GraphTransferGraphOutputNodeInfo
|
GraphTransferGraphOutputNodeInfoOrBuilder |
|
GraphTransferInfo |
Protocol buffer representing a handle to a tensorflow resource.
|
GraphTransferInfo.Builder |
Protocol buffer representing a handle to a tensorflow resource.
|
GraphTransferInfo.Destination |
Protobuf enum tensorflow.GraphTransferInfo.Destination
|
GraphTransferInfoOrBuilder |
|
GraphTransferInfoProto |
|
GraphTransferNodeInfo |
Protobuf type tensorflow.GraphTransferNodeInfo
|
GraphTransferNodeInfo.Builder |
Protobuf type tensorflow.GraphTransferNodeInfo
|
GraphTransferNodeInfoOrBuilder |
|
GraphTransferNodeInput |
Protobuf type tensorflow.GraphTransferNodeInput
|
GraphTransferNodeInput.Builder |
Protobuf type tensorflow.GraphTransferNodeInput
|
GraphTransferNodeInputInfo |
Protobuf type tensorflow.GraphTransferNodeInputInfo
|
GraphTransferNodeInputInfo.Builder |
Protobuf type tensorflow.GraphTransferNodeInputInfo
|
GraphTransferNodeInputInfoOrBuilder |
|
GraphTransferNodeInputOrBuilder |
|
GraphTransferNodeOutputInfo |
Protobuf type tensorflow.GraphTransferNodeOutputInfo
|
GraphTransferNodeOutputInfo.Builder |
Protobuf type tensorflow.GraphTransferNodeOutputInfo
|
GraphTransferNodeOutputInfoOrBuilder |
|
Greater |
Returns the truth value of (x > y) element-wise.
|
Greater.Inputs<T extends TNumber> |
|
GreaterEqual |
Returns the truth value of (x >= y) element-wise.
|
GreaterEqual.Inputs<T extends TNumber> |
|
GroupByReducerDataset |
Creates a dataset that computes a group-by on input_dataset .
|
GroupByReducerDataset |
Creates a dataset that computes a group-by on input_dataset .
|
GroupByReducerDataset.Inputs |
|
GroupByReducerDataset.Inputs |
|
GroupByWindowDataset |
Creates a dataset that computes a windowed group-by on input_dataset .
|
GroupByWindowDataset |
Creates a dataset that computes a windowed group-by on input_dataset .
|
GroupByWindowDataset.Inputs |
|
GroupByWindowDataset.Inputs |
|
GroupByWindowDataset.Options |
|
GRUBlockCell<T extends TNumber> |
Computes the GRU cell forward propagation for 1 time step.
|
GRUBlockCell.Inputs<T extends TNumber> |
|
GRUBlockCellGrad<T extends TNumber> |
Computes the GRU cell back-propagation for 1 time step.
|
GRUBlockCellGrad.Inputs<T extends TNumber> |
|
GuaranteeConst<T extends TType> |
Gives a guarantee to the TF runtime that the input tensor is a constant.
|
GuaranteeConst.Inputs<T extends TType> |
|
HashTable |
Creates a non-initialized hash table.
|
HashTable.Inputs |
|
HashTable.Options |
|
Helpers |
Container class for core methods which add or perform several operations and return one of them.
|
HistogramFixedWidth<U extends TNumber> |
Return histogram of values.
|
HistogramFixedWidth.Inputs<T extends TNumber> |
|
HistogramProto |
Serialization format for histogram module in
core/lib/histogram/histogram.h
|
HistogramProto.Builder |
Serialization format for histogram module in
core/lib/histogram/histogram.h
|
HistogramProtoOrBuilder |
|
HistogramSummary |
Outputs a Summary protocol buffer with a histogram.
|
HistogramSummary.Inputs |
|
HsvToRgb<T extends TNumber> |
Convert one or more images from HSV to RGB.
|
HsvToRgb.Inputs<T extends TNumber> |
|
Identity<T extends TType> |
Return a tensor with the same shape and contents as the input tensor or value.
|
Identity.Inputs<T extends TType> |
|
IdentityN |
Returns a list of tensors with the same shapes and contents as the input
tensors.
|
IdentityN.Inputs |
|
IdentityReader |
A Reader that outputs the queued work as both the key and value.
|
IdentityReader.Inputs |
|
IdentityReader.Options |
|
If |
output = cond ? then_branch(input) : else_branch(input)
|
If |
output = cond ? then_branch(inputs) : else_branch(inputs).
|
If.Inputs |
|
If.Options |
Optional attributes for If
|
Ifft<T extends TType> |
Inverse fast Fourier transform.
|
Ifft.Inputs<T extends TType> |
|
Ifft2d<T extends TType> |
Inverse 2D fast Fourier transform.
|
Ifft2d.Inputs<T extends TType> |
|
Ifft3d<T extends TType> |
Inverse 3D fast Fourier transform.
|
Ifft3d.Inputs<T extends TType> |
|
Igamma<T extends TNumber> |
Compute the lower regularized incomplete Gamma function P(a, x) .
|
Igamma.Inputs<T extends TNumber> |
|
Igammac<T extends TNumber> |
Compute the upper regularized incomplete Gamma function Q(a, x) .
|
Igammac.Inputs<T extends TNumber> |
|
IgammaGradA<T extends TNumber> |
Computes the gradient of igamma(a, x) wrt a .
|
IgammaGradA.Inputs<T extends TNumber> |
|
IgnoreErrorsDataset |
Creates a dataset that contains the elements of input_dataset ignoring errors.
|
IgnoreErrorsDataset |
Creates a dataset that contains the elements of input_dataset ignoring errors.
|
IgnoreErrorsDataset.Inputs |
|
IgnoreErrorsDataset.Inputs |
|
IgnoreErrorsDataset.Options |
|
IgnoreErrorsDataset.Options |
|
Imag<U extends TNumber> |
Returns the imaginary part of a complex number.
|
Imag.Inputs |
|
ImageOps |
An API for building image operations as Op s
|
ImageProjectiveTransformV2<T extends TNumber> |
Applies the given transform to each of the images.
|
ImageProjectiveTransformV2.Inputs<T extends TNumber> |
|
ImageProjectiveTransformV2.Options |
|
ImageProjectiveTransformV3<T extends TNumber> |
Applies the given transform to each of the images.
|
ImageProjectiveTransformV3.Inputs<T extends TNumber> |
|
ImageProjectiveTransformV3.Options |
|
ImageSummary |
Outputs a Summary protocol buffer with images.
|
ImageSummary.Inputs |
|
ImageSummary.Options |
|
ImmutableConst<T extends TType> |
Returns immutable tensor from memory region.
|
ImmutableConst.Inputs |
|
ImportEvent |
The ImportEvent operation
|
ImportEvent.Inputs |
|
InfeedDequeue<T extends TType> |
A placeholder op for a value that will be fed into the computation.
|
InfeedDequeue.Inputs |
|
InfeedDequeueTuple |
Fetches multiple values from infeed as an XLA tuple.
|
InfeedDequeueTuple.Inputs |
|
InfeedEnqueue |
An op which feeds a single Tensor value into the computation.
|
InfeedEnqueue.Inputs |
|
InfeedEnqueue.Options |
|
InfeedEnqueuePrelinearizedBuffer |
An op which enqueues prelinearized buffer into TPU infeed.
|
InfeedEnqueuePrelinearizedBuffer.Inputs |
|
InfeedEnqueuePrelinearizedBuffer.Options |
|
InfeedEnqueueTuple |
Feeds multiple Tensor values into the computation as an XLA tuple.
|
InfeedEnqueueTuple.Inputs |
|
InfeedEnqueueTuple.Options |
|
InitializeTable |
Table initializer that takes two tensors for keys and values respectively.
|
InitializeTable.Inputs |
|
InitializeTableFromDataset |
The InitializeTableFromDataset operation
|
InitializeTableFromDataset.Inputs |
|
InitializeTableFromTextFile |
Initializes a table from a text file.
|
InitializeTableFromTextFile.Inputs |
|
InitializeTableFromTextFile.Options |
|
InplaceAdd<T extends TType> |
Adds v into specified rows of x.
|
InplaceAdd.Inputs<T extends TType> |
|
InplaceSub<T extends TType> |
Subtracts `v` into specified rows of `x`.
|
InplaceSub.Inputs<T extends TType> |
|
InplaceUpdate<T extends TType> |
Updates specified rows 'i' with values 'v'.
|
InplaceUpdate.Inputs<T extends TType> |
|
Int64List |
Protobuf type tensorflow.Int64List
|
Int64List.Builder |
Protobuf type tensorflow.Int64List
|
Int64ListOrBuilder |
|
InterconnectLink |
Protobuf type tensorflow.InterconnectLink
|
InterconnectLink.Builder |
Protobuf type tensorflow.InterconnectLink
|
InterconnectLinkOrBuilder |
|
InterleaveDataset |
Creates a dataset that applies f to the outputs of input_dataset .
|
InterleaveDataset.Inputs |
|
InterleaveDataset.Options |
|
InTopK |
Says whether the targets are in the top K predictions.
|
InTopK.Inputs<T extends TNumber> |
|
Inv<T extends TType> |
Computes the inverse of one or more square invertible matrices or their adjoints (conjugate transposes).
|
Inv.Inputs<T extends TType> |
|
Inv.Options |
Optional attributes for Inv
|
Invert<T extends TNumber> |
Invert (flip) each bit of supported types; for example, type uint8 value 01010101 becomes 10101010.
|
Invert.Inputs<T extends TNumber> |
|
InvertPermutation<T extends TNumber> |
Computes the inverse permutation of a tensor.
|
InvertPermutation.Inputs<T extends TNumber> |
|
InvGrad<T extends TType> |
Computes the gradient for the inverse of x wrt its input.
|
InvGrad.Inputs<T extends TType> |
|
IoOps |
An API for building io operations as Op s
|
Irfft<U extends TNumber> |
Inverse real-valued fast Fourier transform.
|
Irfft.Inputs |
|
Irfft2d<U extends TNumber> |
Inverse 2D real-valued fast Fourier transform.
|
Irfft2d.Inputs |
|
Irfft3d<U extends TNumber> |
Inverse 3D real-valued fast Fourier transform.
|
Irfft3d.Inputs |
|
IsBoostedTreesEnsembleInitialized |
Checks whether a tree ensemble has been initialized.
|
IsBoostedTreesEnsembleInitialized.Inputs |
|
IsBoostedTreesQuantileStreamResourceInitialized |
Checks whether a quantile stream has been initialized.
|
IsBoostedTreesQuantileStreamResourceInitialized.Inputs |
|
IsFinite |
Returns which elements of x are finite.
|
IsFinite.Inputs |
|
IsInf |
Returns which elements of x are Inf.
|
IsInf.Inputs |
|
IsNan |
Returns which elements of x are NaN.
|
IsNan.Inputs |
|
IsotonicRegression<U extends TNumber> |
Solves a batch of isotonic regression problems.
|
IsotonicRegression.Inputs |
|
IsTPUEmbeddingInitialized |
Whether TPU Embedding is initialized in a distributed TPU system.
|
IsTPUEmbeddingInitialized.Inputs |
|
IsTPUEmbeddingInitialized.Options |
|
IsVariableInitialized |
Checks whether a tensor has been initialized.
|
IsVariableInitialized.Inputs |
|
Iterator |
The IteratorV2 operation
|
Iterator.Inputs |
|
IteratorFromStringHandle |
The IteratorFromStringHandleV2 operation
|
IteratorFromStringHandle.Inputs |
|
IteratorFromStringHandle.Options |
|
IteratorGetDevice |
Returns the name of the device on which resource has been placed.
|
IteratorGetDevice |
Returns the name of the device on which resource has been placed.
|
IteratorGetDevice.Inputs |
|
IteratorGetDevice.Inputs |
|
IteratorGetNext |
Gets the next output from the given iterator .
|
IteratorGetNext.Inputs |
|
IteratorGetNextAsOptional |
Gets the next output from the given iterator as an Optional variant.
|
IteratorGetNextAsOptional.Inputs |
|
IteratorGetNextSync |
Gets the next output from the given iterator.
|
IteratorGetNextSync.Inputs |
|
IteratorToStringHandle |
Converts the given resource_handle representing an iterator to a string.
|
IteratorToStringHandle.Inputs |
|
JobDef |
Defines a single job in a TensorFlow cluster.
|
JobDef.Builder |
Defines a single job in a TensorFlow cluster.
|
JobDefOrBuilder |
|
JobDeviceFilters |
Defines the device filters for tasks in a job.
|
JobDeviceFilters.Builder |
Defines the device filters for tasks in a job.
|
JobDeviceFiltersOrBuilder |
|
Join |
Joins the strings in the given list of string tensors into one tensor;
with the given separator (default is an empty separator).
|
Join.Inputs |
|
Join.Options |
Optional attributes for Join
|
KernelDef |
Protobuf type tensorflow.KernelDef
|
KernelDef.AttrConstraint |
Protobuf type tensorflow.KernelDef.AttrConstraint
|
KernelDef.AttrConstraint.Builder |
Protobuf type tensorflow.KernelDef.AttrConstraint
|
KernelDef.AttrConstraintOrBuilder |
|
KernelDef.Builder |
Protobuf type tensorflow.KernelDef
|
KernelDefOrBuilder |
|
KernelDefProtos |
|
KernelList |
A collection of KernelDefs
|
KernelList.Builder |
A collection of KernelDefs
|
KernelListOrBuilder |
|
KeyValueSort<T extends TNumber,U extends TType> |
Wraps the XLA Sort operator, documented at
https://www.tensorflow.org/performance/xla/operation_semantics#sort
.
|
KeyValueSort.Inputs<T extends TNumber,U extends TType> |
|
KMC2ChainInitialization |
Returns the index of a data point that should be added to the seed set.
|
KMC2ChainInitialization.Inputs |
|
KmeansPlusPlusInitialization |
Selects num_to_sample rows of input using the KMeans++ criterion.
|
KmeansPlusPlusInitialization.Inputs |
|
KthOrderStatistic |
Computes the Kth order statistic of a data set.
|
KthOrderStatistic.Inputs |
|
L2Loss<T extends TNumber> |
L2 Loss.
|
L2Loss.Inputs<T extends TNumber> |
|
LatencyStatsDataset |
Records the latency of producing input_dataset elements in a StatsAggregator.
|
LatencyStatsDataset |
Records the latency of producing input_dataset elements in a StatsAggregator.
|
LatencyStatsDataset.Inputs |
|
LatencyStatsDataset.Inputs |
|
LeakyRelu<T extends TNumber> |
Computes rectified linear: max(features, features * alpha) .
|
LeakyRelu.Inputs<T extends TNumber> |
|
LeakyRelu.Options |
|
LeakyReluGrad<T extends TNumber> |
Computes rectified linear gradients for a LeakyRelu operation.
|
LeakyReluGrad.Inputs<T extends TNumber> |
|
LeakyReluGrad.Options |
|
LearnedUnigramCandidateSampler |
Generates labels for candidate sampling with a learned unigram distribution.
|
LearnedUnigramCandidateSampler.Inputs |
|
LearnedUnigramCandidateSampler.Options |
|
LeftShift<T extends TNumber> |
Elementwise computes the bitwise left-shift of x and y .
|
LeftShift.Inputs<T extends TNumber> |
|
LegacyParallelInterleaveDataset |
Creates a dataset that applies f to the outputs of input_dataset .
|
LegacyParallelInterleaveDataset.Inputs |
|
LegacyParallelInterleaveDataset.Options |
|
Less |
Returns the truth value of (x < y) element-wise.
|
Less.Inputs<T extends TNumber> |
|
LessEqual |
Returns the truth value of (x <= y) element-wise.
|
LessEqual.Inputs<T extends TNumber> |
|
Lgamma<T extends TNumber> |
Computes the log of the absolute value of Gamma(x) element-wise.
|
Lgamma.Inputs<T extends TNumber> |
|
LinalgOps |
An API for building linalg operations as Op s
|
LinSpace<T extends TNumber> |
Generates values in an interval.
|
LinSpace.Inputs<T extends TNumber> |
|
ListDataset |
Creates a dataset that emits each of tensors once.
|
ListDataset.Inputs |
|
ListDataset.Options |
|
Listener_BytePointer |
|
Listener_String |
|
ListValue |
Represents a Python list.
|
ListValue.Builder |
Represents a Python list.
|
ListValueOrBuilder |
|
LmdbDataset |
The ExperimentalLMDBDataset operation
|
LMDBDataset |
Creates a dataset that emits the key-value pairs in one or more LMDB files.
|
LmdbDataset.Inputs |
|
LMDBDataset.Inputs |
|
LmdbReader |
A Reader that outputs the records from a LMDB file.
|
LmdbReader.Inputs |
|
LmdbReader.Options |
|
LoadAllTPUEmbeddingParameters |
An op that loads optimization parameters into embedding memory.
|
LoadAllTPUEmbeddingParameters.Inputs |
|
LoadAndRemapMatrix |
Loads a 2-D (matrix) Tensor with name old_tensor_name from the checkpoint
at ckpt_path and potentially reorders its rows and columns using the
specified remappings.
|
LoadAndRemapMatrix.Inputs |
|
LoadAndRemapMatrix.Options |
|
LoadDataset |
The LoadDataset operation
|
LoadDataset.Inputs |
|
LoadDataset.Options |
|
LoadTPUEmbeddingAdadeltaParameters |
Load Adadelta embedding parameters.
|
LoadTPUEmbeddingAdadeltaParameters.Inputs |
|
LoadTPUEmbeddingAdadeltaParameters.Options |
|
LoadTPUEmbeddingAdagradMomentumParameters |
Load Adagrad Momentum embedding parameters.
|
LoadTPUEmbeddingAdagradMomentumParameters.Inputs |
|
LoadTPUEmbeddingAdagradMomentumParameters.Options |
|
LoadTPUEmbeddingAdagradParameters |
Load Adagrad embedding parameters.
|
LoadTPUEmbeddingAdagradParameters.Inputs |
|
LoadTPUEmbeddingAdagradParameters.Options |
|
LoadTPUEmbeddingADAMParameters |
Load ADAM embedding parameters.
|
LoadTPUEmbeddingADAMParameters.Inputs |
|
LoadTPUEmbeddingADAMParameters.Options |
|
LoadTPUEmbeddingCenteredRMSPropParameters |
Load centered RMSProp embedding parameters.
|
LoadTPUEmbeddingCenteredRMSPropParameters.Inputs |
|
LoadTPUEmbeddingCenteredRMSPropParameters.Options |
|
LoadTPUEmbeddingFrequencyEstimatorParameters |
Load frequency estimator embedding parameters.
|
LoadTPUEmbeddingFrequencyEstimatorParameters.Inputs |
|
LoadTPUEmbeddingFrequencyEstimatorParameters.Options |
|
LoadTPUEmbeddingFTRLParameters |
Load FTRL embedding parameters.
|
LoadTPUEmbeddingFTRLParameters.Inputs |
|
LoadTPUEmbeddingFTRLParameters.Options |
|
LoadTPUEmbeddingMDLAdagradLightParameters |
Load MDL Adagrad Light embedding parameters.
|
LoadTPUEmbeddingMDLAdagradLightParameters.Inputs |
|
LoadTPUEmbeddingMDLAdagradLightParameters.Options |
|
LoadTPUEmbeddingMomentumParameters |
Load Momentum embedding parameters.
|
LoadTPUEmbeddingMomentumParameters.Inputs |
|
LoadTPUEmbeddingMomentumParameters.Options |
|
LoadTPUEmbeddingProximalAdagradParameters |
Load proximal Adagrad embedding parameters.
|
LoadTPUEmbeddingProximalAdagradParameters.Inputs |
|
LoadTPUEmbeddingProximalAdagradParameters.Options |
|
LoadTPUEmbeddingProximalYogiParameters |
The LoadTPUEmbeddingProximalYogiParameters operation
|
LoadTPUEmbeddingProximalYogiParameters.Inputs |
|
LoadTPUEmbeddingProximalYogiParameters.Options |
|
LoadTPUEmbeddingRMSPropParameters |
Load RMSProp embedding parameters.
|
LoadTPUEmbeddingRMSPropParameters.Inputs |
|
LoadTPUEmbeddingRMSPropParameters.Options |
|
LoadTPUEmbeddingStochasticGradientDescentParameters |
Load SGD embedding parameters.
|
LoadTPUEmbeddingStochasticGradientDescentParameters.Inputs |
|
LoadTPUEmbeddingStochasticGradientDescentParameters.Options |
|
LocalLinks |
Protobuf type tensorflow.LocalLinks
|
LocalLinks.Builder |
Protobuf type tensorflow.LocalLinks
|
LocalLinksOrBuilder |
|
LocalResponseNormalization<T extends TNumber> |
Local Response Normalization.
|
LocalResponseNormalization.Inputs<T extends TNumber> |
|
LocalResponseNormalization.Options |
|
LocalResponseNormalizationGrad<T extends TNumber> |
Gradients for Local Response Normalization.
|
LocalResponseNormalizationGrad.Inputs<T extends TNumber> |
|
LocalResponseNormalizationGrad.Options |
|
Log<T extends TType> |
Computes natural logarithm of x element-wise.
|
Log.Inputs<T extends TType> |
|
Log1p<T extends TType> |
Computes natural logarithm of (1 + x) element-wise.
|
Log1p.Inputs<T extends TType> |
|
LogicalAnd |
Returns the truth value of x AND y element-wise.
|
LogicalAnd.Inputs |
|
LogicalNot |
Returns the truth value of NOT x element-wise.
|
LogicalNot.Inputs |
|
LogicalOr |
Returns the truth value of x OR y element-wise.
|
LogicalOr.Inputs |
|
LogMatrixDeterminant<T extends TType> |
Computes the sign and the log of the absolute value of the determinant of
one or more square matrices.
|
LogMatrixDeterminant.Inputs<T extends TType> |
|
LogMemoryProtos |
|
LogMessage |
Deprecated. |
LogMessage.Builder |
Protocol buffer used for logging messages to the events file.
|
LogMessage.Level |
Protobuf enum tensorflow.LogMessage.Level
|
LogMessageOrBuilder |
Deprecated. |
LogNormalDistribution |
Protobuf type tensorflow.LogNormalDistribution
|
LogNormalDistribution.Builder |
Protobuf type tensorflow.LogNormalDistribution
|
LogNormalDistributionOrBuilder |
|
LogSoftmax<T extends TNumber> |
Computes log softmax activations.
|
LogSoftmax.Inputs<T extends TNumber> |
|
LogUniformCandidateSampler |
Generates labels for candidate sampling with a log-uniform distribution.
|
LogUniformCandidateSampler.Inputs |
|
LogUniformCandidateSampler.Options |
|
LookupTableExport<T extends TType,U extends TType> |
Outputs all keys and values in the table.
|
LookupTableExport.Inputs |
|
LookupTableFind<U extends TType> |
Looks up keys in a table, outputs the corresponding values.
|
LookupTableFind.Inputs<U extends TType> |
|
LookupTableImport |
Replaces the contents of the table with the specified keys and values.
|
LookupTableImport.Inputs |
|
LookupTableInsert |
Updates the table to associates keys with values.
|
LookupTableInsert.Inputs |
|
LookupTableRemove |
Removes keys and its associated values from a table.
|
LookupTableRemove.Inputs |
|
LookupTableSize |
Computes the number of elements in the given table.
|
LookupTableSize.Inputs |
|
LoopCond |
Forwards the input to the output.
|
LoopCond.Inputs |
|
Lower |
Converts all uppercase characters into their respective lowercase replacements.
|
Lower.Inputs |
|
Lower.Options |
Optional attributes for Lower
|
LowerBound<U extends TNumber> |
Applies lower_bound(sorted_search_values, values) along each row.
|
LowerBound.Inputs<T extends TType> |
|
LSTMBlockCell<T extends TNumber> |
Computes the LSTM cell forward propagation for 1 time step.
|
LSTMBlockCell.Inputs<T extends TNumber> |
|
LSTMBlockCell.Options |
|
LSTMBlockCellGrad<T extends TNumber> |
Computes the LSTM cell backward propagation for 1 timestep.
|
LSTMBlockCellGrad.Inputs<T extends TNumber> |
|
Lu<T extends TType,U extends TNumber> |
Computes the LU decomposition of one or more square matrices.
|
Lu.Inputs<T extends TType> |
|
MachineConfiguration |
Protobuf type tensorflow.MachineConfiguration
|
MachineConfiguration.Builder |
Protobuf type tensorflow.MachineConfiguration
|
MachineConfigurationOrBuilder |
|
MakeIterator |
Makes a new iterator from the given dataset and stores it in iterator .
|
MakeIterator.Inputs |
|
MakeUnique |
Make all elements in the non-Batch dimension unique, but "close" to
their initial value.
|
MakeUnique.Inputs |
|
MapAndBatchDataset |
Creates a dataset that fuses mapping with batching.
|
MapAndBatchDataset |
Creates a dataset that fuses mapping with batching.
|
MapAndBatchDataset.Inputs |
|
MapAndBatchDataset.Inputs |
|
MapAndBatchDataset.Options |
|
MapAndBatchDataset.Options |
|
MapClear |
Op removes all elements in the underlying container.
|
MapClear.Inputs |
|
MapClear.Options |
|
MapDataset |
Creates a dataset that applies f to the outputs of input_dataset .
|
MapDataset |
Creates a dataset that applies f to the outputs of input_dataset .
|
MapDataset.Inputs |
|
MapDataset.Inputs |
|
MapDataset.Options |
|
MapDataset.Options |
|
MapDefun |
Maps a function on the list of tensors unpacked from arguments on dimension 0.
|
MapDefun.Inputs |
|
MapDefun.Options |
|
MapIncompleteSize |
Op returns the number of incomplete elements in the underlying container.
|
MapIncompleteSize.Inputs |
|
MapIncompleteSize.Options |
|
MapPeek |
Op peeks at the values at the specified key.
|
MapPeek.Inputs |
|
MapPeek.Options |
|
MapSize |
Op returns the number of elements in the underlying container.
|
MapSize.Inputs |
|
MapSize.Options |
|
MapStage |
Stage (key, values) in the underlying container which behaves like a hashtable.
|
MapStage.Inputs |
|
MapStage.Options |
|
MapUnstage |
Op removes and returns the values associated with the key
from the underlying container.
|
MapUnstage.Inputs |
|
MapUnstage.Options |
|
MapUnstageNoKey |
Op removes and returns a random (key, value)
from the underlying container.
|
MapUnstageNoKey.Inputs |
|
MapUnstageNoKey.Options |
|
MatchingFiles |
Returns the set of files matching one or more glob patterns.
|
MatchingFiles.Inputs |
|
MatchingFilesDataset |
The ExperimentalMatchingFilesDataset operation
|
MatchingFilesDataset |
The MatchingFilesDataset operation
|
MatchingFilesDataset.Inputs |
|
MatchingFilesDataset.Inputs |
|
MathOps |
An API for building math operations as Op s
|
MatMul<T extends TType> |
Multiply the matrix "a" by the matrix "b".
|
MatMul.Inputs<T extends TType> |
|
MatMul.Options |
Optional attributes for MatMul
|
MatrixDiag<T extends TType> |
Returns a batched diagonal tensor with given batched diagonal values.
|
MatrixDiag.Inputs<T extends TType> |
|
MatrixDiagPart<T extends TType> |
Returns the batched diagonal part of a batched tensor.
|
MatrixDiagPart.Inputs<T extends TType> |
|
MatrixDiagPartV3<T extends TType> |
Returns the batched diagonal part of a batched tensor.
|
MatrixDiagPartV3.Inputs<T extends TType> |
|
MatrixDiagPartV3.Options |
|
MatrixDiagV3<T extends TType> |
Returns a batched diagonal tensor with given batched diagonal values.
|
MatrixDiagV3.Inputs<T extends TType> |
|
MatrixDiagV3.Options |
|
MatrixLogarithm<T extends TType> |
Computes the matrix logarithm of one or more square matrices:
\(log(exp(A)) = A\)
|
MatrixLogarithm.Inputs<T extends TType> |
|
MatrixSetDiag<T extends TType> |
Returns a batched matrix tensor with new batched diagonal values.
|
MatrixSetDiag.Inputs<T extends TType> |
|
MatrixSetDiag.Options |
|
MatrixSolveLs<T extends TType> |
Solves one or more linear least-squares problems.
|
MatrixSolveLs.Inputs<T extends TType> |
|
MatrixSolveLs.Options |
|
Max<T extends TNumber> |
Computes the maximum of elements across dimensions of a tensor.
|
Max.Inputs<T extends TNumber> |
|
Max.Options |
Optional attributes for Max
|
Maximum<T extends TNumber> |
Returns the max of x and y (i.e.
|
Maximum.Inputs<T extends TNumber> |
|
MaxIntraOpParallelismDataset |
Creates a dataset that overrides the maximum intra-op parallelism.
|
MaxIntraOpParallelismDataset |
Creates a dataset that overrides the maximum intra-op parallelism.
|
MaxIntraOpParallelismDataset.Inputs |
|
MaxIntraOpParallelismDataset.Inputs |
|
MaxPool<T extends TNumber> |
Performs max pooling on the input.
|
MaxPool.Inputs<T extends TNumber> |
|
MaxPool.Options |
|
MaxPool3d<T extends TNumber> |
Performs 3D max pooling on the input.
|
MaxPool3d.Inputs<T extends TNumber> |
|
MaxPool3d.Options |
|
MaxPool3dGrad<U extends TNumber> |
Computes gradients of 3D max pooling function.
|
MaxPool3dGrad.Inputs<T extends TNumber,U extends TNumber> |
|
MaxPool3dGrad.Options |
|
MaxPool3dGradGrad<T extends TNumber> |
Computes second-order gradients of the maxpooling function.
|
MaxPool3dGradGrad.Inputs<T extends TNumber> |
|
MaxPool3dGradGrad.Options |
|
MaxPoolGrad<T extends TNumber> |
Computes gradients of the maxpooling function.
|
MaxPoolGrad.Inputs<T extends TNumber> |
|
MaxPoolGrad.Options |
|
MaxPoolGradGrad<T extends TNumber> |
Computes second-order gradients of the maxpooling function.
|
MaxPoolGradGrad.Inputs<T extends TNumber> |
|
MaxPoolGradGrad.Options |
|
MaxPoolGradGradWithArgmax<T extends TNumber> |
Computes second-order gradients of the maxpooling function.
|
MaxPoolGradGradWithArgmax.Inputs<T extends TNumber> |
|
MaxPoolGradGradWithArgmax.Options |
|
MaxPoolGradWithArgmax<T extends TNumber> |
Computes gradients of the maxpooling function.
|
MaxPoolGradWithArgmax.Inputs<T extends TNumber> |
|
MaxPoolGradWithArgmax.Options |
|
MaxPoolWithArgmax<T extends TNumber,U extends TNumber> |
Performs max pooling on the input and outputs both max values and indices.
|
MaxPoolWithArgmax.Inputs<T extends TNumber> |
|
MaxPoolWithArgmax.Options |
|
Mean<T extends TType> |
Computes the mean of elements across dimensions of a tensor.
|
Mean.Inputs<T extends TType> |
|
Mean.Options |
Optional attributes for Mean
|
MemAllocatorStats |
Some of the data from AllocatorStats
|
MemAllocatorStats.Builder |
Some of the data from AllocatorStats
|
MemAllocatorStatsOrBuilder |
|
MemChunk |
Protobuf type tensorflow.MemChunk
|
MemChunk.Builder |
Protobuf type tensorflow.MemChunk
|
MemChunkOrBuilder |
|
MemmappedFileSystemDirectory |
A directory of regions in a memmapped file.
|
MemmappedFileSystemDirectory.Builder |
A directory of regions in a memmapped file.
|
MemmappedFileSystemDirectoryElement |
A message that describes one region of memmapped file.
|
MemmappedFileSystemDirectoryElement.Builder |
A message that describes one region of memmapped file.
|
MemmappedFileSystemDirectoryElementOrBuilder |
|
MemmappedFileSystemDirectoryOrBuilder |
|
MemmappedFileSystemProtos |
|
MemoryDump |
Protobuf type tensorflow.MemoryDump
|
MemoryDump.Builder |
Protobuf type tensorflow.MemoryDump
|
MemoryDumpOrBuilder |
|
MemoryInfo |
Protobuf type tensorflow.MemoryInfo
|
MemoryInfo.Builder |
Protobuf type tensorflow.MemoryInfo
|
MemoryInfoOrBuilder |
|
MemoryLogRawAllocation |
Protobuf type tensorflow.MemoryLogRawAllocation
|
MemoryLogRawAllocation.Builder |
Protobuf type tensorflow.MemoryLogRawAllocation
|
MemoryLogRawAllocationOrBuilder |
|
MemoryLogRawDeallocation |
Protobuf type tensorflow.MemoryLogRawDeallocation
|
MemoryLogRawDeallocation.Builder |
Protobuf type tensorflow.MemoryLogRawDeallocation
|
MemoryLogRawDeallocationOrBuilder |
|
MemoryLogStep |
Protobuf type tensorflow.MemoryLogStep
|
MemoryLogStep.Builder |
Protobuf type tensorflow.MemoryLogStep
|
MemoryLogStepOrBuilder |
|
MemoryLogTensorAllocation |
Protobuf type tensorflow.MemoryLogTensorAllocation
|
MemoryLogTensorAllocation.Builder |
Protobuf type tensorflow.MemoryLogTensorAllocation
|
MemoryLogTensorAllocationOrBuilder |
|
MemoryLogTensorDeallocation |
Protobuf type tensorflow.MemoryLogTensorDeallocation
|
MemoryLogTensorDeallocation.Builder |
Protobuf type tensorflow.MemoryLogTensorDeallocation
|
MemoryLogTensorDeallocationOrBuilder |
|
MemoryLogTensorOutput |
Protobuf type tensorflow.MemoryLogTensorOutput
|
MemoryLogTensorOutput.Builder |
Protobuf type tensorflow.MemoryLogTensorOutput
|
MemoryLogTensorOutputOrBuilder |
|
MemoryStats |
For memory tracking.
|
MemoryStats.Builder |
For memory tracking.
|
MemoryStatsOrBuilder |
|
Merge<T extends TType> |
Forwards the value of an available tensor from inputs to output .
|
Merge.Inputs<T extends TType> |
|
MergeSummary |
Merges summaries.
|
MergeSummary.Inputs |
|
MergeV2Checkpoints |
V2 format specific: merges the metadata files of sharded checkpoints.
|
MergeV2Checkpoints.Inputs |
|
MergeV2Checkpoints.Options |
|
MetaGraphDef |
Protocol buffer containing the following which are necessary to restart
training, run inference.
|
MetaGraphDef.Builder |
Protocol buffer containing the following which are necessary to restart
training, run inference.
|
MetaGraphDef.MetaInfoDef |
Meta information regarding the graph to be exported.
|
MetaGraphDef.MetaInfoDef.Builder |
Meta information regarding the graph to be exported.
|
MetaGraphDef.MetaInfoDefOrBuilder |
|
MetaGraphDefOrBuilder |
|
MetaGraphProtos |
|
MetricEntry |
Protobuf type tensorflow.MetricEntry
|
MetricEntry.Builder |
Protobuf type tensorflow.MetricEntry
|
MetricEntryOrBuilder |
|
Mfcc |
Transforms a spectrogram into a form that's useful for speech recognition.
|
Mfcc.Inputs |
|
Mfcc.Options |
Optional attributes for Mfcc
|
Min<T extends TNumber> |
Computes the minimum of elements across dimensions of a tensor.
|
Min.Inputs<T extends TNumber> |
|
Min.Options |
Optional attributes for Min
|
Minimum<T extends TNumber> |
Returns the min of x and y (i.e.
|
Minimum.Inputs<T extends TNumber> |
|
MirrorPad<T extends TType> |
Pads a tensor with mirrored values.
|
MirrorPad.Inputs<T extends TType> |
|
MirrorPadGrad<T extends TType> |
Gradient op for MirrorPad op.
|
MirrorPadGrad.Inputs<T extends TType> |
|
MlirPassthroughOp |
Wraps an arbitrary MLIR computation expressed as a module with a main() function.
|
MlirPassthroughOp.Inputs |
|
Mod<T extends TNumber> |
Returns element-wise remainder of division.
|
Mod.Inputs<T extends TNumber> |
|
ModelDataset |
Identity transformation that models performance.
|
ModelDataset.Inputs |
|
ModelDataset.Options |
|
ModelProto |
Protocol buffer representing the data used by the autotuning modeling
framework.
|
ModelProto.Builder |
Protocol buffer representing the data used by the autotuning modeling
framework.
|
ModelProto.Node |
General representation of a node in the model.
|
ModelProto.Node.Builder |
General representation of a node in the model.
|
ModelProto.Node.Parameter |
Represents a node parameter.
|
ModelProto.Node.Parameter.Builder |
Represents a node parameter.
|
ModelProto.Node.ParameterOrBuilder |
|
ModelProto.NodeOrBuilder |
|
ModelProto.OptimizationParams |
Contains parameters of the model autotuning optimization.
|
ModelProto.OptimizationParams.Builder |
Contains parameters of the model autotuning optimization.
|
ModelProto.OptimizationParamsOrBuilder |
|
ModelProtoOrBuilder |
|
ModelProtos |
|
Mul<T extends TType> |
Returns x * y element-wise.
|
Mul.Inputs<T extends TType> |
|
MulNoNan<T extends TType> |
Returns x * y element-wise.
|
MulNoNan.Inputs<T extends TType> |
|
MultiDeviceIterator |
Creates a MultiDeviceIterator resource.
|
MultiDeviceIterator.Inputs |
|
MultiDeviceIteratorFromStringHandle |
Generates a MultiDeviceIterator resource from its provided string handle.
|
MultiDeviceIteratorFromStringHandle.Inputs |
|
MultiDeviceIteratorFromStringHandle.Options |
|
MultiDeviceIteratorGetNextFromShard |
Gets next element for the provided shard number.
|
MultiDeviceIteratorGetNextFromShard.Inputs |
|
MultiDeviceIteratorInit |
Initializes the multi device iterator with the given dataset.
|
MultiDeviceIteratorInit.Inputs |
|
MultiDeviceIteratorToStringHandle |
Produces a string handle for the given MultiDeviceIterator.
|
MultiDeviceIteratorToStringHandle.Inputs |
|
Multinomial<U extends TNumber> |
Draws samples from a multinomial distribution.
|
Multinomial.Inputs |
|
Multinomial.Options |
|
MutableDenseHashTable |
Creates an empty hash table that uses tensors as the backing store.
|
MutableDenseHashTable.Inputs<T extends TType> |
|
MutableDenseHashTable.Options |
|
MutableHashTable |
Creates an empty hash table.
|
MutableHashTable.Inputs |
|
MutableHashTable.Options |
|
MutableHashTableOfTensors |
Creates an empty hash table.
|
MutableHashTableOfTensors.Inputs |
|
MutableHashTableOfTensors.Options |
|
Mutex |
Creates a Mutex resource that can be locked by MutexLock .
|
Mutex.Inputs |
|
Mutex.Options |
Optional attributes for Mutex
|
MutexLock |
Locks a mutex resource.
|
MutexLock.Inputs |
|
NameAttrList |
A list of attr names and their values.
|
NameAttrList.Builder |
A list of attr names and their values.
|
NameAttrListOrBuilder |
|
NamedDevice |
Protobuf type tensorflow.NamedDevice
|
NamedDevice.Builder |
Protobuf type tensorflow.NamedDevice
|
NamedDeviceOrBuilder |
|
NamedTensorProto |
A pair of tensor name and tensor values.
|
NamedTensorProto.Builder |
A pair of tensor name and tensor values.
|
NamedTensorProtoOrBuilder |
|
NamedTensorProtos |
|
NamedTupleValue |
Represents Python's namedtuple.
|
NamedTupleValue.Builder |
Represents Python's namedtuple.
|
NamedTupleValueOrBuilder |
|
NameMap |
|
NameMap.Iterator |
|
NativeGraphPointer |
|
NativeOperation |
\addtogroup core
\{
|
NativeOutput |
Represents a tensor value produced by an Operation.
|
NativeOutputVector |
|
NativeOutputVector.Iterator |
|
NativeStatus |
\ingroup core
Denotes success or failure of a call in Tensorflow.
|
NcclAllReduce<T extends TNumber> |
Deprecated.
|
NcclAllReduce<T extends TNumber> |
Outputs a tensor containing the reduction across all input tensors.
|
NcclAllReduce.Inputs<T extends TNumber> |
|
NcclAllReduce.Inputs<T extends TNumber> |
|
NcclBroadcast<T extends TNumber> |
Deprecated.
|
NcclBroadcast<T extends TNumber> |
Sends input to all devices that are connected to the output.
|
NcclBroadcast.Inputs<T extends TNumber> |
|
NcclBroadcast.Inputs<T extends TNumber> |
|
NcclReduce<T extends TNumber> |
Deprecated.
|
NcclReduce<T extends TNumber> |
Reduces input from num_devices using reduction to a single device.
|
NcclReduce.Inputs<T extends TNumber> |
|
NcclReduce.Inputs<T extends TNumber> |
|
Ndtri<T extends TNumber> |
The Ndtri operation
|
Ndtri.Inputs<T extends TNumber> |
|
NearestNeighbors |
Selects the k nearest centers for each point.
|
NearestNeighbors.Inputs |
|
Neg<T extends TType> |
Computes numerical negative value element-wise.
|
Neg.Inputs<T extends TType> |
|
NegTrain |
Training via negative sampling.
|
NegTrain.Inputs |
|
NextAfter<T extends TNumber> |
Returns the next representable value of x1 in the direction of x2 , element-wise.
|
NextAfter.Inputs<T extends TNumber> |
|
NextIteration<T extends TType> |
Makes its input available to the next iteration.
|
NextIteration.Inputs<T extends TType> |
|
NnOps |
An API for building nn operations as Op s
|
Node |
|
NodeBuilder |
|
NodeClass |
Class of a node in the performance model.
|
NodeDef |
Protobuf type tensorflow.NodeDef
|
NodeDef.Builder |
Protobuf type tensorflow.NodeDef
|
NodeDef.ExperimentalDebugInfo |
Protobuf type tensorflow.NodeDef.ExperimentalDebugInfo
|
NodeDef.ExperimentalDebugInfo.Builder |
Protobuf type tensorflow.NodeDef.ExperimentalDebugInfo
|
NodeDef.ExperimentalDebugInfoOrBuilder |
|
NodeDefOrBuilder |
|
NodeExecStats |
Time/size stats recorded for a single execution of a graph node.
|
NodeExecStats.Builder |
Time/size stats recorded for a single execution of a graph node.
|
NodeExecStatsOrBuilder |
|
NodeOutput |
Output sizes recorded for a single execution of a graph node.
|
NodeOutput.Builder |
Output sizes recorded for a single execution of a graph node.
|
NodeOutputOrBuilder |
|
NodeProto |
|
NonDeterministicInts<U extends TType> |
Non-deterministically generates some integers.
|
NonDeterministicInts.Inputs |
|
NoneValue |
Represents None.
|
NoneValue.Builder |
Represents None.
|
NoneValueOrBuilder |
|
NonMaxSuppression<T extends TNumber> |
Greedily selects a subset of bounding boxes in descending order of score,
pruning away boxes that have high intersection-over-union (IOU) overlap
with previously selected boxes.
|
NonMaxSuppression.Inputs<T extends TNumber> |
|
NonMaxSuppression.Options |
|
NonMaxSuppressionWithOverlaps |
Greedily selects a subset of bounding boxes in descending order of score,
pruning away boxes that have high overlaps
with previously selected boxes.
|
NonMaxSuppressionWithOverlaps.Inputs |
|
NonSerializableDataset |
The ExperimentalNonSerializableDataset operation
|
NonSerializableDataset |
The NonSerializableDataset operation
|
NonSerializableDataset.Inputs |
|
NonSerializableDataset.Inputs |
|
NoOp |
Does nothing.
|
NoOp.Inputs |
|
NormalDistribution |
Protobuf type tensorflow.NormalDistribution
|
NormalDistribution.Builder |
Protobuf type tensorflow.NormalDistribution
|
NormalDistributionOrBuilder |
|
NotEqual |
Returns the truth value of (x != y) element-wise.
|
NotEqual.Inputs<T extends TType> |
|
NotEqual.Options |
|
NthElement<T extends TNumber> |
Finds values of the n -th order statistic for the last dimension.
|
NthElement.Inputs<T extends TNumber> |
|
NthElement.Options |
|
OneHot<U extends TType> |
Returns a one-hot tensor.
|
OneHot.Inputs<U extends TType> |
|
OneHot.Options |
Optional attributes for OneHot
|
Ones<T extends TType> |
An operator creating a constant initialized with ones of the shape given by `dims`.
|
OneShotIterator |
Makes a "one-shot" iterator that can be iterated only once.
|
OneShotIterator.Inputs |
|
OneShotIterator.Options |
|
OnesLike<T extends TType> |
Returns a tensor of ones with the same shape and type as x.
|
OnesLike.Inputs<T extends TType> |
|
Op |
A logical unit of computation.
|
OpDef |
Defines an operation.
|
OpDef.ArgDef |
For describing inputs and outputs.
|
OpDef.ArgDef.Builder |
For describing inputs and outputs.
|
OpDef.ArgDefOrBuilder |
|
OpDef.AttrDef |
Description of the graph-construction-time configuration of this
Op.
|
OpDef.AttrDef.Builder |
Description of the graph-construction-time configuration of this
Op.
|
OpDef.AttrDefOrBuilder |
|
OpDef.Builder |
Defines an operation.
|
OpDefOrBuilder |
|
OpDefProtos |
|
OpDeprecation |
Information about version-dependent deprecation of an op
|
OpDeprecation.Builder |
Information about version-dependent deprecation of an op
|
OpDeprecationOrBuilder |
|
Operand<T extends TType> |
Interface implemented by operands of a TensorFlow operation.
|
Operands |
Utilities for manipulating operand related types and lists.
|
Operation |
Performs computation on Tensors.
|
OperationAttributeInspector |
Helper type for attribute getters, so we don't clutter the operation classes too much.
|
OperationBuilder |
|
Operator |
Annotation used by classes to make TensorFlow operations conveniently accessible via
org.tensorflow.op.Ops or one of its groups.
|
OpInfo |
Description of an operation as well as the parameters expected to impact its
performance.
|
OpInfo.Builder |
Description of an operation as well as the parameters expected to impact its
performance.
|
OpInfo.TensorProperties |
Input data types, shapes and values if known.
|
OpInfo.TensorProperties.Builder |
Input data types, shapes and values if known.
|
OpInfo.TensorPropertiesOrBuilder |
|
OpInfoOrBuilder |
|
OpInputsMetadata |
An annotation to provide metadata about an op inputs accessor class.
|
OpList |
A collection of OpDefs
|
OpList.Builder |
A collection of OpDefs
|
OpListOrBuilder |
|
OpMetadata |
An annotation to provide metadata about an op.
|
OpPerformance |
Performance data for tensorflow operations
|
OpPerformance.Builder |
Performance data for tensorflow operations
|
OpPerformance.ExecutionTimeCase |
|
OpPerformance.OpMemory |
Memory usage data for a tensorflow operation.
|
OpPerformance.OpMemory.Builder |
Memory usage data for a tensorflow operation.
|
OpPerformance.OpMemoryOrBuilder |
|
OpPerformanceDataProtos |
|
OpPerformanceList |
A collection of OpPerformance data points.
|
OpPerformanceList.Builder |
A collection of OpPerformance data points.
|
OpPerformanceListOrBuilder |
|
OpPerformanceOrBuilder |
|
Ops |
An API for building operations as Op s
|
OpScope |
A Java implementation of Scope .
|
OptimizationBarrier |
Wraps the XLA OptimizationBarrier operator.
|
OptimizationBarrier.Inputs |
|
OptimizationOptions |
next: 20
|
OptimizationOptions.Builder |
next: 20
|
OptimizationOptions.OptionalApplyDefaultOptimizationsCase |
|
OptimizationOptions.OptionalFilterFusionCase |
|
OptimizationOptions.OptionalFilterParallelizationCase |
|
OptimizationOptions.OptionalInjectPrefetchCase |
|
OptimizationOptions.OptionalMapAndBatchFusionCase |
|
OptimizationOptions.OptionalMapAndFilterFusionCase |
|
OptimizationOptions.OptionalMapFusionCase |
|
OptimizationOptions.OptionalMapParallelizationCase |
|
OptimizationOptions.OptionalNoopEliminationCase |
|
OptimizationOptions.OptionalParallelBatchCase |
|
OptimizationOptions.OptionalShuffleAndRepeatFusionCase |
|
OptimizationOptionsOrBuilder |
|
OptimizeDataset |
Creates a dataset by applying related optimizations to input_dataset .
|
OptimizeDataset.Inputs |
|
OptimizeDataset.Options |
|
OptimizerOptions |
Options passed to the graph optimizer
|
OptimizerOptions.Builder |
Options passed to the graph optimizer
|
OptimizerOptions.GlobalJitLevel |
Control the use of the compiler/jit.
|
OptimizerOptions.Level |
Optimization level
|
OptimizerOptionsOrBuilder |
|
OptionalFromValue |
Constructs an Optional variant from a tuple of tensors.
|
OptionalFromValue.Inputs |
|
OptionalGetValue |
Returns the value stored in an Optional variant or raises an error if none exists.
|
OptionalGetValue.Inputs |
|
OptionalHasValue |
Returns true if and only if the given Optional variant has a value.
|
OptionalHasValue.Inputs |
|
OptionalNone |
Creates an Optional variant with no value.
|
OptionalNone.Inputs |
|
Options |
Message stored with Dataset objects to control how datasets are processed and
optimized.
|
Options.Builder |
Message stored with Dataset objects to control how datasets are processed and
optimized.
|
Options.OptionalDeterministicCase |
|
Options.OptionalExternalStatePolicyCase |
|
Options.OptionalSlackCase |
|
OptionsDataset |
Creates a dataset by attaching tf.data.Options to input_dataset .
|
OptionsDataset.Inputs |
|
OptionsDataset.Options |
|
OptionsOrBuilder |
|
OrderedMapClear |
Op removes all elements in the underlying container.
|
OrderedMapClear.Inputs |
|
OrderedMapClear.Options |
|
OrderedMapIncompleteSize |
Op returns the number of incomplete elements in the underlying container.
|
OrderedMapIncompleteSize.Inputs |
|
OrderedMapIncompleteSize.Options |
|
OrderedMapPeek |
Op peeks at the values at the specified key.
|
OrderedMapPeek.Inputs |
|
OrderedMapPeek.Options |
|
OrderedMapSize |
Op returns the number of elements in the underlying container.
|
OrderedMapSize.Inputs |
|
OrderedMapSize.Options |
|
OrderedMapStage |
Stage (key, values) in the underlying container which behaves like a ordered
associative container.
|
OrderedMapStage.Inputs |
|
OrderedMapStage.Options |
|
OrderedMapUnstage |
Op removes and returns the values associated with the key
from the underlying container.
|
OrderedMapUnstage.Inputs |
|
OrderedMapUnstage.Options |
|
OrderedMapUnstageNoKey |
Op removes and returns the (key, value) element with the smallest
key from the underlying container.
|
OrderedMapUnstageNoKey.Inputs |
|
OrderedMapUnstageNoKey.Options |
|
OrdinalSelector |
A TPU core selector Op.
|
OrdinalSelector.Inputs |
|
OutfeedDequeue<T extends TType> |
Retrieves a single tensor from the computation outfeed.
|
OutfeedDequeue.Inputs |
|
OutfeedDequeue.Options |
|
OutfeedDequeueTuple |
Retrieve multiple values from the computation outfeed.
|
OutfeedDequeueTuple.Inputs |
|
OutfeedDequeueTuple.Options |
|
OutfeedDequeueTupleV2 |
Retrieve multiple values from the computation outfeed.
|
OutfeedDequeueTupleV2.Inputs |
|
OutfeedDequeueV2<T extends TType> |
Retrieves a single tensor from the computation outfeed.
|
OutfeedDequeueV2.Inputs |
|
OutfeedEnqueue |
Enqueue a Tensor on the computation outfeed.
|
OutfeedEnqueue.Inputs |
|
OutfeedEnqueueTuple |
Enqueue multiple Tensor values on the computation outfeed.
|
OutfeedEnqueueTuple.Inputs |
|
Output<T extends TType> |
A symbolic handle to a tensor produced by an Operation .
|
Pad<T extends TType> |
Pads a tensor.
|
Pad<T extends TType> |
Wraps the XLA Pad operator, documented at
https://www.tensorflow.org/performance/xla/operation_semantics#pad
.
|
Pad.Inputs<T extends TType> |
|
Pad.Inputs<T extends TType,U extends TNumber> |
|
PaddedBatchDataset |
Creates a dataset that batches and pads batch_size elements from the input.
|
PaddedBatchDataset.Inputs |
|
PaddedBatchDataset.Options |
|
PaddingFifoQueue |
A queue that produces elements in first-in first-out order.
|
PaddingFifoQueue.Inputs |
|
PaddingFifoQueue.Options |
|
PairValue |
Represents a (key, value) pair.
|
PairValue.Builder |
Represents a (key, value) pair.
|
PairValueOrBuilder |
|
ParallelBatchDataset |
The ParallelBatchDataset operation
|
ParallelBatchDataset.Inputs |
|
ParallelBatchDataset.Options |
|
ParallelConcat<T extends TType> |
Concatenates a list of N tensors along the first dimension.
|
ParallelConcat.Inputs<T extends TType> |
|
ParallelDynamicStitch<T extends TType> |
Interleave the values from the data tensors into a single tensor.
|
ParallelDynamicStitch.Inputs<T extends TType> |
|
ParallelFilterDataset |
Creates a dataset containing elements of input_dataset matching predicate .
|
ParallelFilterDataset.Inputs |
|
ParallelFilterDataset.Options |
|
ParallelInterleaveDataset |
Creates a dataset that applies f to the outputs of input_dataset .
|
ParallelInterleaveDataset |
Creates a dataset that applies f to the outputs of input_dataset .
|
ParallelInterleaveDataset.Inputs |
|
ParallelInterleaveDataset.Inputs |
|
ParallelInterleaveDataset.Options |
|
ParallelMapDataset |
Creates a dataset that applies f to the outputs of input_dataset .
|
ParallelMapDataset.Inputs |
|
ParallelMapDataset.Options |
|
ParameterizedTruncatedNormal<U extends TNumber> |
Outputs random values from a normal distribution.
|
ParameterizedTruncatedNormal.Inputs<U extends TNumber> |
|
ParameterizedTruncatedNormal.Options |
|
ParseExample |
Transforms a vector of tf.Example protos (as strings) into typed tensors.
|
ParseExample.Inputs |
|
ParseExampleDataset |
Transforms input_dataset containing Example protos as vectors of DT_STRING into a dataset of Tensor or SparseTensor objects representing the parsed features.
|
ParseExampleDataset |
Transforms input_dataset containing Example protos as vectors of DT_STRING into a dataset of Tensor or SparseTensor objects representing the parsed features.
|
ParseExampleDataset.Inputs |
|
ParseExampleDataset.Inputs |
|
ParseExampleDataset.Options |
|
ParseExampleDataset.Options |
|
ParseSequenceExample |
Transforms a vector of tf.io.SequenceExample protos (as strings) into
typed tensors.
|
ParseSequenceExample.Inputs |
|
ParseSequenceExample.Options |
|
ParseSingleExample |
Transforms a tf.Example proto (as a string) into typed tensors.
|
ParseSingleExample.Inputs |
|
ParseSingleSequenceExample |
Transforms a scalar brain.SequenceExample proto (as strings) into typed tensors.
|
ParseSingleSequenceExample.Inputs |
|
ParseSingleSequenceExample.Options |
|
ParseTensor<T extends TType> |
Transforms a serialized tensorflow.TensorProto proto into a Tensor.
|
ParseTensor.Inputs |
|
PartitionedCall |
returns f(inputs) , where f 's body is placed and partitioned.
|
PartitionedCall |
Calls a function placed on a specified TPU device.
|
PartitionedCall.Inputs |
|
PartitionedCall.Options |
|
PartitionedCall.Options |
|
PartitionedInput<T extends TType> |
An op that groups a list of partitioned inputs together.
|
PartitionedInput.Inputs<T extends TType> |
|
PartitionedInput.Options |
|
PartitionedOutput<T extends TType> |
An op that demultiplexes a tensor to be sharded by XLA to a list of partitioned
outputs outside the XLA computation.
|
PartitionedOutput.Inputs<T extends TType> |
|
PartitionedOutput.Options |
|
Placeholder<T extends TType> |
A placeholder op for a value that will be fed into the computation.
|
Placeholder.Inputs |
|
Placeholder.Options |
|
PlaceholderWithDefault<T extends TType> |
A placeholder op that passes through input when its output is not fed.
|
PlaceholderWithDefault.Inputs<T extends TType> |
|
PlatformInfo |
Protobuf type tensorflow.PlatformInfo
|
PlatformInfo.Builder |
Protobuf type tensorflow.PlatformInfo
|
PlatformInfoOrBuilder |
|
Polygamma<T extends TNumber> |
Compute the polygamma function \(\psi^{(n)}(x)\).
|
Polygamma.Inputs<T extends TNumber> |
|
PopulationCount |
Computes element-wise population count (a.k.a.
|
PopulationCount.Inputs |
|
Pow<T extends TType> |
Computes the power of one value to another.
|
Pow.Inputs<T extends TType> |
|
PrefetchDataset |
Creates a dataset that asynchronously prefetches elements from input_dataset .
|
PrefetchDataset.Inputs |
|
PrefetchDataset.Options |
|
Prelinearize |
An op which linearizes one Tensor value to an opaque variant tensor.
|
Prelinearize.Inputs |
|
Prelinearize.Options |
|
PrelinearizeTuple |
An op which linearizes multiple Tensor values to an opaque variant tensor.
|
PrelinearizeTuple.Inputs |
|
PrelinearizeTuple.Options |
|
PreventGradient<T extends TType> |
An identity op that triggers an error if a gradient is requested.
|
PreventGradient.Inputs<T extends TType> |
|
PreventGradient.Options |
|
Print |
Prints a string scalar.
|
Print.Inputs |
|
Print.Options |
Optional attributes for Print
|
PriorityQueue |
A queue that produces elements sorted by the first component value.
|
PriorityQueue.Inputs |
|
PriorityQueue.Options |
|
PrivateThreadPoolDataset |
Creates a dataset that uses a custom thread pool to compute input_dataset .
|
PrivateThreadPoolDataset |
Creates a dataset that uses a custom thread pool to compute input_dataset .
|
PrivateThreadPoolDataset.Inputs |
|
PrivateThreadPoolDataset.Inputs |
|
Prod<T extends TType> |
Computes the product of elements across dimensions of a tensor.
|
Prod.Inputs<T extends TType> |
|
Prod.Options |
Optional attributes for Prod
|
ProfileOptions |
Next ID: 11
|
ProfileOptions.Builder |
Next ID: 11
|
ProfileOptions.DeviceType |
Protobuf enum tensorflow.ProfileOptions.DeviceType
|
ProfileOptionsOrBuilder |
|
ProfilerOptionsProtos |
|
Qr<T extends TType> |
Computes the QR decompositions of one or more matrices.
|
Qr.Inputs<T extends TType> |
|
Qr.Options |
Optional attributes for Qr
|
QuantizationOps |
An API for building quantization operations as Op s
|
Quantize<T extends TNumber> |
Quantize the 'input' tensor of type float to 'output' tensor of type 'T'.
|
Quantize.Inputs |
|
Quantize.Options |
|
QuantizeAndDequantize<T extends TNumber> |
Quantizes then dequantizes a tensor.
|
QuantizeAndDequantize.Inputs<T extends TNumber> |
|
QuantizeAndDequantize.Options |
|
QuantizeAndDequantizeV3<T extends TNumber> |
Quantizes then dequantizes a tensor.
|
QuantizeAndDequantizeV3.Inputs<T extends TNumber> |
|
QuantizeAndDequantizeV3.Options |
|
QuantizeAndDequantizeV4<T extends TNumber> |
Quantizes then dequantizes a tensor.
|
QuantizeAndDequantizeV4.Inputs<T extends TNumber> |
|
QuantizeAndDequantizeV4.Options |
|
QuantizeAndDequantizeV4Grad<T extends TNumber> |
Returns the gradient of QuantizeAndDequantizeV4 .
|
QuantizeAndDequantizeV4Grad.Inputs<T extends TNumber> |
|
QuantizeAndDequantizeV4Grad.Options |
|
QuantizedAdd<V extends TNumber> |
Returns x + y element-wise, working on quantized buffers.
|
QuantizedAdd.Inputs |
|
QuantizedAvgPool<T extends TNumber> |
Produces the average pool of the input tensor for quantized types.
|
QuantizedAvgPool.Inputs<T extends TNumber> |
|
QuantizedBatchNormWithGlobalNormalization<U extends TNumber> |
Quantized Batch normalization.
|
QuantizedBatchNormWithGlobalNormalization.Inputs<T extends TNumber> |
|
QuantizedBiasAdd<V extends TNumber> |
Adds Tensor 'bias' to Tensor 'input' for Quantized types.
|
QuantizedBiasAdd.Inputs |
|
QuantizedConcat<T extends TType> |
Concatenates quantized tensors along one dimension.
|
QuantizedConcat.Inputs<T extends TType> |
|
QuantizedConv2d<V extends TNumber> |
Computes a 2D convolution given quantized 4D input and filter tensors.
|
QuantizedConv2d.Inputs |
|
QuantizedConv2d.Options |
|
QuantizedConv2DAndRelu<V extends TNumber> |
The QuantizedConv2DAndRelu operation
|
QuantizedConv2DAndRelu.Inputs |
|
QuantizedConv2DAndRelu.Options |
|
QuantizedConv2DAndReluAndRequantize<V extends TNumber> |
The QuantizedConv2DAndReluAndRequantize operation
|
QuantizedConv2DAndReluAndRequantize.Inputs |
|
QuantizedConv2DAndReluAndRequantize.Options |
|
QuantizedConv2DAndRequantize<V extends TNumber> |
The QuantizedConv2DAndRequantize operation
|
QuantizedConv2DAndRequantize.Inputs |
|
QuantizedConv2DAndRequantize.Options |
|
QuantizedConv2DPerChannel<V extends TNumber> |
Computes QuantizedConv2D per channel.
|
QuantizedConv2DPerChannel.Inputs |
|
QuantizedConv2DPerChannel.Options |
|
QuantizedConv2DWithBias<V extends TNumber> |
The QuantizedConv2DWithBias operation
|
QuantizedConv2DWithBias.Inputs |
|
QuantizedConv2DWithBias.Options |
|
QuantizedConv2DWithBiasAndRelu<V extends TNumber> |
The QuantizedConv2DWithBiasAndRelu operation
|
QuantizedConv2DWithBiasAndRelu.Inputs |
|
QuantizedConv2DWithBiasAndRelu.Options |
|
QuantizedConv2DWithBiasAndReluAndRequantize<W extends TNumber> |
The QuantizedConv2DWithBiasAndReluAndRequantize operation
|
QuantizedConv2DWithBiasAndReluAndRequantize.Inputs |
|
QuantizedConv2DWithBiasAndReluAndRequantize.Options |
|
QuantizedConv2DWithBiasAndRequantize<W extends TNumber> |
The QuantizedConv2DWithBiasAndRequantize operation
|
QuantizedConv2DWithBiasAndRequantize.Inputs |
|
QuantizedConv2DWithBiasAndRequantize.Options |
|
QuantizedConv2DWithBiasSignedSumAndReluAndRequantize<X extends TNumber> |
The QuantizedConv2DWithBiasSignedSumAndReluAndRequantize operation
|
QuantizedConv2DWithBiasSignedSumAndReluAndRequantize.Inputs |
|
QuantizedConv2DWithBiasSignedSumAndReluAndRequantize.Options |
|
QuantizedConv2DWithBiasSumAndRelu<V extends TNumber> |
The QuantizedConv2DWithBiasSumAndRelu operation
|
QuantizedConv2DWithBiasSumAndRelu.Inputs |
|
QuantizedConv2DWithBiasSumAndRelu.Options |
|
QuantizedConv2DWithBiasSumAndReluAndRequantize<X extends TNumber> |
The QuantizedConv2DWithBiasSumAndReluAndRequantize operation
|
QuantizedConv2DWithBiasSumAndReluAndRequantize.Inputs |
|
QuantizedConv2DWithBiasSumAndReluAndRequantize.Options |
|
QuantizedDepthwiseConv2D<V extends TNumber> |
Computes quantized depthwise Conv2D.
|
QuantizedDepthwiseConv2D.Inputs |
|
QuantizedDepthwiseConv2D.Options |
|
QuantizedDepthwiseConv2DWithBias<V extends TNumber> |
Computes quantized depthwise Conv2D with Bias.
|
QuantizedDepthwiseConv2DWithBias.Inputs |
|
QuantizedDepthwiseConv2DWithBias.Options |
|
QuantizedDepthwiseConv2DWithBiasAndRelu<V extends TNumber> |
Computes quantized depthwise Conv2D with Bias and Relu.
|
QuantizedDepthwiseConv2DWithBiasAndRelu.Inputs |
|
QuantizedDepthwiseConv2DWithBiasAndRelu.Options |
|
QuantizedDepthwiseConv2DWithBiasAndReluAndRequantize<W extends TNumber> |
Computes quantized depthwise Conv2D with Bias, Relu and Requantize.
|
QuantizedDepthwiseConv2DWithBiasAndReluAndRequantize.Inputs |
|
QuantizedDepthwiseConv2DWithBiasAndReluAndRequantize.Options |
|
QuantizedInstanceNorm<T extends TNumber> |
Quantized Instance normalization.
|
QuantizedInstanceNorm.Inputs<T extends TNumber> |
|
QuantizedInstanceNorm.Options |
|
QuantizedMatMul<V extends TNumber> |
Perform a quantized matrix multiplication of a by the matrix b .
|
QuantizedMatMul.Inputs |
|
QuantizedMatMul.Options |
|
QuantizedMatMulWithBias<W extends TNumber> |
Performs a quantized matrix multiplication of a by the matrix b with bias
add.
|
QuantizedMatMulWithBias.Inputs |
|
QuantizedMatMulWithBias.Options |
|
QuantizedMatMulWithBiasAndDequantize<W extends TNumber> |
The QuantizedMatMulWithBiasAndDequantize operation
|
QuantizedMatMulWithBiasAndDequantize.Inputs |
|
QuantizedMatMulWithBiasAndDequantize.Options |
|
QuantizedMatMulWithBiasAndRelu<V extends TNumber> |
Perform a quantized matrix multiplication of a by the matrix b with bias
add and relu fusion.
|
QuantizedMatMulWithBiasAndRelu.Inputs |
|
QuantizedMatMulWithBiasAndRelu.Options |
|
QuantizedMatMulWithBiasAndReluAndRequantize<W extends TNumber> |
Perform a quantized matrix multiplication of a by the matrix b with bias
add and relu and requantize fusion.
|
QuantizedMatMulWithBiasAndReluAndRequantize.Inputs |
|
QuantizedMatMulWithBiasAndReluAndRequantize.Options |
|
QuantizedMatMulWithBiasAndRequantize<W extends TNumber> |
The QuantizedMatMulWithBiasAndRequantize operation
|
QuantizedMatMulWithBiasAndRequantize.Inputs |
|
QuantizedMatMulWithBiasAndRequantize.Options |
|
QuantizedMaxPool<T extends TNumber> |
Produces the max pool of the input tensor for quantized types.
|
QuantizedMaxPool.Inputs<T extends TNumber> |
|
QuantizedMul<V extends TNumber> |
Returns x * y element-wise, working on quantized buffers.
|
QuantizedMul.Inputs |
|
QuantizeDownAndShrinkRange<U extends TNumber> |
Convert the quantized 'input' tensor into a lower-precision 'output', using the
actual distribution of the values to maximize the usage of the lower bit depth
and adjusting the output min and max ranges accordingly.
|
QuantizeDownAndShrinkRange.Inputs |
|
QuantizedRelu<U extends TNumber> |
Computes Quantized Rectified Linear: max(features, 0)
|
QuantizedRelu.Inputs |
|
QuantizedRelu6<U extends TNumber> |
Computes Quantized Rectified Linear 6: min(max(features, 0), 6)
|
QuantizedRelu6.Inputs |
|
QuantizedReluX<U extends TNumber> |
Computes Quantized Rectified Linear X: min(max(features, 0), max_value)
|
QuantizedReluX.Inputs |
|
QuantizedReshape<T extends TType> |
Reshapes a quantized tensor as per the Reshape op.
|
QuantizedReshape.Inputs<T extends TType> |
|
QuantizedResizeBilinear<T extends TNumber> |
Resize quantized images to size using quantized bilinear interpolation.
|
QuantizedResizeBilinear.Inputs<T extends TNumber> |
|
QuantizedResizeBilinear.Options |
|
QueueClose |
Closes the given queue.
|
QueueClose.Inputs |
|
QueueClose.Options |
|
QueueDequeue |
Dequeues a tuple of one or more tensors from the given queue.
|
QueueDequeue.Inputs |
|
QueueDequeue.Options |
|
QueueDequeueMany |
Dequeues n tuples of one or more tensors from the given queue.
|
QueueDequeueMany.Inputs |
|
QueueDequeueMany.Options |
|
QueueDequeueUpTo |
Dequeues n tuples of one or more tensors from the given queue.
|
QueueDequeueUpTo.Inputs |
|
QueueDequeueUpTo.Options |
|
QueueEnqueue |
Enqueues a tuple of one or more tensors in the given queue.
|
QueueEnqueue.Inputs |
|
QueueEnqueue.Options |
|
QueueEnqueueMany |
Enqueues zero or more tuples of one or more tensors in the given queue.
|
QueueEnqueueMany.Inputs |
|
QueueEnqueueMany.Options |
|
QueueIsClosed |
Returns true if queue is closed.
|
QueueIsClosed.Inputs |
|
QueueRunnerDef |
Protocol buffer representing a QueueRunner.
|
QueueRunnerDef.Builder |
Protocol buffer representing a QueueRunner.
|
QueueRunnerDefOrBuilder |
|
QueueRunnerProtos |
|
QueueSize |
Computes the number of elements in the given queue.
|
QueueSize.Inputs |
|
RaggedBincount<U extends TNumber> |
Counts the number of occurrences of each value in an integer array.
|
RaggedBincount.Inputs<T extends TNumber,U extends TNumber> |
|
RaggedBincount.Options |
|
RaggedCountSparseOutput<U extends TNumber> |
Performs sparse-output bin counting for a ragged tensor input.
|
RaggedCountSparseOutput.Inputs<U extends TNumber> |
|
RaggedCountSparseOutput.Options |
|
RaggedCross<T extends TType,U extends TNumber> |
Generates a feature cross from a list of tensors, and returns it as a
RaggedTensor.
|
RaggedCross.Inputs |
|
RaggedGather<T extends TNumber,U extends TType> |
Gather ragged slices from params axis 0 according to indices .
|
RaggedGather.Inputs<T extends TNumber,U extends TType> |
|
RaggedOps |
An API for building ragged operations as Op s
|
RaggedRange<U extends TNumber,T extends TNumber> |
Returns a RaggedTensor containing the specified sequences of numbers.
|
RaggedRange.Inputs<T extends TNumber> |
|
RaggedTensorFromVariant<T extends TNumber,U extends TType> |
Decodes a variant Tensor into a RaggedTensor .
|
RaggedTensorFromVariant.Inputs |
|
RaggedTensorToSparse<U extends TType> |
Converts a RaggedTensor into a SparseTensor with the same values.
|
RaggedTensorToSparse.Inputs<U extends TType> |
|
RaggedTensorToTensor<U extends TType> |
Create a dense tensor from a ragged tensor, possibly altering its shape.
|
RaggedTensorToTensor.Inputs<U extends TType> |
|
RaggedTensorToVariant |
Encodes a RaggedTensor into a variant Tensor.
|
RaggedTensorToVariant.Inputs |
|
RaggedTensorToVariantGradient<U extends TType> |
Helper used to compute the gradient for RaggedTensorToVariant .
|
RaggedTensorToVariantGradient.Inputs |
|
RandomCrop<T extends TNumber> |
Randomly crop image .
|
RandomCrop.Inputs<T extends TNumber> |
|
RandomCrop.Options |
|
RandomDataset |
Creates a Dataset that returns pseudorandom numbers.
|
RandomDataset |
Creates a Dataset that returns pseudorandom numbers.
|
RandomDataset.Inputs |
|
RandomDataset.Inputs |
|
RandomDataset.Options |
|
RandomGamma<U extends TNumber> |
Outputs random values from the Gamma distribution(s) described by alpha.
|
RandomGamma.Inputs<U extends TNumber> |
|
RandomGamma.Options |
|
RandomGammaGrad<T extends TNumber> |
Computes the derivative of a Gamma random sample w.r.t.
|
RandomGammaGrad.Inputs<T extends TNumber> |
|
RandomIndexShuffle<T extends TNumber> |
Outputs the position of value in a permutation of [0, ..., max_index].
|
RandomIndexShuffle.Inputs<T extends TNumber> |
|
RandomOps |
An API for building random operations as Op s
|
RandomPoisson<V extends TNumber> |
Outputs random values from the Poisson distribution(s) described by rate.
|
RandomPoisson.Inputs |
|
RandomPoisson.Options |
|
RandomShuffle<T extends TType> |
Randomly shuffles a tensor along its first dimension.
|
RandomShuffle.Inputs<T extends TType> |
|
RandomShuffle.Options |
|
RandomShuffleQueue |
A queue that randomizes the order of elements.
|
RandomShuffleQueue.Inputs |
|
RandomShuffleQueue.Options |
|
RandomStandardNormal<U extends TNumber> |
Outputs random values from a normal distribution.
|
RandomStandardNormal.Inputs |
|
RandomStandardNormal.Options |
|
RandomUniform<U extends TNumber> |
Outputs random values from a uniform distribution.
|
RandomUniform.Inputs |
|
RandomUniform.Options |
|
RandomUniformInt<U extends TNumber> |
Outputs random integers from a uniform distribution.
|
RandomUniformInt.Inputs<U extends TNumber> |
|
RandomUniformInt.Options |
|
Range<T extends TNumber> |
Creates a sequence of numbers.
|
Range.Inputs<T extends TNumber> |
|
RangeDataset |
Creates a dataset with a range of values.
|
RangeDataset.Inputs |
|
RangeDataset.Options |
|
Rank |
Returns the rank of a tensor.
|
Rank.Inputs |
|
RawCustomGradient |
A custom gradient for an op of unspecified type.
|
RawOp |
A base class for Op implementations that are backed by a single Operation .
|
RawOpInputs<T extends RawOp> |
A base class for operation input accessors.
|
RawTensor |
A tensor which memory has not been mapped to a data space directly accessible from the JVM.
|
ReaderBaseProtos |
|
ReaderBaseState |
For serializing and restoring the state of ReaderBase, see
reader_base.h for details.
|
ReaderBaseState.Builder |
For serializing and restoring the state of ReaderBase, see
reader_base.h for details.
|
ReaderBaseStateOrBuilder |
|
ReaderNumRecordsProduced |
Returns the number of records this Reader has produced.
|
ReaderNumRecordsProduced.Inputs |
|
ReaderNumWorkUnitsCompleted |
Returns the number of work units this Reader has finished processing.
|
ReaderNumWorkUnitsCompleted.Inputs |
|
ReaderRead |
Returns the next record (key, value pair) produced by a Reader.
|
ReaderRead.Inputs |
|
ReaderReadUpTo |
Returns up to num_records (key, value) pairs produced by a Reader.
|
ReaderReadUpTo.Inputs |
|
ReaderReset |
Restore a Reader to its initial clean state.
|
ReaderReset.Inputs |
|
ReaderRestoreState |
Restore a reader to a previously saved state.
|
ReaderRestoreState.Inputs |
|
ReaderSerializeState |
Produce a string tensor that encodes the state of a Reader.
|
ReaderSerializeState.Inputs |
|
ReadFile |
Reads and outputs the entire contents of the input filename.
|
ReadFile.Inputs |
|
ReadVariableOp<T extends TType> |
Reads the value of a variable.
|
ReadVariableOp.Inputs |
|
ReadVariableSplitND<T extends TType> |
Splits resource variable input tensor across all dimensions.
|
ReadVariableSplitND.Inputs |
|
ReadVariableSplitND.Options |
|
Real<U extends TNumber> |
Returns the real part of a complex number.
|
Real.Inputs |
|
RealDiv<T extends TType> |
Returns x / y element-wise for real types.
|
RealDiv.Inputs<T extends TType> |
|
RebatchDataset |
Creates a dataset that changes the batch size.
|
RebatchDataset.Inputs |
|
RebatchDataset.Options |
|
RebatchDatasetV2 |
Creates a dataset that changes the batch size.
|
RebatchDatasetV2.Inputs |
|
Reciprocal<T extends TType> |
Computes the reciprocal of x element-wise.
|
Reciprocal.Inputs<T extends TType> |
|
ReciprocalGrad<T extends TType> |
Computes the gradient for the inverse of x wrt its input.
|
ReciprocalGrad.Inputs<T extends TType> |
|
RecordInput |
Emits randomized records.
|
RecordInput.Inputs |
|
RecordInput.Options |
|
Recv<T extends TType> |
Receives the named tensor from send_device on recv_device.
|
Recv<T extends TType> |
Receives the named tensor from another XLA computation.
|
Recv.Inputs |
|
Recv.Inputs |
|
Recv.Options |
Optional attributes for Recv
|
RecvTPUEmbeddingActivations |
An op that receives embedding activations on the TPU.
|
RecvTPUEmbeddingActivations.Inputs |
|
Reduce<T extends TType> |
Wraps the XLA Reduce operator, documented at
https://www.tensorflow.org/performance/xla/operation_semantics#reduce .
|
Reduce.Inputs<T extends TType> |
|
ReduceAll |
Computes the "logical and" of elements across dimensions of a tensor.
|
ReduceAll.Inputs |
|
ReduceAll.Options |
|
ReduceAny |
Computes the "logical or" of elements across dimensions of a tensor.
|
ReduceAny.Inputs |
|
ReduceAny.Options |
|
ReduceDataset |
Reduces the input dataset to a singleton using a reduce function.
|
ReduceDataset.Inputs |
|
ReduceDataset.Options |
|
ReduceJoin |
Joins a string Tensor across the given dimensions.
|
ReduceJoin.Inputs |
|
ReduceJoin.Options |
|
ReduceMax<T extends TNumber> |
Computes the maximum of elements across dimensions of a tensor.
|
ReduceMax.Inputs<T extends TNumber> |
|
ReduceMax.Options |
|
ReduceMin<T extends TNumber> |
Computes the minimum of elements across dimensions of a tensor.
|
ReduceMin.Inputs<T extends TNumber> |
|
ReduceMin.Options |
|
ReduceProd<T extends TType> |
Computes the product of elements across dimensions of a tensor.
|
ReduceProd.Inputs<T extends TType> |
|
ReduceProd.Options |
|
ReduceScatter<T extends TNumber> |
Wraps the XLA ReduceScatter operator
documented at https://www.tensorflow.org/xla/operation_semantics#reducescatter.
|
ReduceScatter.Inputs<T extends TNumber> |
|
ReduceSum<T extends TType> |
Computes the sum of elements across dimensions of a tensor.
|
ReduceSum.Inputs<T extends TType> |
|
ReduceSum.Options |
|
ReduceWindow<T extends TType> |
Wraps the XLA ReduceWindow operator, documented at
https://www.tensorflow.org/performance/xla/operation_semantics#reducewindow .
|
ReduceWindow.Inputs<T extends TType,U extends TNumber> |
|
RefEnter<T extends TType> |
Creates or finds a child frame, and makes data available to the child frame.
|
RefEnter.Inputs<T extends TType> |
|
RefEnter.Options |
|
RefExit<T extends TType> |
Exits the current frame to its parent frame.
|
RefExit.Inputs<T extends TType> |
|
RefIdentity<T extends TType> |
Return the same ref tensor as the input ref tensor.
|
RefIdentity.Inputs<T extends TType> |
|
RefMerge<T extends TType> |
Forwards the value of an available tensor from inputs to output .
|
RefMerge.Inputs<T extends TType> |
|
RefNextIteration<T extends TType> |
Makes its input available to the next iteration.
|
RefNextIteration.Inputs<T extends TType> |
|
RefSelect<T extends TType> |
Forwards the index th element of inputs to output .
|
RefSelect.Inputs<T extends TType> |
|
RefSwitch<T extends TType> |
Forwards the ref tensor data to the output port determined by pred .
|
RefSwitch.Inputs<T extends TType> |
|
RegexFullMatch |
Check if the input matches the regex pattern.
|
RegexFullMatch.Inputs |
|
RegexReplace |
Replaces matches of the pattern regular expression in input with the
replacement string provided in rewrite .
|
RegexReplace.Inputs |
|
RegexReplace.Options |
|
RegisterDataset |
Registers a dataset with the tf.data service.
|
RegisterDataset.Inputs |
|
RegisterDataset.Options |
|
RegisteredGradient |
RegisteredGradient stores a gradient function that is registered in the
gradients library and used in the ops of a function in the function library.
|
RegisteredGradient.Builder |
RegisteredGradient stores a gradient function that is registered in the
gradients library and used in the ops of a function in the function library.
|
RegisteredGradientOrBuilder |
|
RegisteredSaver |
Protobuf type tensorflow.RegisteredSaver
|
RegisteredSaver.Builder |
Protobuf type tensorflow.RegisteredSaver
|
RegisteredSaverOrBuilder |
|
Relayout<T extends TType> |
The Relayout operation
|
Relayout.Inputs<T extends TType> |
|
Relu<T extends TNumber> |
Computes rectified linear: max(features, 0) .
|
Relu.Inputs<T extends TNumber> |
|
Relu6<T extends TNumber> |
Computes rectified linear 6: min(max(features, 0), 6) .
|
Relu6.Inputs<T extends TNumber> |
|
Relu6Grad<T extends TNumber> |
Computes rectified linear 6 gradients for a Relu6 operation.
|
Relu6Grad.Inputs<T extends TNumber> |
|
ReluGrad<T extends TNumber> |
Computes rectified linear gradients for a Relu operation.
|
ReluGrad.Inputs<T extends TNumber> |
|
RemoteCall |
Runs function f on a remote device indicated by target .
|
RemoteCall.Inputs |
|
RemoteProfilerSessionManagerOptions |
Options for remote profiler session manager.
|
RemoteProfilerSessionManagerOptions.Builder |
Options for remote profiler session manager.
|
RemoteProfilerSessionManagerOptionsOrBuilder |
|
RemoteTensorHandle |
Protobuf type tensorflow.eager.RemoteTensorHandle
|
RemoteTensorHandle.Builder |
Protobuf type tensorflow.eager.RemoteTensorHandle
|
RemoteTensorHandleOrBuilder |
|
RemoteTensorHandleProtos |
|
RemoveDynamicDimensionSize<T extends TType> |
Inverse of XlaSetDynamicDimensionSize.
|
RemoveDynamicDimensionSize.Inputs<T extends TType> |
|
RepeatDataset |
Creates a dataset that emits the outputs of input_dataset count times.
|
RepeatDataset.Inputs |
|
RepeatDataset.Options |
|
ReplicaId |
Replica ID.
|
ReplicaId.Inputs |
|
ReplicatedInput<T extends TType> |
Connects N inputs to an N-way replicated TPU computation.
|
ReplicatedInput.Inputs<T extends TType> |
|
ReplicatedInput.Options |
|
ReplicatedOutput<T extends TType> |
Connects N outputs from an N-way replicated TPU computation.
|
ReplicatedOutput.Inputs<T extends TType> |
|
ReplicateMetadata |
Metadata indicating how the TPU computation should be replicated.
|
ReplicateMetadata.Inputs |
|
ReplicateMetadata.Options |
|
RequantizationRange |
Computes a range that covers the actual values present in a quantized tensor.
|
RequantizationRange.Inputs |
|
RequantizationRangePerChannel |
Computes requantization range per channel.
|
RequantizationRangePerChannel.Inputs |
|
Requantize<U extends TNumber> |
Converts the quantized input tensor into a lower-precision output .
|
Requantize.Inputs |
|
RequantizePerChannel<U extends TNumber> |
Requantizes input with min and max values known per channel.
|
RequantizePerChannel.Inputs |
|
RequestedExitCode |
Protobuf type tensorflow.RequestedExitCode
|
RequestedExitCode.Builder |
Protobuf type tensorflow.RequestedExitCode
|
RequestedExitCodeOrBuilder |
|
Reshape<T extends TType> |
Reshapes a tensor.
|
Reshape.Inputs<T extends TType> |
|
ResizeArea |
Resize images to size using area interpolation.
|
ResizeArea.Inputs |
|
ResizeArea.Options |
|
ResizeBicubic |
Resize images to size using bicubic interpolation.
|
ResizeBicubic.Inputs |
|
ResizeBicubic.Options |
|
ResizeBicubicGrad<T extends TNumber> |
Computes the gradient of bicubic interpolation.
|
ResizeBicubicGrad.Inputs<T extends TNumber> |
|
ResizeBicubicGrad.Options |
|
ResizeBilinear |
Resize images to size using bilinear interpolation.
|
ResizeBilinear.Inputs |
|
ResizeBilinear.Options |
|
ResizeBilinearGrad<T extends TNumber> |
Computes the gradient of bilinear interpolation.
|
ResizeBilinearGrad.Inputs<T extends TNumber> |
|
ResizeBilinearGrad.Options |
|
ResizeNearestNeighbor<T extends TNumber> |
Resize images to size using nearest neighbor interpolation.
|
ResizeNearestNeighbor.Inputs<T extends TNumber> |
|
ResizeNearestNeighbor.Options |
|
ResizeNearestNeighborGrad<T extends TNumber> |
Computes the gradient of nearest neighbor interpolation.
|
ResizeNearestNeighborGrad.Inputs<T extends TNumber> |
|
ResizeNearestNeighborGrad.Options |
|
ResourceAccumulatorApplyGradient |
Applies a gradient to a given accumulator.
|
ResourceAccumulatorApplyGradient.Inputs |
|
ResourceAccumulatorNumAccumulated |
Returns the number of gradients aggregated in the given accumulators.
|
ResourceAccumulatorNumAccumulated.Inputs |
|
ResourceAccumulatorSetGlobalStep |
Updates the accumulator with a new value for global_step.
|
ResourceAccumulatorSetGlobalStep.Inputs |
|
ResourceAccumulatorTakeGradient<T extends TType> |
Extracts the average gradient in the given ConditionalAccumulator.
|
ResourceAccumulatorTakeGradient.Inputs |
|
ResourceApplyAdadelta |
Update '*var' according to the adadelta scheme.
|
ResourceApplyAdadelta.Inputs<T extends TType> |
|
ResourceApplyAdadelta.Options |
|
ResourceApplyAdagrad |
Update '*var' according to the adagrad scheme.
|
ResourceApplyAdagrad.Inputs<T extends TType> |
|
ResourceApplyAdagrad.Options |
|
ResourceApplyAdagradDa |
Update '*var' according to the proximal adagrad scheme.
|
ResourceApplyAdagradDa.Inputs<T extends TType> |
|
ResourceApplyAdagradDa.Options |
|
ResourceApplyAdam |
Update '*var' according to the Adam algorithm.
|
ResourceApplyAdam.Inputs<T extends TType> |
|
ResourceApplyAdam.Options |
|
ResourceApplyAdaMax |
Update '*var' according to the AdaMax algorithm.
|
ResourceApplyAdaMax.Inputs<T extends TType> |
|
ResourceApplyAdaMax.Options |
|
ResourceApplyAdamWithAmsgrad |
Update '*var' according to the Adam algorithm.
|
ResourceApplyAdamWithAmsgrad.Inputs<T extends TType> |
|
ResourceApplyAdamWithAmsgrad.Options |
|
ResourceApplyAddSign |
Update '*var' according to the AddSign update.
|
ResourceApplyAddSign.Inputs<T extends TType> |
|
ResourceApplyAddSign.Options |
|
ResourceApplyCenteredRmsProp |
Update '*var' according to the centered RMSProp algorithm.
|
ResourceApplyCenteredRmsProp.Inputs<T extends TType> |
|
ResourceApplyCenteredRmsProp.Options |
|
ResourceApplyFtrl |
Update '*var' according to the Ftrl-proximal scheme.
|
ResourceApplyFtrl.Inputs<T extends TType> |
|
ResourceApplyFtrl.Options |
|
ResourceApplyGradientDescent |
Update '*var' by subtracting 'alpha' * 'delta' from it.
|
ResourceApplyGradientDescent.Inputs<T extends TType> |
|
ResourceApplyGradientDescent.Options |
|
ResourceApplyKerasMomentum |
Update '*var' according to the momentum scheme.
|
ResourceApplyKerasMomentum.Inputs<T extends TType> |
|
ResourceApplyKerasMomentum.Options |
|
ResourceApplyMomentum |
Update '*var' according to the momentum scheme.
|
ResourceApplyMomentum.Inputs<T extends TType> |
|
ResourceApplyMomentum.Options |
|
ResourceApplyPowerSign |
Update '*var' according to the AddSign update.
|
ResourceApplyPowerSign.Inputs<T extends TType> |
|
ResourceApplyPowerSign.Options |
|
ResourceApplyProximalAdagrad |
Update '*var' and '*accum' according to FOBOS with Adagrad learning rate.
|
ResourceApplyProximalAdagrad.Inputs<T extends TType> |
|
ResourceApplyProximalAdagrad.Options |
|
ResourceApplyProximalGradientDescent |
Update '*var' as FOBOS algorithm with fixed learning rate.
|
ResourceApplyProximalGradientDescent.Inputs<T extends TType> |
|
ResourceApplyProximalGradientDescent.Options |
|
ResourceApplyRmsProp |
Update '*var' according to the RMSProp algorithm.
|
ResourceApplyRmsProp.Inputs<T extends TType> |
|
ResourceApplyRmsProp.Options |
|
ResourceConditionalAccumulator |
A conditional accumulator for aggregating gradients.
|
ResourceConditionalAccumulator.Inputs |
|
ResourceConditionalAccumulator.Options |
|
ResourceCountUpTo<T extends TNumber> |
Increments variable pointed to by 'resource' until it reaches 'limit'.
|
ResourceCountUpTo.Inputs |
|
ResourceDtypeAndShape |
Protobuf type tensorflow.eager.ResourceDtypeAndShape
|
ResourceDtypeAndShape.Builder |
Protobuf type tensorflow.eager.ResourceDtypeAndShape
|
ResourceDtypeAndShapeOrBuilder |
|
ResourceGather<U extends TType> |
Gather slices from the variable pointed to by resource according to indices .
|
ResourceGather.Inputs |
|
ResourceGather.Options |
|
ResourceGatherNd<U extends TType> |
The ResourceGatherNd operation
|
ResourceGatherNd.Inputs |
|
ResourceHandle |
|
ResourceHandleProto |
Protocol buffer representing a handle to a tensorflow resource.
|
ResourceHandleProto.Builder |
Protocol buffer representing a handle to a tensorflow resource.
|
ResourceHandleProto.DtypeAndShape |
Protocol buffer representing a pair of (data type, tensor shape).
|
ResourceHandleProto.DtypeAndShape.Builder |
Protocol buffer representing a pair of (data type, tensor shape).
|
ResourceHandleProto.DtypeAndShapeOrBuilder |
|
ResourceHandleProtoOrBuilder |
|
ResourceScatterAdd |
Adds sparse updates to the variable referenced by resource .
|
ResourceScatterAdd.Inputs |
|
ResourceScatterDiv |
Divides sparse updates into the variable referenced by resource .
|
ResourceScatterDiv.Inputs |
|
ResourceScatterMax |
Reduces sparse updates into the variable referenced by resource using the max operation.
|
ResourceScatterMax.Inputs |
|
ResourceScatterMin |
Reduces sparse updates into the variable referenced by resource using the min operation.
|
ResourceScatterMin.Inputs |
|
ResourceScatterMul |
Multiplies sparse updates into the variable referenced by resource .
|
ResourceScatterMul.Inputs |
|
ResourceScatterNdAdd |
Applies sparse addition to individual values or slices in a Variable.
|
ResourceScatterNdAdd.Inputs |
|
ResourceScatterNdAdd.Options |
|
ResourceScatterNdMax |
The ResourceScatterNdMax operation
|
ResourceScatterNdMax.Inputs |
|
ResourceScatterNdMax.Options |
|
ResourceScatterNdMin |
The ResourceScatterNdMin operation
|
ResourceScatterNdMin.Inputs |
|
ResourceScatterNdMin.Options |
|
ResourceScatterNdSub |
Applies sparse subtraction to individual values or slices in a Variable.
|
ResourceScatterNdSub.Inputs |
|
ResourceScatterNdSub.Options |
|
ResourceScatterNdUpdate |
Applies sparse updates to individual values or slices within a given
variable according to indices .
|
ResourceScatterNdUpdate.Inputs |
|
ResourceScatterNdUpdate.Options |
|
ResourceScatterSub |
Subtracts sparse updates from the variable referenced by resource .
|
ResourceScatterSub.Inputs |
|
ResourceScatterUpdate |
Assigns sparse updates to the variable referenced by resource .
|
ResourceScatterUpdate.Inputs |
|
ResourceSparseApplyAdadelta |
var: Should be from a Variable().
|
ResourceSparseApplyAdadelta.Inputs<T extends TType> |
|
ResourceSparseApplyAdadelta.Options |
|
ResourceSparseApplyAdagrad |
Update relevant entries in '*var' and '*accum' according to the adagrad scheme.
|
ResourceSparseApplyAdagrad.Inputs<T extends TType> |
|
ResourceSparseApplyAdagrad.Options |
|
ResourceSparseApplyAdagradDa |
Update entries in '*var' and '*accum' according to the proximal adagrad scheme.
|
ResourceSparseApplyAdagradDa.Inputs<T extends TType> |
|
ResourceSparseApplyAdagradDa.Options |
|
ResourceSparseApplyAdagradV2 |
Update relevant entries in '*var' and '*accum' according to the adagrad scheme.
|
ResourceSparseApplyAdagradV2.Inputs<T extends TType> |
|
ResourceSparseApplyAdagradV2.Options |
|
ResourceSparseApplyCenteredRmsProp |
Update '*var' according to the centered RMSProp algorithm.
|
ResourceSparseApplyCenteredRmsProp.Inputs<T extends TType> |
|
ResourceSparseApplyCenteredRmsProp.Options |
|
ResourceSparseApplyFtrl |
Update relevant entries in '*var' according to the Ftrl-proximal scheme.
|
ResourceSparseApplyFtrl.Inputs<T extends TType> |
|
ResourceSparseApplyFtrl.Options |
|
ResourceSparseApplyKerasMomentum |
Update relevant entries in '*var' and '*accum' according to the momentum scheme.
|
ResourceSparseApplyKerasMomentum.Inputs<T extends TType> |
|
ResourceSparseApplyKerasMomentum.Options |
|
ResourceSparseApplyMomentum |
Update relevant entries in '*var' and '*accum' according to the momentum scheme.
|
ResourceSparseApplyMomentum.Inputs<T extends TType> |
|
ResourceSparseApplyMomentum.Options |
|
ResourceSparseApplyProximalAdagrad |
Sparse update entries in '*var' and '*accum' according to FOBOS algorithm.
|
ResourceSparseApplyProximalAdagrad.Inputs<T extends TType> |
|
ResourceSparseApplyProximalAdagrad.Options |
|
ResourceSparseApplyProximalGradientDescent |
Sparse update '*var' as FOBOS algorithm with fixed learning rate.
|
ResourceSparseApplyProximalGradientDescent.Inputs<T extends TType> |
|
ResourceSparseApplyProximalGradientDescent.Options |
|
ResourceSparseApplyRmsProp |
Update '*var' according to the RMSProp algorithm.
|
ResourceSparseApplyRmsProp.Inputs<T extends TType> |
|
ResourceSparseApplyRmsProp.Options |
|
ResourceStridedSliceAssign |
Assign value to the sliced l-value reference of ref .
|
ResourceStridedSliceAssign.Inputs<T extends TNumber> |
|
ResourceStridedSliceAssign.Options |
|
Restore |
Restores tensors from a V2 checkpoint.
|
Restore.Inputs |
|
RestoreSlice<T extends TType> |
Restores a tensor from checkpoint files.
|
RestoreSlice.Inputs |
|
RestoreSlice.Options |
|
Result |
|
RetrieveAllTPUEmbeddingParameters |
An op that retrieves optimization parameters from embedding to host memory.
|
RetrieveAllTPUEmbeddingParameters.Inputs |
|
RetrieveTPUEmbeddingAdadeltaParameters |
Retrieve Adadelta embedding parameters.
|
RetrieveTPUEmbeddingAdadeltaParameters.Inputs |
|
RetrieveTPUEmbeddingAdadeltaParameters.Options |
|
RetrieveTPUEmbeddingAdagradMomentumParameters |
Retrieve Adagrad Momentum embedding parameters.
|
RetrieveTPUEmbeddingAdagradMomentumParameters.Inputs |
|
RetrieveTPUEmbeddingAdagradMomentumParameters.Options |
|
RetrieveTPUEmbeddingAdagradParameters |
Retrieve Adagrad embedding parameters.
|
RetrieveTPUEmbeddingAdagradParameters.Inputs |
|
RetrieveTPUEmbeddingAdagradParameters.Options |
|
RetrieveTPUEmbeddingADAMParameters |
Retrieve ADAM embedding parameters.
|
RetrieveTPUEmbeddingADAMParameters.Inputs |
|
RetrieveTPUEmbeddingADAMParameters.Options |
|
RetrieveTPUEmbeddingCenteredRMSPropParameters |
Retrieve centered RMSProp embedding parameters.
|
RetrieveTPUEmbeddingCenteredRMSPropParameters.Inputs |
|
RetrieveTPUEmbeddingCenteredRMSPropParameters.Options |
|
RetrieveTPUEmbeddingFrequencyEstimatorParameters |
Retrieve frequency estimator embedding parameters.
|
RetrieveTPUEmbeddingFrequencyEstimatorParameters.Inputs |
|
RetrieveTPUEmbeddingFrequencyEstimatorParameters.Options |
|
RetrieveTPUEmbeddingFTRLParameters |
Retrieve FTRL embedding parameters.
|
RetrieveTPUEmbeddingFTRLParameters.Inputs |
|
RetrieveTPUEmbeddingFTRLParameters.Options |
|
RetrieveTPUEmbeddingMDLAdagradLightParameters |
Retrieve MDL Adagrad Light embedding parameters.
|
RetrieveTPUEmbeddingMDLAdagradLightParameters.Inputs |
|
RetrieveTPUEmbeddingMDLAdagradLightParameters.Options |
|
RetrieveTPUEmbeddingMomentumParameters |
Retrieve Momentum embedding parameters.
|
RetrieveTPUEmbeddingMomentumParameters.Inputs |
|
RetrieveTPUEmbeddingMomentumParameters.Options |
|
RetrieveTPUEmbeddingProximalAdagradParameters |
Retrieve proximal Adagrad embedding parameters.
|
RetrieveTPUEmbeddingProximalAdagradParameters.Inputs |
|
RetrieveTPUEmbeddingProximalAdagradParameters.Options |
|
RetrieveTPUEmbeddingProximalYogiParameters |
The RetrieveTPUEmbeddingProximalYogiParameters operation
|
RetrieveTPUEmbeddingProximalYogiParameters.Inputs |
|
RetrieveTPUEmbeddingProximalYogiParameters.Options |
|
RetrieveTPUEmbeddingRMSPropParameters |
Retrieve RMSProp embedding parameters.
|
RetrieveTPUEmbeddingRMSPropParameters.Inputs |
|
RetrieveTPUEmbeddingRMSPropParameters.Options |
|
RetrieveTPUEmbeddingStochasticGradientDescentParameters |
Retrieve SGD embedding parameters.
|
RetrieveTPUEmbeddingStochasticGradientDescentParameters.Inputs |
|
RetrieveTPUEmbeddingStochasticGradientDescentParameters.Options |
|
Reverse<T extends TType> |
Reverses specific dimensions of a tensor.
|
Reverse.Inputs<T extends TType> |
|
ReverseSequence<T extends TType> |
Reverses variable length slices.
|
ReverseSequence.Inputs<T extends TType> |
|
ReverseSequence.Options |
|
RewriteDataset |
The RewriteDataset operation
|
RewriteDataset.Inputs |
|
RewriterConfig |
Graph rewriting is experimental and subject to change, not covered by any
API stability guarantees.
|
RewriterConfig.Builder |
Graph rewriting is experimental and subject to change, not covered by any
API stability guarantees.
|
RewriterConfig.CpuLayout |
Enum for layout conversion between NCHW and NHWC on CPU.
|
RewriterConfig.CustomGraphOptimizer |
Message to describe custom graph optimizer and its parameters
|
RewriterConfig.CustomGraphOptimizer.Builder |
Message to describe custom graph optimizer and its parameters
|
RewriterConfig.CustomGraphOptimizerOrBuilder |
|
RewriterConfig.MemOptType |
Protobuf enum tensorflow.RewriterConfig.MemOptType
|
RewriterConfig.NumIterationsType |
Enum controlling the number of times to run optimizers.
|
RewriterConfig.Toggle |
Protobuf enum tensorflow.RewriterConfig.Toggle
|
RewriterConfigOrBuilder |
|
RewriterConfigProtos |
|
Rfft<U extends TType> |
Real-valued fast Fourier transform.
|
Rfft.Inputs |
|
Rfft2d<U extends TType> |
2D real-valued fast Fourier transform.
|
Rfft2d.Inputs |
|
Rfft3d<U extends TType> |
3D real-valued fast Fourier transform.
|
Rfft3d.Inputs |
|
RgbToHsv<T extends TNumber> |
Converts one or more images from RGB to HSV.
|
RgbToHsv.Inputs<T extends TNumber> |
|
RightShift<T extends TNumber> |
Elementwise computes the bitwise right-shift of x and y .
|
RightShift.Inputs<T extends TNumber> |
|
Rint<T extends TNumber> |
Returns element-wise integer closest to x.
|
Rint.Inputs<T extends TNumber> |
|
RiscAbs<T extends TNumber> |
The RiscAbs operation
|
RiscAbs.Inputs<T extends TNumber> |
|
RiscAdd<T extends TNumber> |
Returns x + y element-wise.
|
RiscAdd.Inputs<T extends TNumber> |
|
RiscBinaryArithmetic<T extends TNumber> |
The RiscBinaryArithmetic operation
|
RiscBinaryArithmetic.Inputs<T extends TNumber> |
|
RiscBinaryComparison |
The RiscBinaryComparison operation
|
RiscBinaryComparison.Inputs<T extends TNumber> |
|
RiscBitcast<U extends TType> |
The RiscBitcast operation
|
RiscBitcast.Inputs |
|
RiscBroadcast<T extends TType> |
The RiscBroadcast operation
|
RiscBroadcast.Inputs<T extends TType> |
|
RiscCast<U extends TType> |
The RiscCast operation
|
RiscCast.Inputs |
|
RiscCeil<T extends TNumber> |
The RiscCeil operation
|
RiscCeil.Inputs<T extends TNumber> |
|
RiscCholesky<T extends TNumber> |
The RiscCholesky operation
|
RiscCholesky.Inputs<T extends TNumber> |
|
RiscConcat<T extends TType> |
The RiscConcat operation
|
RiscConcat.Inputs<T extends TType> |
|
RiscCondition<U extends TNumber> |
The RiscCondition operation
|
RiscCondition.Inputs<T extends TNumber> |
|
RiscConv<T extends TNumber> |
The RiscConv operation
|
RiscConv.Inputs<T extends TNumber> |
|
RiscConv.Options |
|
RiscCos<T extends TNumber> |
The RiscCos operation
|
RiscCos.Inputs<T extends TNumber> |
|
RiscDiv<T extends TNumber> |
The RiscDiv operation
|
RiscDiv.Inputs<T extends TNumber> |
|
RiscDot<T extends TNumber> |
The RiscDot operation
|
RiscDot.Inputs<T extends TNumber> |
|
RiscDot.Options |
|
RiscExp<T extends TNumber> |
The RiscExp operation
|
RiscExp.Inputs<T extends TNumber> |
|
RiscFft<T extends TType> |
The RiscFft operation
|
RiscFft.Inputs<T extends TType> |
|
RiscFloor<T extends TNumber> |
The RiscFloor operation
|
RiscFloor.Inputs<T extends TNumber> |
|
RiscGather<T extends TType> |
The RiscGather operation
|
RiscGather.Inputs<T extends TType> |
|
RiscGather.Options |
|
RiscImag<U extends TNumber> |
The RiscImag operation
|
RiscImag.Inputs |
|
RiscIsFinite |
The RiscIsFinite operation
|
RiscIsFinite.Inputs |
|
RiscLog<T extends TNumber> |
The RiscLog operation
|
RiscLog.Inputs<T extends TNumber> |
|
RiscLogicalAnd |
The RiscLogicalAnd operation
|
RiscLogicalAnd.Inputs |
|
RiscLogicalNot |
The RiscLogicalNot operation
|
RiscLogicalNot.Inputs |
|
RiscLogicalOr |
The RiscLogicalOr operation
|
RiscLogicalOr.Inputs |
|
RiscMax<T extends TNumber> |
Returns max(x, y) element-wise.
|
RiscMax.Inputs<T extends TNumber> |
|
RiscMin<T extends TNumber> |
The RiscMin operation
|
RiscMin.Inputs<T extends TNumber> |
|
RiscMul<T extends TNumber> |
The RiscMul operation
|
RiscMul.Inputs<T extends TNumber> |
|
RiscNeg<T extends TNumber> |
The RiscNeg operation
|
RiscNeg.Inputs<T extends TNumber> |
|
RiscPad<T extends TNumber> |
The RiscPad operation
|
RiscPad.Inputs<T extends TNumber> |
|
RiscPool<T extends TNumber> |
The RiscPool operation
|
RiscPool.Inputs<T extends TNumber> |
|
RiscPool.Options |
|
RiscPow<T extends TNumber> |
The RiscPow operation
|
RiscPow.Inputs<T extends TNumber> |
|
RiscRandomUniform |
The RiscRandomUniform operation
|
RiscRandomUniform.Inputs |
|
RiscRandomUniform.Options |
|
RiscReal<U extends TNumber> |
The RiscReal operation
|
RiscReal.Inputs |
|
RiscReduce<T extends TNumber> |
The RiscReduce operation
|
RiscReduce.Inputs<T extends TNumber> |
|
RiscRem<T extends TNumber> |
The RiscRem operation
|
RiscRem.Inputs<T extends TNumber> |
|
RiscReshape<T extends TNumber> |
The RiscReshape operation
|
RiscReshape.Inputs<T extends TNumber> |
|
RiscReverse<T extends TNumber> |
The RiscReverse operation
|
RiscReverse.Inputs<T extends TNumber> |
|
RiscScatter<U extends TNumber> |
The RiscScatter operation
|
RiscScatter.Inputs<T extends TNumber,U extends TNumber> |
|
RiscShape<U extends TNumber> |
The RiscShape operation
|
RiscShape.Inputs |
|
RiscSign<T extends TNumber> |
The RiscSign operation
|
RiscSign.Inputs<T extends TNumber> |
|
RiscSlice<T extends TNumber> |
The RiscSlice operation
|
RiscSlice.Inputs<T extends TNumber,U extends TNumber> |
|
RiscSort<T extends TNumber> |
The RiscSort operation
|
RiscSort.Inputs<T extends TNumber> |
|
RiscSqueeze<T extends TType> |
The RiscSqueeze operation
|
RiscSqueeze.Inputs<T extends TType> |
|
RiscSqueeze.Options |
|
RiscSub<T extends TNumber> |
The RiscSub operation
|
RiscSub.Inputs<T extends TNumber> |
|
RiscTranspose<T extends TType> |
The RiscTranspose operation
|
RiscTranspose.Inputs<T extends TType> |
|
RiscTriangularSolve<T extends TNumber> |
The RiscTriangularSolve operation
|
RiscTriangularSolve.Inputs<T extends TNumber> |
|
RiscTriangularSolve.Options |
|
RiscUnary<T extends TNumber> |
The RiscUnary operation
|
RiscUnary.Inputs<T extends TNumber> |
|
RiscWhile |
The RiscWhile operation
|
RiscWhile.Inputs |
|
RiscWhile.Options |
|
RngBitGenerator<U extends TNumber> |
Stateless PRNG bit generator.
|
RngBitGenerator.Inputs |
|
RngReadAndSkip |
Advance the counter of a counter-based RNG.
|
RngReadAndSkip.Inputs |
|
RngSkip |
Advance the counter of a counter-based RNG.
|
RngSkip.Inputs |
|
Roll<T extends TType> |
Rolls the elements of a tensor along an axis.
|
Roll.Inputs<T extends TType> |
|
Round<T extends TType> |
Rounds the values of a tensor to the nearest integer, element-wise.
|
Round.Inputs<T extends TType> |
|
RPCOptions |
Protobuf type tensorflow.RPCOptions
|
RPCOptions.Builder |
Protobuf type tensorflow.RPCOptions
|
RPCOptionsOrBuilder |
|
Rsqrt<T extends TType> |
Computes reciprocal of square root of x element-wise.
|
Rsqrt.Inputs<T extends TType> |
|
RsqrtGrad<T extends TType> |
Computes the gradient for the rsqrt of x wrt its input.
|
RsqrtGrad.Inputs<T extends TType> |
|
RunConfiguration |
Run-specific items such as arguments to the test / benchmark.
|
RunConfiguration.Builder |
Run-specific items such as arguments to the test / benchmark.
|
RunConfigurationOrBuilder |
|
RunMetadata |
Metadata output (i.e., non-Tensor) for a single Run() call.
|
RunMetadata.Builder |
Metadata output (i.e., non-Tensor) for a single Run() call.
|
RunMetadata.FunctionGraphs |
Protobuf type tensorflow.RunMetadata.FunctionGraphs
|
RunMetadata.FunctionGraphs.Builder |
Protobuf type tensorflow.RunMetadata.FunctionGraphs
|
RunMetadata.FunctionGraphsOrBuilder |
|
RunMetadataOrBuilder |
|
RunOptions |
Options for a single Run() call.
|
RunOptions.Builder |
Options for a single Run() call.
|
RunOptions.Experimental |
Everything inside Experimental is subject to change and is not subject
to API stability guarantees in
https://www.tensorflow.org/guide/version_compat.
|
RunOptions.Experimental.Builder |
Everything inside Experimental is subject to change and is not subject
to API stability guarantees in
https://www.tensorflow.org/guide/version_compat.
|
RunOptions.Experimental.RunHandlerPoolOptions |
Options for run handler thread pool.
|
RunOptions.Experimental.RunHandlerPoolOptions.Builder |
Options for run handler thread pool.
|
RunOptions.Experimental.RunHandlerPoolOptionsOrBuilder |
|
RunOptions.ExperimentalOrBuilder |
|
RunOptions.TraceLevel |
TODO(pbar) Turn this into a TraceOptions proto which allows
tracing to be controlled in a more orthogonal manner?
|
RunOptionsOrBuilder |
|
SampleDistortedBoundingBox<T extends TNumber> |
Generate a single randomly distorted bounding box for an image.
|
SampleDistortedBoundingBox.Inputs<T extends TNumber> |
|
SampleDistortedBoundingBox.Options |
|
SamplingDataset |
Creates a dataset that takes a Bernoulli sample of the contents of another dataset.
|
SamplingDataset.Inputs |
|
Save |
Saves tensors in V2 checkpoint format.
|
Save.Inputs |
|
SaveableObject |
Protobuf type tensorflow.SaveableObject
|
SaveableObject.Builder |
Protobuf type tensorflow.SaveableObject
|
SaveableObjectOrBuilder |
|
SavedAsset |
A SavedAsset points to an asset in the MetaGraph.
|
SavedAsset.Builder |
A SavedAsset points to an asset in the MetaGraph.
|
SavedAssetOrBuilder |
|
SaveDataset |
The SaveDatasetV2 operation
|
SaveDataset.Inputs |
|
SaveDataset.Options |
|
SavedBareConcreteFunction |
Protobuf type tensorflow.SavedBareConcreteFunction
|
SavedBareConcreteFunction.Builder |
Protobuf type tensorflow.SavedBareConcreteFunction
|
SavedBareConcreteFunctionOrBuilder |
|
SavedConcreteFunction |
Stores low-level information about a concrete function.
|
SavedConcreteFunction.Builder |
Stores low-level information about a concrete function.
|
SavedConcreteFunctionOrBuilder |
|
SavedConstant |
Protobuf type tensorflow.SavedConstant
|
SavedConstant.Builder |
Protobuf type tensorflow.SavedConstant
|
SavedConstantOrBuilder |
|
SavedFunction |
A function with multiple signatures, possibly with non-Tensor arguments.
|
SavedFunction.Builder |
A function with multiple signatures, possibly with non-Tensor arguments.
|
SavedFunctionOrBuilder |
|
SavedModel |
SavedModel is the high level serialization format for TensorFlow Models.
|
SavedModel.Builder |
SavedModel is the high level serialization format for TensorFlow Models.
|
SavedModelBundle |
SavedModelBundle represents a model loaded from storage.
|
SavedModelBundle.Exporter |
Options for exporting a SavedModel.
|
SavedModelBundle.Loader |
Options for loading a SavedModel.
|
SavedModelOrBuilder |
|
SavedModelProtos |
|
SavedObject |
Protobuf type tensorflow.SavedObject
|
SavedObject.Builder |
Protobuf type tensorflow.SavedObject
|
SavedObject.KindCase |
|
SavedObjectGraph |
Protobuf type tensorflow.SavedObjectGraph
|
SavedObjectGraph.Builder |
Protobuf type tensorflow.SavedObjectGraph
|
SavedObjectGraphOrBuilder |
|
SavedObjectGraphProtos |
|
SavedObjectOrBuilder |
|
SavedResource |
A SavedResource represents a TF object that holds state during its lifetime.
|
SavedResource.Builder |
A SavedResource represents a TF object that holds state during its lifetime.
|
SavedResourceOrBuilder |
|
SavedSlice |
Saved tensor slice: it stores the name of the tensors, the slice, and the
raw data.
|
SavedSlice.Builder |
Saved tensor slice: it stores the name of the tensors, the slice, and the
raw data.
|
SavedSliceMeta |
Metadata describing the set of slices of the same tensor saved in a
checkpoint file.
|
SavedSliceMeta.Builder |
Metadata describing the set of slices of the same tensor saved in a
checkpoint file.
|
SavedSliceMetaOrBuilder |
|
SavedSliceOrBuilder |
|
SavedTensorSliceMeta |
Metadata describing the set of tensor slices saved in a checkpoint file.
|
SavedTensorSliceMeta.Builder |
Metadata describing the set of tensor slices saved in a checkpoint file.
|
SavedTensorSliceMetaOrBuilder |
|
SavedTensorSliceProtos |
|
SavedTensorSlices |
Each record in a v3 checkpoint file is a serialized SavedTensorSlices
message.
|
SavedTensorSlices.Builder |
Each record in a v3 checkpoint file is a serialized SavedTensorSlices
message.
|
SavedTensorSlicesOrBuilder |
|
SavedUserObject |
A SavedUserObject is an object (in the object-oriented language of the
TensorFlow program) of some user- or framework-defined class other than
those handled specifically by the other kinds of SavedObjects.
|
SavedUserObject.Builder |
A SavedUserObject is an object (in the object-oriented language of the
TensorFlow program) of some user- or framework-defined class other than
those handled specifically by the other kinds of SavedObjects.
|
SavedUserObjectOrBuilder |
|
SavedVariable |
Represents a Variable that is initialized by loading the contents from the
checkpoint.
|
SavedVariable.Builder |
Represents a Variable that is initialized by loading the contents from the
checkpoint.
|
SavedVariableOrBuilder |
|
SaverDef |
Protocol buffer representing the configuration of a Saver.
|
SaverDef.Builder |
Protocol buffer representing the configuration of a Saver.
|
SaverDef.CheckpointFormatVersion |
A version number that identifies a different on-disk checkpoint format.
|
SaverDefOrBuilder |
|
SaverProtos |
|
SaveSliceInfoDef |
Protobuf type tensorflow.SaveSliceInfoDef
|
SaveSliceInfoDef.Builder |
Protobuf type tensorflow.SaveSliceInfoDef
|
SaveSliceInfoDefOrBuilder |
|
SaveSlices |
Saves input tensors slices to disk.
|
SaveSlices.Inputs |
|
ScalarSummary |
Outputs a Summary protocol buffer with scalar values.
|
ScalarSummary.Inputs |
|
ScaleAndTranslate |
The ScaleAndTranslate operation
|
ScaleAndTranslate.Inputs |
|
ScaleAndTranslate.Options |
|
ScaleAndTranslateGrad<T extends TNumber> |
The ScaleAndTranslateGrad operation
|
ScaleAndTranslateGrad.Inputs<T extends TNumber> |
|
ScaleAndTranslateGrad.Options |
|
ScanDataset |
Creates a dataset successively reduces f over the elements of input_dataset .
|
ScanDataset |
Creates a dataset successively reduces f over the elements of input_dataset .
|
ScanDataset.Inputs |
|
ScanDataset.Inputs |
|
ScanDataset.Options |
|
ScanDataset.Options |
|
Scatter<T extends TType> |
Wraps the XLA Scatter operator documented at
https://www.tensorflow.org/xla/operation_semantics#scatter.
|
Scatter.Inputs<T extends TType> |
|
ScatterAdd<T extends TType> |
Adds sparse updates to a variable reference.
|
ScatterAdd.Inputs<T extends TType> |
|
ScatterAdd.Options |
|
ScatterDiv<T extends TType> |
Divides a variable reference by sparse updates.
|
ScatterDiv.Inputs<T extends TType> |
|
ScatterDiv.Options |
|
ScatterMax<T extends TNumber> |
Reduces sparse updates into a variable reference using the max operation.
|
ScatterMax.Inputs<T extends TNumber> |
|
ScatterMax.Options |
|
ScatterMin<T extends TNumber> |
Reduces sparse updates into a variable reference using the min operation.
|
ScatterMin.Inputs<T extends TNumber> |
|
ScatterMin.Options |
|
ScatterMul<T extends TType> |
Multiplies sparse updates into a variable reference.
|
ScatterMul.Inputs<T extends TType> |
|
ScatterMul.Options |
|
ScatterNd<U extends TType> |
Scatters updates into a tensor of shape shape according to indices .
|
ScatterNd.Inputs<T extends TNumber,U extends TType> |
|
ScatterNdAdd<T extends TType> |
Applies sparse addition to individual values or slices in a Variable.
|
ScatterNdAdd.Inputs<T extends TType> |
|
ScatterNdAdd.Options |
|
ScatterNdMax<T extends TType> |
Computes element-wise maximum.
|
ScatterNdMax.Inputs<T extends TType> |
|
ScatterNdMax.Options |
|
ScatterNdMin<T extends TType> |
Computes element-wise minimum.
|
ScatterNdMin.Inputs<T extends TType> |
|
ScatterNdMin.Options |
|
ScatterNdNonAliasingAdd<T extends TType> |
Applies sparse addition to input using individual values or slices
from updates according to indices indices .
|
ScatterNdNonAliasingAdd.Inputs<T extends TType> |
|
ScatterNdSub<T extends TType> |
Applies sparse subtraction to individual values or slices in a Variable.
|
ScatterNdSub.Inputs<T extends TType> |
|
ScatterNdSub.Options |
|
ScatterNdUpdate<T extends TType> |
Applies sparse updates to individual values or slices within a given
variable according to indices .
|
ScatterNdUpdate.Inputs<T extends TType> |
|
ScatterNdUpdate.Options |
|
ScatterSub<T extends TType> |
Subtracts sparse updates to a variable reference.
|
ScatterSub.Inputs<T extends TType> |
|
ScatterSub.Options |
|
ScatterUpdate<T extends TType> |
Applies sparse updates to a variable reference.
|
ScatterUpdate.Inputs<T extends TType> |
|
ScatterUpdate.Options |
|
Scope |
Manages groups of related properties when creating Tensorflow Operations, such as a common name
prefix.
|
ScopedAllocatorOptions |
Protobuf type tensorflow.ScopedAllocatorOptions
|
ScopedAllocatorOptions.Builder |
Protobuf type tensorflow.ScopedAllocatorOptions
|
ScopedAllocatorOptionsOrBuilder |
|
SdcaFprint |
Computes fingerprints of the input strings.
|
SdcaFprint.Inputs |
|
SdcaOptimizer |
Distributed version of Stochastic Dual Coordinate Ascent (SDCA) optimizer for
linear models with L1 + L2 regularization.
|
SdcaOptimizer.Inputs |
|
SdcaOptimizer.Options |
|
SdcaShrinkL1 |
Applies L1 regularization shrink step on the parameters.
|
SdcaShrinkL1.Inputs |
|
SegmentMax<T extends TNumber> |
Computes the maximum along segments of a tensor.
|
SegmentMax.Inputs<T extends TNumber> |
|
SegmentMean<T extends TType> |
Computes the mean along segments of a tensor.
|
SegmentMean.Inputs<T extends TType> |
|
SegmentMin<T extends TNumber> |
Computes the minimum along segments of a tensor.
|
SegmentMin.Inputs<T extends TNumber> |
|
SegmentProd<T extends TType> |
Computes the product along segments of a tensor.
|
SegmentProd.Inputs<T extends TType> |
|
SegmentSum<T extends TType> |
Computes the sum along segments of a tensor.
|
SegmentSum.Inputs<T extends TType> |
|
Select<T extends TType> |
The SelectV2 operation
|
Select.Inputs<T extends TType> |
|
SelectAndScatter<T extends TType> |
Wraps the XLA SelectAndScatter operator, documented at
https://www.tensorflow.org/performance/xla/operation_semantics#selectandscatter
.
|
SelectAndScatter.Inputs<T extends TType,U extends TNumber> |
|
SelfAdjointEig<T extends TType> |
Computes the eigen decomposition of one or more square self-adjoint matrices.
|
SelfAdjointEig<T extends TType> |
Computes the eigen decomposition of a batch of self-adjoint matrices
(Note: Only real inputs are supported).
|
SelfAdjointEig.Inputs<T extends TType> |
|
SelfAdjointEig.Inputs<T extends TType> |
|
SelfAdjointEig.Options |
|
Selu<T extends TNumber> |
Computes scaled exponential linear: scale * alpha * (exp(features) - 1)
if < 0, scale * features otherwise.
|
Selu.Inputs<T extends TNumber> |
|
SeluGrad<T extends TNumber> |
Computes gradients for the scaled exponential linear (Selu) operation.
|
SeluGrad.Inputs<T extends TNumber> |
|
Send |
Sends the named tensor from send_device to recv_device.
|
Send |
Sends the named tensor to another XLA computation.
|
Send.Inputs |
|
Send.Inputs |
|
Send.Options |
Optional attributes for Send
|
SendTPUEmbeddingGradients |
Performs gradient updates of embedding tables.
|
SendTPUEmbeddingGradients.Inputs |
|
SendTPUEmbeddingGradients.Options |
|
SequenceExample |
Protobuf type tensorflow.SequenceExample
|
SequenceExample.Builder |
Protobuf type tensorflow.SequenceExample
|
SequenceExampleOrBuilder |
|
SerializedDType |
Represents a serialized tf.dtypes.Dtype
|
SerializedDType.Builder |
Represents a serialized tf.dtypes.Dtype
|
SerializedDTypeOrBuilder |
|
SerializeIterator |
Converts the given resource_handle representing an iterator to a variant tensor.
|
SerializeIterator.Inputs |
|
SerializeIterator.Options |
|
SerializeManySparse<U extends TType> |
Serialize an N -minibatch SparseTensor into an [N, 3] Tensor object.
|
SerializeManySparse.Inputs |
|
SerializeSparse<U extends TType> |
Serialize a SparseTensor into a [3] Tensor object.
|
SerializeSparse.Inputs |
|
SerializeTensor |
Transforms a Tensor into a serialized TensorProto proto.
|
SerializeTensor.Inputs |
|
Server |
An in-process TensorFlow server, for use in distributed training.
|
ServerDef |
Defines the configuration of a single TensorFlow server.
|
ServerDef.Builder |
Defines the configuration of a single TensorFlow server.
|
ServerDefOrBuilder |
|
ServerProtos |
|
ServiceConfig |
|
ServiceConfig.DispatcherConfig |
Configuration for a tf.data service DispatchServer.
|
ServiceConfig.DispatcherConfig.Builder |
Configuration for a tf.data service DispatchServer.
|
ServiceConfig.DispatcherConfigOrBuilder |
|
ServiceConfig.WorkerConfig |
Configuration for a tf.data service WorkerServer.
|
ServiceConfig.WorkerConfig.Builder |
Configuration for a tf.data service WorkerServer.
|
ServiceConfig.WorkerConfigOrBuilder |
|
Session |
Driver for Graph execution.
|
SessionFunction |
A callable function backed by a session.
|
SessionInfo |
Description of the session when an op is run.
|
SessionInfo.Builder |
Description of the session when an op is run.
|
SessionInfoOrBuilder |
|
SessionLog |
Protocol buffer used for logging session state.
|
SessionLog.Builder |
Protocol buffer used for logging session state.
|
SessionLog.SessionStatus |
Protobuf enum tensorflow.SessionLog.SessionStatus
|
SessionLogOrBuilder |
|
SessionMetadata |
Metadata about the session.
|
SessionMetadata.Builder |
Metadata about the session.
|
SessionMetadataOrBuilder |
|
SetDiff1d<T extends TType,U extends TNumber> |
Computes the difference between two lists of numbers or strings.
|
SetDiff1d.Inputs<T extends TType> |
|
SetDynamicDimensionSize<T extends TType> |
Make a static dimension into a xla bounded dynamic dimension.
|
SetDynamicDimensionSize.Inputs<T extends TType> |
|
SetSize |
Number of unique elements along last dimension of input set .
|
SetSize.Inputs |
|
SetSize.Options |
|
SetStatsAggregatorDataset |
The ExperimentalSetStatsAggregatorDataset operation
|
SetStatsAggregatorDataset |
The SetStatsAggregatorDataset operation
|
SetStatsAggregatorDataset.Inputs |
|
SetStatsAggregatorDataset.Inputs |
|
Shape<U extends TNumber> |
Returns the shape of a tensor.
|
Shape_inference_func_TF_ShapeInferenceContext_TF_Status |
|
Shape.Inputs |
|
ShapeN<U extends TNumber> |
Returns shape of tensors.
|
ShapeN.Inputs |
|
ShapeOps |
An API for building shape operations as Op s
|
Shapes |
An operator providing methods on org.tensorflow.op.core.Shape tensors and 1d operands that
represent the dimensions of a shape.
|
ShardDataset |
Creates a Dataset that includes only 1/num_shards of this dataset.
|
ShardDataset.Inputs |
|
ShardDataset.Options |
|
ShardedFilename |
Generate a sharded filename.
|
ShardedFilename.Inputs |
|
ShardedFilespec |
Generate a glob pattern matching all sharded file names.
|
ShardedFilespec.Inputs |
|
Sharding<T extends TType> |
An op which shards the input based on the given sharding attribute.
|
Sharding.Inputs<T extends TType> |
|
Sharding.Options |
|
ShuffleAndRepeatDataset |
The ShuffleAndRepeatDatasetV2 operation
|
ShuffleAndRepeatDataset.Inputs |
|
ShuffleAndRepeatDataset.Options |
|
ShuffleDataset |
The ShuffleDatasetV3 operation
|
ShuffleDataset.Inputs |
|
ShuffleDataset.Options |
|
ShutdownDistributedTPU |
Shuts down a running distributed TPU system.
|
ShutdownDistributedTPU.Inputs |
|
ShutdownTPUSystem |
An op that shuts down the TPU system.
|
ShutdownTPUSystem.Inputs |
|
Sigmoid<T extends TType> |
Computes sigmoid of x element-wise.
|
Sigmoid.Inputs<T extends TType> |
|
SigmoidGrad<T extends TType> |
Computes the gradient of the sigmoid of x wrt its input.
|
SigmoidGrad.Inputs<T extends TType> |
|
Sign<T extends TType> |
Returns an element-wise indication of the sign of a number.
|
Sign.Inputs<T extends TType> |
|
SignalOps |
An API for building signal operations as Op s
|
Signature |
Describe the inputs and outputs of an executable entity, such as a ConcreteFunction ,
among other useful metadata.
|
Signature.Builder |
Builds a new function signature.
|
Signature.TensorDescription |
|
SignatureDef |
SignatureDef defines the signature of a computation supported by a TensorFlow
graph.
|
SignatureDef.Builder |
SignatureDef defines the signature of a computation supported by a TensorFlow
graph.
|
SignatureDefOrBuilder |
|
Sin<T extends TType> |
Computes sine of x element-wise.
|
Sin.Inputs<T extends TType> |
|
Sinh<T extends TType> |
Computes hyperbolic sine of x element-wise.
|
Sinh.Inputs<T extends TType> |
|
Size<U extends TNumber> |
Returns the size of a tensor.
|
Size.Inputs |
|
SkipDataset |
Creates a dataset that skips count elements from the input_dataset .
|
SkipDataset.Inputs |
|
SkipDataset.Options |
|
Skipgram |
Parses a text file and creates a batch of examples.
|
Skipgram.Inputs |
|
Skipgram.Options |
|
SleepDataset |
The ExperimentalSleepDataset operation
|
SleepDataset |
The SleepDataset operation
|
SleepDataset.Inputs |
|
SleepDataset.Inputs |
|
Slice<T extends TType> |
Return a slice from 'input'.
|
Slice.Inputs<T extends TType,U extends TNumber> |
|
SlidingWindowDataset |
Creates a dataset that passes a sliding window over input_dataset .
|
SlidingWindowDataset |
Creates a dataset that passes a sliding window over input_dataset .
|
SlidingWindowDataset.Inputs |
|
SlidingWindowDataset.Inputs |
|
SlidingWindowDataset.Options |
|
Snapshot<T extends TType> |
Returns a copy of the input tensor.
|
SnapShot |
Protobuf type tensorflow.SnapShot
|
SnapShot.Builder |
Protobuf type tensorflow.SnapShot
|
Snapshot.Inputs<T extends TType> |
|
SnapshotDataset |
Creates a dataset that will write to / read from a snapshot.
|
SnapshotDataset.Inputs |
|
SnapshotDataset.Options |
|
SnapshotDatasetReader |
The SnapshotDatasetReader operation
|
SnapshotDatasetReader.Inputs |
|
SnapshotDatasetReader.Options |
|
SnapshotMetadataRecord |
This stores the metadata information present in each snapshot record.
|
SnapshotMetadataRecord.Builder |
This stores the metadata information present in each snapshot record.
|
SnapshotMetadataRecordOrBuilder |
|
SnapshotNestedDatasetReader |
The SnapshotNestedDatasetReader operation
|
SnapshotNestedDatasetReader.Inputs |
|
SnapShotOrBuilder |
|
SnapshotProtos |
|
SnapshotRecord |
Each SnapshotRecord represents one batch of pre-processed input data.
|
SnapshotRecord.Builder |
Each SnapshotRecord represents one batch of pre-processed input data.
|
SnapshotRecordOrBuilder |
|
SnapshotTensorMetadata |
Metadata for all the tensors in a Snapshot Record.
|
SnapshotTensorMetadata.Builder |
Metadata for all the tensors in a Snapshot Record.
|
SnapshotTensorMetadataOrBuilder |
|
SobolSample<T extends TNumber> |
Generates points from the Sobol sequence.
|
SobolSample.Inputs |
|
Softmax<T extends TNumber> |
Computes softmax activations.
|
Softmax.Inputs<T extends TNumber> |
|
SoftmaxCrossEntropyWithLogits<T extends TNumber> |
Computes softmax cross entropy cost and gradients to backpropagate.
|
SoftmaxCrossEntropyWithLogits.Inputs<T extends TNumber> |
|
Softplus<T extends TNumber> |
The Softplus operation
|
Softplus.Inputs<T extends TNumber> |
|
SoftplusGrad<T extends TNumber> |
Computes softplus gradients for a softplus operation.
|
SoftplusGrad.Inputs<T extends TNumber> |
|
Softsign<T extends TNumber> |
Computes softsign: features / (abs(features) + 1) .
|
Softsign.Inputs<T extends TNumber> |
|
SoftsignGrad<T extends TNumber> |
Computes softsign gradients for a softsign operation.
|
SoftsignGrad.Inputs<T extends TNumber> |
|
Solve<T extends TType> |
Solves systems of linear equations.
|
Solve.Inputs<T extends TType> |
|
Solve.Options |
Optional attributes for Solve
|
Sort<T extends TType> |
Wraps the XLA Sort operator, documented at
https://www.tensorflow.org/performance/xla/operation_semantics#sort
.
|
Sort.Inputs<T extends TType> |
|
SourceFile |
Content of a source file involved in the execution of the debugged TensorFlow
program.
|
SourceFile.Builder |
Content of a source file involved in the execution of the debugged TensorFlow
program.
|
SourceFileOrBuilder |
|
SourceLocation |
|
SpaceToBatch<T extends TType> |
SpaceToBatch for 4-D tensors of type T.
|
SpaceToBatch.Inputs<T extends TType> |
|
SpaceToBatchNd<T extends TType> |
SpaceToBatch for N-D tensors of type T.
|
SpaceToBatchNd.Inputs<T extends TType> |
|
SpaceToDepth<T extends TType> |
SpaceToDepth for tensors of type T.
|
SpaceToDepth.Inputs<T extends TType> |
|
SpaceToDepth.Options |
|
SparseAccumulatorApplyGradient |
Applies a sparse gradient to a given accumulator.
|
SparseAccumulatorApplyGradient.Inputs |
|
SparseAccumulatorTakeGradient<T extends TType> |
Extracts the average sparse gradient in a SparseConditionalAccumulator.
|
SparseAccumulatorTakeGradient.Inputs |
|
SparseAdd<T extends TType> |
Adds two SparseTensor objects to produce another SparseTensor .
|
SparseAdd.Inputs<T extends TType> |
|
SparseAddGrad<T extends TType> |
The gradient operator for the SparseAdd op.
|
SparseAddGrad.Inputs<T extends TType> |
|
SparseApplyAdadelta<T extends TType> |
var: Should be from a Variable().
|
SparseApplyAdadelta.Inputs<T extends TType> |
|
SparseApplyAdadelta.Options |
|
SparseApplyAdagrad<T extends TType> |
Update relevant entries in '*var' and '*accum' according to the adagrad scheme.
|
SparseApplyAdagrad.Inputs<T extends TType> |
|
SparseApplyAdagrad.Options |
|
SparseApplyAdagradDa<T extends TType> |
Update entries in '*var' and '*accum' according to the proximal adagrad scheme.
|
SparseApplyAdagradDa.Inputs<T extends TType> |
|
SparseApplyAdagradDa.Options |
|
SparseApplyCenteredRmsProp<T extends TType> |
Update '*var' according to the centered RMSProp algorithm.
|
SparseApplyCenteredRmsProp.Inputs<T extends TType> |
|
SparseApplyCenteredRmsProp.Options |
|
SparseApplyFtrl<T extends TType> |
Update relevant entries in '*var' according to the Ftrl-proximal scheme.
|
SparseApplyFtrl.Inputs<T extends TType> |
|
SparseApplyFtrl.Options |
|
SparseApplyMomentum<T extends TType> |
Update relevant entries in '*var' and '*accum' according to the momentum scheme.
|
SparseApplyMomentum.Inputs<T extends TType> |
|
SparseApplyMomentum.Options |
|
SparseApplyProximalAdagrad<T extends TType> |
Sparse update entries in '*var' and '*accum' according to FOBOS algorithm.
|
SparseApplyProximalAdagrad.Inputs<T extends TType> |
|
SparseApplyProximalAdagrad.Options |
|
SparseApplyProximalGradientDescent<T extends TType> |
Sparse update '*var' as FOBOS algorithm with fixed learning rate.
|
SparseApplyProximalGradientDescent.Inputs<T extends TType> |
|
SparseApplyProximalGradientDescent.Options |
|
SparseApplyRmsProp<T extends TType> |
Update '*var' according to the RMSProp algorithm.
|
SparseApplyRmsProp.Inputs<T extends TType> |
|
SparseApplyRmsProp.Options |
|
SparseBincount<U extends TNumber> |
Counts the number of occurrences of each value in an integer array.
|
SparseBincount.Inputs<T extends TNumber,U extends TNumber> |
|
SparseBincount.Options |
|
SparseConcat<T extends TType> |
Concatenates a list of SparseTensor along the specified dimension.
|
SparseConcat.Inputs<T extends TType> |
|
SparseConditionalAccumulator |
A conditional accumulator for aggregating sparse gradients.
|
SparseConditionalAccumulator.Inputs |
|
SparseConditionalAccumulator.Options |
|
SparseCountSparseOutput<U extends TNumber> |
Performs sparse-output bin counting for a sparse tensor input.
|
SparseCountSparseOutput.Inputs<U extends TNumber> |
|
SparseCountSparseOutput.Options |
|
SparseCross |
Generates sparse cross from a list of sparse and dense tensors.
|
SparseCross.Inputs |
|
SparseCrossHashed |
Generates sparse cross from a list of sparse and dense tensors.
|
SparseCrossHashed.Inputs |
|
SparseDenseCwiseAdd<T extends TType> |
Adds up a SparseTensor and a dense Tensor, using these special rules:
(1) Broadcasts the dense side to have the same shape as the sparse side, if
eligible;
(2) Then, only the dense values pointed to by the indices of the SparseTensor
participate in the cwise addition.
|
SparseDenseCwiseAdd.Inputs<T extends TType> |
|
SparseDenseCwiseDiv<T extends TType> |
Component-wise divides a SparseTensor by a dense Tensor.
|
SparseDenseCwiseDiv.Inputs<T extends TType> |
|
SparseDenseCwiseMul<T extends TType> |
Component-wise multiplies a SparseTensor by a dense Tensor.
|
SparseDenseCwiseMul.Inputs<T extends TType> |
|
SparseFillEmptyRows<T extends TType> |
Fills empty rows in the input 2-D SparseTensor with a default value.
|
SparseFillEmptyRows.Inputs<T extends TType> |
|
SparseFillEmptyRowsGrad<T extends TType> |
The gradient of SparseFillEmptyRows.
|
SparseFillEmptyRowsGrad.Inputs<T extends TType> |
|
SparseMatMul |
Multiply matrix "a" by matrix "b".
|
SparseMatMul.Inputs |
|
SparseMatMul.Options |
|
SparseMatrixAdd |
Sparse addition of two CSR matrices, C = alpha * A + beta * B.
|
SparseMatrixAdd.Inputs<T extends TType> |
|
SparseMatrixMatMul<T extends TType> |
Matrix-multiplies a sparse matrix with a dense matrix.
|
SparseMatrixMatMul.Inputs<T extends TType> |
|
SparseMatrixMatMul.Options |
|
SparseMatrixMul |
Element-wise multiplication of a sparse matrix with a dense tensor.
|
SparseMatrixMul.Inputs |
|
SparseMatrixNNZ |
Returns the number of nonzeroes of sparse_matrix .
|
SparseMatrixNNZ.Inputs |
|
SparseMatrixOrderingAMD |
Computes the Approximate Minimum Degree (AMD) ordering of input .
|
SparseMatrixOrderingAMD.Inputs |
|
SparseMatrixSoftmax |
Calculates the softmax of a CSRSparseMatrix.
|
SparseMatrixSoftmax.Inputs |
|
SparseMatrixSoftmaxGrad |
Calculates the gradient of the SparseMatrixSoftmax op.
|
SparseMatrixSoftmaxGrad.Inputs |
|
SparseMatrixSparseCholesky |
Computes the sparse Cholesky decomposition of input .
|
SparseMatrixSparseCholesky.Inputs |
|
SparseMatrixSparseMatMul |
Sparse-matrix-multiplies two CSR matrices a and b .
|
SparseMatrixSparseMatMul.Inputs |
|
SparseMatrixSparseMatMul.Options |
|
SparseMatrixTranspose |
Transposes the inner (matrix) dimensions of a CSRSparseMatrix.
|
SparseMatrixTranspose.Inputs |
|
SparseMatrixTranspose.Options |
|
SparseMatrixZeros |
Creates an all-zeros CSRSparseMatrix with shape dense_shape .
|
SparseMatrixZeros.Inputs |
|
SparseOps |
An API for building sparse operations as Op s
|
SparseReduceMax<T extends TNumber> |
Computes the max of elements across dimensions of a SparseTensor.
|
SparseReduceMax.Inputs<T extends TNumber> |
|
SparseReduceMax.Options |
|
SparseReduceMaxSparse<T extends TNumber> |
Computes the max of elements across dimensions of a SparseTensor.
|
SparseReduceMaxSparse.Inputs<T extends TNumber> |
|
SparseReduceMaxSparse.Options |
|
SparseReduceSum<T extends TType> |
Computes the sum of elements across dimensions of a SparseTensor.
|
SparseReduceSum.Inputs<T extends TType> |
|
SparseReduceSum.Options |
|
SparseReduceSumSparse<T extends TType> |
Computes the sum of elements across dimensions of a SparseTensor.
|
SparseReduceSumSparse.Inputs<T extends TType> |
|
SparseReduceSumSparse.Options |
|
SparseReorder<T extends TType> |
Reorders a SparseTensor into the canonical, row-major ordering.
|
SparseReorder.Inputs<T extends TType> |
|
SparseReshape |
Reshapes a SparseTensor to represent values in a new dense shape.
|
SparseReshape.Inputs |
|
SparseSegmentMean<T extends TNumber> |
Computes the mean along sparse segments of a tensor.
|
SparseSegmentMean.Inputs<T extends TNumber> |
|
SparseSegmentMeanGrad<T extends TNumber> |
Computes gradients for SparseSegmentMean.
|
SparseSegmentMeanGrad.Inputs<T extends TNumber> |
|
SparseSegmentMeanWithNumSegments<T extends TNumber> |
Computes the mean along sparse segments of a tensor.
|
SparseSegmentMeanWithNumSegments.Inputs<T extends TNumber> |
|
SparseSegmentSqrtN<T extends TNumber> |
Computes the sum along sparse segments of a tensor divided by the sqrt of N.
|
SparseSegmentSqrtN.Inputs<T extends TNumber> |
|
SparseSegmentSqrtNGrad<T extends TNumber> |
Computes gradients for SparseSegmentSqrtN.
|
SparseSegmentSqrtNGrad.Inputs<T extends TNumber> |
|
SparseSegmentSqrtNWithNumSegments<T extends TNumber> |
Computes the sum along sparse segments of a tensor divided by the sqrt of N.
|
SparseSegmentSqrtNWithNumSegments.Inputs<T extends TNumber> |
|
SparseSegmentSum<T extends TNumber> |
Computes the sum along sparse segments of a tensor.
|
SparseSegmentSum.Inputs<T extends TNumber> |
|
SparseSegmentSumGrad<T extends TNumber> |
Computes gradients for SparseSegmentSum.
|
SparseSegmentSumGrad.Inputs<T extends TNumber> |
|
SparseSegmentSumWithNumSegments<T extends TNumber> |
Computes the sum along sparse segments of a tensor.
|
SparseSegmentSumWithNumSegments.Inputs<T extends TNumber> |
|
SparseSlice<T extends TType> |
Slice a SparseTensor based on the start and size .
|
SparseSlice.Inputs<T extends TType> |
|
SparseSliceGrad<T extends TType> |
The gradient operator for the SparseSlice op.
|
SparseSliceGrad.Inputs<T extends TType> |
|
SparseSoftmax<T extends TNumber> |
Applies softmax to a batched N-D SparseTensor .
|
SparseSoftmax.Inputs<T extends TNumber> |
|
SparseSoftmaxCrossEntropyWithLogits<T extends TNumber> |
Computes softmax cross entropy cost and gradients to backpropagate.
|
SparseSoftmaxCrossEntropyWithLogits.Inputs<T extends TNumber> |
|
SparseSparseMaximum<T extends TNumber> |
Returns the element-wise max of two SparseTensors.
|
SparseSparseMaximum.Inputs<T extends TNumber> |
|
SparseSparseMinimum<T extends TType> |
Returns the element-wise min of two SparseTensors.
|
SparseSparseMinimum.Inputs<T extends TType> |
|
SparseSplit<T extends TType> |
Split a SparseTensor into num_split tensors along one dimension.
|
SparseSplit.Inputs<T extends TType> |
|
SparseTensor<T extends TType> |
A virtual type of Tensor composed of three dense tensors (indices, values and dimensions)
used to represent the sparse data into a multi-dimensional dense space.
|
SparseTensorDenseAdd<U extends TType> |
Adds up a SparseTensor and a dense Tensor , producing a dense Tensor .
|
SparseTensorDenseAdd.Inputs<T extends TNumber,U extends TType> |
|
SparseTensorDenseMatMul<U extends TType> |
Multiply SparseTensor (of rank 2) "A" by dense matrix "B".
|
SparseTensorDenseMatMul.Inputs<U extends TType> |
|
SparseTensorDenseMatMul.Options |
|
SparseTensorSliceDataset |
Creates a dataset that splits a SparseTensor into elements row-wise.
|
SparseTensorSliceDataset.Inputs |
|
SparseTensorToCSRSparseMatrix |
Converts a SparseTensor to a (possibly batched) CSRSparseMatrix.
|
SparseTensorToCSRSparseMatrix.Inputs |
|
SparseToDense<U extends TType> |
Converts a sparse representation into a dense tensor.
|
SparseToDense.Inputs<T extends TNumber,U extends TType> |
|
SparseToDense.Options |
|
SparseToSparseSetOperation<T extends TType> |
Applies set operation along last dimension of 2 SparseTensor inputs.
|
SparseToSparseSetOperation.Inputs<T extends TType> |
|
SparseToSparseSetOperation.Options |
|
Spence<T extends TNumber> |
The Spence operation
|
Spence.Inputs<T extends TNumber> |
|
Split<T extends TType> |
Splits a tensor into num_split tensors along one dimension.
|
Split.Inputs<T extends TType> |
|
SplitND<T extends TType> |
Splits input tensor across all dimensions.
|
SplitND.Inputs<T extends TType> |
|
SplitND.Options |
|
SplitV<T extends TType> |
Splits a tensor into num_split tensors along one dimension.
|
SplitV.Inputs<T extends TType> |
|
SpmdFullToShardShape<T extends TType> |
An op used by XLA SPMD partitioner to switch from automatic partitioning to
manual partitioning.
|
SpmdFullToShardShape.Inputs<T extends TType> |
|
SpmdFullToShardShape.Options |
|
SpmdShardToFullShape<T extends TType> |
An op used by XLA SPMD partitioner to switch from manual partitioning to
automatic partitioning.
|
SpmdShardToFullShape.Inputs<T extends TType> |
|
SpmdShardToFullShape.Options |
|
SqlDataset |
Creates a dataset that executes a SQL query and emits rows of the result set.
|
SqlDataset |
Creates a dataset that executes a SQL query and emits rows of the result set.
|
SqlDataset.Inputs |
|
SqlDataset.Inputs |
|
Sqrt<T extends TType> |
Computes square root of x element-wise.
|
Sqrt.Inputs<T extends TType> |
|
SqrtGrad<T extends TType> |
Computes the gradient for the sqrt of x wrt its input.
|
SqrtGrad.Inputs<T extends TType> |
|
Sqrtm<T extends TType> |
Computes the matrix square root of one or more square matrices:
matmul(sqrtm(A), sqrtm(A)) = A
|
Sqrtm.Inputs<T extends TType> |
|
Square<T extends TType> |
Computes square of x element-wise.
|
Square.Inputs<T extends TType> |
|
SquaredDifference<T extends TType> |
Returns conj(x - y)(x - y) element-wise.
|
SquaredDifference.Inputs<T extends TType> |
|
Squeeze<T extends TType> |
Removes dimensions of size 1 from the shape of a tensor.
|
Squeeze.Inputs<T extends TType> |
|
Squeeze.Options |
|
Stack<T extends TType> |
Packs a list of N rank-R tensors into one rank-(R+1) tensor.
|
Stack.Inputs<T extends TType> |
|
Stack.Options |
Optional attributes for Stack
|
StackFrameWithId |
A stack frame with ID.
|
StackFrameWithId.Builder |
A stack frame with ID.
|
StackFrameWithIdOrBuilder |
|
Stage |
Stage values similar to a lightweight Enqueue.
|
Stage.Inputs |
|
Stage.Options |
Optional attributes for Stage
|
StageClear |
Op removes all elements in the underlying container.
|
StageClear.Inputs |
|
StageClear.Options |
|
StagePeek |
Op peeks at the values at the specified index.
|
StagePeek.Inputs |
|
StagePeek.Options |
|
StageSize |
Op returns the number of elements in the underlying container.
|
StageSize.Inputs |
|
StageSize.Options |
|
StatefulCase |
An n-way switch statement which calls a single branch function.
|
StatefulCase.Inputs |
|
StatefulIf |
output = cond ? then_branch(input) : else_branch(input)
|
StatefulIf.Inputs |
|
StatefulPartitionedCall |
returns f(inputs) , where f 's body is placed and partitioned.
|
StatefulPartitionedCall.Inputs |
|
StatefulRandomBinomial<V extends TNumber> |
The StatefulRandomBinomial operation
|
StatefulRandomBinomial.Inputs<U extends TNumber> |
|
StatefulStandardNormal<U extends TType> |
Outputs random values from a normal distribution.
|
StatefulStandardNormal.Inputs |
|
StatefulTruncatedNormal<U extends TType> |
Outputs random values from a truncated normal distribution.
|
StatefulTruncatedNormal.Inputs |
|
StatefulUniform<U extends TType> |
Outputs random values from a uniform distribution.
|
StatefulUniform.Inputs |
|
StatefulUniformFullInt<U extends TType> |
Outputs random integers from a uniform distribution.
|
StatefulUniformFullInt.Inputs |
|
StatefulUniformInt<U extends TType> |
Outputs random integers from a uniform distribution.
|
StatefulUniformInt.Inputs<U extends TType> |
|
StatefulWhile |
output = input; While (Cond(output)) { output = Body(output) }
|
StatefulWhile.Inputs |
|
StatelessCase |
An n-way switch statement which calls a single branch function.
|
StatelessCase.Inputs |
|
StatelessIf |
output = cond ? then_branch(input) : else_branch(input)
|
StatelessIf.Inputs |
|
StatelessMultinomial<V extends TNumber> |
Draws samples from a multinomial distribution.
|
StatelessMultinomial.Inputs |
|
StatelessParameterizedTruncatedNormal<V extends TNumber> |
The StatelessParameterizedTruncatedNormal operation
|
StatelessParameterizedTruncatedNormal.Inputs<V extends TNumber> |
|
StatelessPartitionedCall |
returns f(inputs) , where f 's body is placed and partitioned.
|
StatelessPartitionedCall.Inputs |
|
StatelessRandomBinomial<W extends TNumber> |
Outputs deterministic pseudorandom random numbers from a binomial distribution.
|
StatelessRandomBinomial.Inputs<V extends TNumber> |
|
StatelessRandomGamma<V extends TNumber> |
Outputs deterministic pseudorandom random numbers from a gamma distribution.
|
StatelessRandomGamma.Inputs<V extends TNumber> |
|
StatelessRandomGetAlg |
Picks the best counter-based RNG algorithm based on device.
|
StatelessRandomGetAlg.Inputs |
|
StatelessRandomGetKeyCounter |
Scrambles seed into key and counter, using the best algorithm based on device.
|
StatelessRandomGetKeyCounter.Inputs |
|
StatelessRandomGetKeyCounterAlg |
Picks the best algorithm based on device, and scrambles seed into key and counter.
|
StatelessRandomGetKeyCounterAlg.Inputs |
|
StatelessRandomNormal<V extends TNumber> |
Outputs deterministic pseudorandom values from a normal distribution.
|
StatelessRandomNormal.Inputs |
|
StatelessRandomNormalV2<U extends TNumber> |
Outputs deterministic pseudorandom values from a normal distribution.
|
StatelessRandomNormalV2.Inputs |
|
StatelessRandomPoisson<W extends TNumber> |
Outputs deterministic pseudorandom random numbers from a Poisson distribution.
|
StatelessRandomPoisson.Inputs |
|
StatelessRandomUniform<V extends TNumber> |
Outputs deterministic pseudorandom random values from a uniform distribution.
|
StatelessRandomUniform.Inputs |
|
StatelessRandomUniformFullInt<V extends TNumber> |
Outputs deterministic pseudorandom random integers from a uniform distribution.
|
StatelessRandomUniformFullInt.Inputs |
|
StatelessRandomUniformFullIntV2<U extends TNumber> |
Outputs deterministic pseudorandom random integers from a uniform distribution.
|
StatelessRandomUniformFullIntV2.Inputs |
|
StatelessRandomUniformInt<V extends TNumber> |
Outputs deterministic pseudorandom random integers from a uniform distribution.
|
StatelessRandomUniformInt.Inputs<V extends TNumber> |
|
StatelessRandomUniformIntV2<U extends TNumber> |
Outputs deterministic pseudorandom random integers from a uniform distribution.
|
StatelessRandomUniformIntV2.Inputs<U extends TNumber> |
|
StatelessRandomUniformV2<U extends TNumber> |
Outputs deterministic pseudorandom random values from a uniform distribution.
|
StatelessRandomUniformV2.Inputs |
|
StatelessSampleDistortedBoundingBox<T extends TNumber> |
Generate a randomly distorted bounding box for an image deterministically.
|
StatelessSampleDistortedBoundingBox.Inputs<T extends TNumber> |
|
StatelessSampleDistortedBoundingBox.Options |
|
StatelessShuffle<T extends TType> |
Randomly and deterministically shuffles a tensor along its first dimension.
|
StatelessShuffle.Inputs<T extends TType> |
|
StatelessTruncatedNormal<V extends TNumber> |
Outputs deterministic pseudorandom values from a truncated normal distribution.
|
StatelessTruncatedNormal.Inputs |
|
StatelessTruncatedNormalV2<U extends TNumber> |
Outputs deterministic pseudorandom values from a truncated normal distribution.
|
StatelessTruncatedNormalV2.Inputs |
|
StatelessWhile |
output = input; While (Cond(output)) { output = Body(output) }
|
StatelessWhile.Inputs |
|
StaticRegexFullMatch |
Check if the input matches the regex pattern.
|
StaticRegexFullMatch.Inputs |
|
StaticRegexReplace |
Replaces the match of pattern in input with rewrite.
|
StaticRegexReplace.Inputs |
|
StaticRegexReplace.Options |
|
StatsAggregatorHandle |
Creates a statistics manager resource.
|
StatsAggregatorHandle |
The StatsAggregatorHandleV2 operation
|
StatsAggregatorHandle.Inputs |
|
StatsAggregatorHandle.Inputs |
|
StatsAggregatorHandle.Options |
|
StatsAggregatorHandle.Options |
|
StatsAggregatorSetSummaryWriter |
Set a summary_writer_interface to record statistics using given stats_aggregator.
|
StatsAggregatorSetSummaryWriter.Inputs |
|
StatsAggregatorSummary |
Produces a summary of any statistics recorded by the given statistics manager.
|
StatsAggregatorSummary |
Produces a summary of any statistics recorded by the given statistics manager.
|
StatsAggregatorSummary.Inputs |
|
StatsAggregatorSummary.Inputs |
|
Status |
|
Status.DerivedStatus |
If included as a payload, this message flags the Status to be a "derived"
Status.
|
Status.DerivedStatus.Builder |
If included as a payload, this message flags the Status to be a "derived"
Status.
|
Status.DerivedStatusOrBuilder |
|
Status.StackTracePayload |
If included as a payload, this message contains associated source location
for the error Status.
|
Status.StackTracePayload.Builder |
If included as a payload, this message contains associated source location
for the error Status.
|
Status.StackTracePayload.StackFrame |
Protobuf type tensorflow.StackTracePayload.StackFrame
|
Status.StackTracePayload.StackFrame.Builder |
Protobuf type tensorflow.StackTracePayload.StackFrame
|
Status.StackTracePayload.StackFrameOrBuilder |
|
Status.StackTracePayloadOrBuilder |
|
StepStats |
Protobuf type tensorflow.StepStats
|
StepStats.Builder |
Protobuf type tensorflow.StepStats
|
StepStatsOrBuilder |
|
StepStatsProtos |
|
StopGradient<T extends TType> |
Stops gradient computation.
|
StopGradient.Inputs<T extends TType> |
|
StridedSlice<T extends TType> |
Return a strided slice from input .
|
StridedSlice.Inputs<T extends TType,U extends TNumber> |
|
StridedSlice.Options |
|
StridedSliceAssign<T extends TType> |
Assign value to the sliced l-value reference of ref .
|
StridedSliceAssign.Inputs<T extends TType,U extends TNumber> |
|
StridedSliceAssign.Options |
|
StridedSliceGrad<U extends TType> |
Returns the gradient of StridedSlice .
|
StridedSliceGrad.Inputs<T extends TNumber,U extends TType> |
|
StridedSliceGrad.Options |
|
StridedSliceHelper |
Helper endpoint methods for Python like indexing.
|
StringFormat |
Formats a string template using a list of tensors.
|
StringFormat.Inputs |
|
StringFormat.Options |
|
StringLength |
String lengths of input .
|
StringLength.Inputs |
|
StringLength.Options |
|
StringNGrams<T extends TNumber> |
Creates ngrams from ragged string data.
|
StringNGrams.Inputs<T extends TNumber> |
|
StringsOps |
An API for building strings operations as Op s
|
StringSplit |
Split elements of source based on sep into a SparseTensor .
|
StringSplit.Inputs |
|
StringSplit.Options |
|
Strip |
Strip leading and trailing whitespaces from the Tensor.
|
Strip.Inputs |
|
StructProtos |
|
StructuredValue |
`StructuredValue` represents a dynamically typed value representing various
data structures that are inspired by Python data structures typically used in
TensorFlow functions as inputs and outputs.
|
StructuredValue.Builder |
`StructuredValue` represents a dynamically typed value representing various
data structures that are inspired by Python data structures typically used in
TensorFlow functions as inputs and outputs.
|
StructuredValue.KindCase |
|
StructuredValueOrBuilder |
|
Sub<T extends TType> |
Returns x - y element-wise.
|
Sub.Inputs<T extends TType> |
|
Substr |
Return substrings from Tensor of strings.
|
Substr.Inputs<T extends TNumber> |
|
Substr.Options |
Optional attributes for Substr
|
Sum<T extends TType> |
Computes the sum of elements across dimensions of a tensor.
|
Sum.Inputs<T extends TType> |
|
Sum.Options |
Optional attributes for Sum
|
Summary |
A Summary is a set of named values to be displayed by the
visualizer.
|
Summary.Audio |
Protobuf type tensorflow.Summary.Audio
|
Summary.Audio.Builder |
Protobuf type tensorflow.Summary.Audio
|
Summary.AudioOrBuilder |
|
Summary.Builder |
A Summary is a set of named values to be displayed by the
visualizer.
|
Summary.Image |
Protobuf type tensorflow.Summary.Image
|
Summary.Image.Builder |
Protobuf type tensorflow.Summary.Image
|
Summary.ImageOrBuilder |
|
Summary.Value |
Protobuf type tensorflow.Summary.Value
|
Summary.Value.Builder |
Protobuf type tensorflow.Summary.Value
|
Summary.Value.ValueCase |
|
Summary.ValueOrBuilder |
|
SummaryDescription |
Metadata associated with a series of Summary data
|
SummaryDescription.Builder |
Metadata associated with a series of Summary data
|
SummaryDescriptionOrBuilder |
|
SummaryMetadata |
A SummaryMetadata encapsulates information on which plugins are able to make
use of a certain summary value.
|
SummaryMetadata.Builder |
A SummaryMetadata encapsulates information on which plugins are able to make
use of a certain summary value.
|
SummaryMetadata.PluginData |
Protobuf type tensorflow.SummaryMetadata.PluginData
|
SummaryMetadata.PluginData.Builder |
Protobuf type tensorflow.SummaryMetadata.PluginData
|
SummaryMetadata.PluginDataOrBuilder |
|
SummaryMetadataOrBuilder |
|
SummaryOps |
An API for building summary operations as Op s
|
SummaryOrBuilder |
|
SummaryProtos |
|
SummaryWriter |
The SummaryWriter operation
|
SummaryWriter.Inputs |
|
SummaryWriter.Options |
|
Svd<T extends TType> |
Computes the singular value decompositions of one or more matrices.
|
Svd<T extends TType> |
Computes the eigen decomposition of a batch of self-adjoint matrices
(Note: Only real inputs are supported).
|
Svd.Inputs<T extends TType> |
|
Svd.Inputs<T extends TType> |
|
Svd.Options |
Optional attributes for Svd
|
SwitchCond<T extends TType> |
Forwards data to the output port determined by pred .
|
SwitchCond.Inputs<T extends TType> |
|
SymbolicGradient |
Computes the gradient function for function f via backpropagation.
|
SymbolicGradient.Inputs |
|
TaggedRunMetadata |
For logging the metadata output for a single session.run() call.
|
TaggedRunMetadata.Builder |
For logging the metadata output for a single session.run() call.
|
TaggedRunMetadataOrBuilder |
|
TakeDataset |
Creates a dataset that contains count elements from the input_dataset .
|
TakeDataset.Inputs |
|
TakeDataset.Options |
|
TakeManySparseFromTensorsMap<T extends TType> |
Read SparseTensors from a SparseTensorsMap and concatenate them.
|
TakeManySparseFromTensorsMap.Inputs |
|
TakeManySparseFromTensorsMap.Options |
|
TakeWhileDataset |
Creates a dataset that stops iteration when predicate` is false.
|
TakeWhileDataset |
Creates a dataset that stops iteration when predicate` is false.
|
TakeWhileDataset.Inputs |
|
TakeWhileDataset.Inputs |
|
TakeWhileDataset.Options |
|
Tan<T extends TType> |
Computes tan of x element-wise.
|
Tan.Inputs<T extends TType> |
|
Tanh<T extends TType> |
Computes hyperbolic tangent of x element-wise.
|
Tanh.Inputs<T extends TType> |
|
TanhGrad<T extends TType> |
Computes the gradient for the tanh of x wrt its input.
|
TanhGrad.Inputs<T extends TType> |
|
TaskDeviceFilters |
Defines the device filters for a remote task.
|
TaskDeviceFilters.Builder |
Defines the device filters for a remote task.
|
TaskDeviceFiltersOrBuilder |
|
TBfloat16 |
Brain 16-bit float tensor type.
|
TBool |
Boolean tensor type.
|
TemporaryVariable<T extends TType> |
Returns a tensor that may be mutated, but only persists within a single step.
|
TemporaryVariable.Inputs |
|
TemporaryVariable.Options |
|
Tensor |
|
Tensor |
A statically typed multi-dimensional array.
|
TensorArray |
An array of Tensors of given size.
|
TensorArray.Inputs |
|
TensorArray.Options |
|
TensorArrayClose |
Delete the TensorArray from its resource container.
|
TensorArrayClose.Inputs |
|
TensorArrayConcat<T extends TType> |
Concat the elements from the TensorArray into value value .
|
TensorArrayConcat.Inputs |
|
TensorArrayConcat.Options |
|
TensorArrayGather<T extends TType> |
Gather specific elements from the TensorArray into output value .
|
TensorArrayGather.Inputs |
|
TensorArrayGather.Options |
|
TensorArrayGrad |
Creates a TensorArray for storing the gradients of values in the given handle.
|
TensorArrayGrad.Inputs |
|
TensorArrayGradWithShape |
Creates a TensorArray for storing multiple gradients of values in the given handle.
|
TensorArrayGradWithShape.Inputs |
|
TensorArrayPack<T extends TType> |
The TensorArrayPack operation
|
TensorArrayPack.Inputs |
|
TensorArrayPack.Options |
|
TensorArrayRead<T extends TType> |
Read an element from the TensorArray into output value .
|
TensorArrayRead.Inputs |
|
TensorArrayScatter |
Scatter the data from the input value into specific TensorArray elements.
|
TensorArrayScatter.Inputs |
|
TensorArraySize |
Get the current size of the TensorArray.
|
TensorArraySize.Inputs |
|
TensorArraySplit |
Split the data from the input value into TensorArray elements.
|
TensorArraySplit.Inputs |
|
TensorArrayUnpack |
The TensorArrayUnpack operation
|
TensorArrayUnpack.Inputs |
|
TensorArrayWrite |
Push an element onto the tensor_array.
|
TensorArrayWrite.Inputs |
|
TensorBundleProtos |
|
TensorConnection |
Defines a connection between two tensors in a `GraphDef`.
|
TensorConnection.Builder |
Defines a connection between two tensors in a `GraphDef`.
|
TensorConnectionOrBuilder |
|
TensorDataset |
Creates a dataset that emits components as a tuple of tensors once.
|
TensorDataset.Inputs |
|
TensorDataset.Options |
|
TensorDebugMode |
Available modes for extracting debugging information from a Tensor.
|
TensorDescription |
Protobuf type tensorflow.TensorDescription
|
TensorDescription.Builder |
Protobuf type tensorflow.TensorDescription
|
TensorDescriptionOrBuilder |
|
TensorDescriptionProtos |
|
TensorDiag<T extends TType> |
Returns a diagonal tensor with a given diagonal values.
|
TensorDiag.Inputs<T extends TType> |
|
TensorDiagPart<T extends TType> |
Returns the diagonal part of the tensor.
|
TensorDiagPart.Inputs<T extends TType> |
|
tensorflow |
|
TensorFlow |
Static utility methods describing the TensorFlow runtime.
|
TensorFlowException |
Unchecked exception thrown by TensorFlow core classes
|
TensorFunction |
A function that can be called with tensors.
|
TensorInfo |
Information about a Tensor necessary for feeding or retrieval.
|
TensorInfo.Builder |
Information about a Tensor necessary for feeding or retrieval.
|
TensorInfo.CompositeTensor |
Generic encoding for composite tensors.
|
TensorInfo.CompositeTensor.Builder |
Generic encoding for composite tensors.
|
TensorInfo.CompositeTensorOrBuilder |
|
TensorInfo.CooSparse |
For sparse tensors, The COO encoding stores a triple of values, indices,
and shape.
|
TensorInfo.CooSparse.Builder |
For sparse tensors, The COO encoding stores a triple of values, indices,
and shape.
|
TensorInfo.CooSparseOrBuilder |
|
TensorInfo.EncodingCase |
|
TensorInfoOrBuilder |
|
TensorListConcat<U extends TType> |
Concats all tensors in the list along the 0th dimension.
|
TensorListConcat.Inputs |
|
TensorListConcatLists |
The TensorListConcatLists operation
|
TensorListConcatLists.Inputs |
|
TensorListElementShape<T extends TNumber> |
The shape of the elements of the given list, as a tensor.
|
TensorListElementShape.Inputs |
|
TensorListFromTensor |
Creates a TensorList which, when stacked, has the value of tensor .
|
TensorListFromTensor.Inputs |
|
TensorListGather<T extends TType> |
Creates a Tensor by indexing into the TensorList.
|
TensorListGather.Inputs |
|
TensorListGetItem<T extends TType> |
The TensorListGetItem operation
|
TensorListGetItem.Inputs |
|
TensorListLength |
Returns the number of tensors in the input tensor list.
|
TensorListLength.Inputs |
|
TensorListPopBack<T extends TType> |
Returns the last element of the input list as well as a list with all but that element.
|
TensorListPopBack.Inputs |
|
TensorListPushBack |
Returns a list which has the passed-in Tensor as last element and the other elements of the given list in input_handle .
|
TensorListPushBack.Inputs |
|
TensorListPushBackBatch |
The TensorListPushBackBatch operation
|
TensorListPushBackBatch.Inputs |
|
TensorListReserve |
List of the given size with empty elements.
|
TensorListReserve.Inputs |
|
TensorListResize |
Resizes the list.
|
TensorListResize.Inputs |
|
TensorListScatter |
Creates a TensorList by indexing into a Tensor.
|
TensorListScatter.Inputs |
|
TensorListScatterIntoExistingList |
Scatters tensor at indices in an input list.
|
TensorListScatterIntoExistingList.Inputs |
|
TensorListSetItem |
The TensorListSetItem operation
|
TensorListSetItem.Inputs |
|
TensorListSplit |
Splits a tensor into a list.
|
TensorListSplit.Inputs |
|
TensorListStack<T extends TType> |
Stacks all tensors in the list.
|
TensorListStack.Inputs |
|
TensorListStack.Options |
|
TensorMapErase |
Returns a tensor map with item from given key erased.
|
TensorMapErase.Inputs |
|
TensorMapHasKey |
Returns whether the given key exists in the map.
|
TensorMapHasKey.Inputs |
|
TensorMapInsert |
Returns a map that is the 'input_handle' with the given key-value pair inserted.
|
TensorMapInsert.Inputs |
|
TensorMapLookup<U extends TType> |
Returns the value from a given key in a tensor map.
|
TensorMapLookup.Inputs |
|
TensorMapper<T extends TType> |
Maps the native memory of a RawTensor to a n-dimensional typed data space accessible from
the JVM.
|
TensorMapSize |
Returns the number of tensors in the input tensor map.
|
TensorMapSize.Inputs |
|
TensorMapStackKeys<T extends TType> |
Returns a Tensor stack of all keys in a tensor map.
|
TensorMapStackKeys.Inputs |
|
TensorMetadata |
Metadata for a single tensor in the Snapshot Record.
|
TensorMetadata.Builder |
Metadata for a single tensor in the Snapshot Record.
|
TensorMetadataOrBuilder |
|
TensorProto |
Protocol buffer representing a tensor.
|
TensorProto.Builder |
Protocol buffer representing a tensor.
|
TensorProtoOrBuilder |
|
TensorProtos |
|
TensorScatterNdAdd<T extends TType> |
Adds sparse updates to an existing tensor according to indices .
|
TensorScatterNdAdd.Inputs<T extends TType> |
|
TensorScatterNdMax<T extends TType> |
Apply a sparse update to a tensor taking the element-wise maximum.
|
TensorScatterNdMax.Inputs<T extends TType> |
|
TensorScatterNdMin<T extends TType> |
The TensorScatterMin operation
|
TensorScatterNdMin.Inputs<T extends TType> |
|
TensorScatterNdSub<T extends TType> |
Subtracts sparse updates from an existing tensor according to indices .
|
TensorScatterNdSub.Inputs<T extends TType> |
|
TensorScatterNdUpdate<T extends TType> |
Scatter updates into an existing tensor according to indices .
|
TensorScatterNdUpdate.Inputs<T extends TType> |
|
TensorShapeProto |
Dimensions of a tensor.
|
TensorShapeProto.Builder |
Dimensions of a tensor.
|
TensorShapeProto.Dim |
One dimension of the tensor.
|
TensorShapeProto.Dim.Builder |
One dimension of the tensor.
|
TensorShapeProto.DimOrBuilder |
|
TensorShapeProtoOrBuilder |
|
TensorShapeProtos |
|
TensorSliceDataset |
Creates a dataset that emits each dim-0 slice of components once.
|
TensorSliceDataset.Inputs |
|
TensorSliceDataset.Options |
|
TensorSliceProto |
Can only be interpreted if you know the corresponding TensorShape.
|
TensorSliceProto.Builder |
Can only be interpreted if you know the corresponding TensorShape.
|
TensorSliceProto.Extent |
Extent of the slice in one dimension.
|
TensorSliceProto.Extent.Builder |
Extent of the slice in one dimension.
|
TensorSliceProto.Extent.HasLengthCase |
|
TensorSliceProto.ExtentOrBuilder |
|
TensorSliceProtoOrBuilder |
|
TensorSliceProtos |
|
TensorSpecProto |
A protobuf to represent tf.TensorSpec.
|
TensorSpecProto.Builder |
A protobuf to represent tf.TensorSpec.
|
TensorSpecProtoOrBuilder |
|
TensorStridedSliceUpdate<T extends TType> |
Assign value to the sliced l-value reference of input .
|
TensorStridedSliceUpdate.Inputs<T extends TType,U extends TNumber> |
|
TensorStridedSliceUpdate.Options |
|
TensorSummary |
Outputs a Summary protocol buffer with a tensor and per-plugin data.
|
TensorSummary.Inputs |
|
TensorType |
Annotation for all tensor types.
|
TestLogProtos |
|
TestResults |
The output of one benchmark / test run.
|
TestResults.BenchmarkType |
The type of benchmark.
|
TestResults.Builder |
The output of one benchmark / test run.
|
TestResultsOrBuilder |
|
TextLineDataset |
Creates a dataset that emits the lines of one or more text files.
|
TextLineDataset.Inputs |
|
TextLineDataset.Options |
|
TextLineReader |
A Reader that outputs the lines of a file delimited by '\n'.
|
TextLineReader.Inputs |
|
TextLineReader.Options |
|
TF_AllocatorAttributes |
|
TF_ApiDefMap |
|
TF_AttrMetadata |
|
TF_Buffer |
|
TF_Buffer.Data_deallocator_Pointer_long |
|
TF_DeprecatedSession |
|
TF_DeviceList |
|
TF_DimensionHandle |
|
TF_Function |
|
TF_FunctionOptions |
|
TF_Graph |
|
TF_ImportGraphDefOptions |
|
TF_ImportGraphDefResults |
|
TF_Input |
|
TF_KernelBuilder |
|
TF_Library |
|
TF_OpDefinitionBuilder |
|
TF_Operation |
|
TF_OperationDescription |
|
TF_OpKernelConstruction |
|
TF_OpKernelContext |
|
TF_Output |
|
TF_Scope |
\addtogroup core
\{
|
TF_Scope.Impl |
If status() is Status::OK(), construct a Graph object using opts as the
GraphConstructorOptions, and return Status::OK if graph construction was
successful.
|
TF_Server |
|
TF_Session |
|
TF_SessionOptions |
|
TF_ShapeHandle |
|
TF_ShapeInferenceContext |
|
TF_Status |
|
TF_StringView |
|
TF_Tensor |
|
TF_TString |
|
TF_TString_Large |
|
TF_TString_Offset |
|
TF_TString_Raw |
|
TF_TString_Small |
|
TF_TString_Union |
|
TF_TString_View |
|
TF_WhileParams |
|
TFE_Context |
|
TFE_ContextOptions |
|
TFE_Op |
|
TFE_OpAttrs |
|
TFE_TensorDebugInfo |
|
TFE_TensorHandle |
|
TFFailedPreconditionException |
|
TFInvalidArgumentException |
|
TFloat16 |
IEEE-754 half-precision 16-bit float tensor type.
|
TFloat32 |
IEEE-754 single-precision 32-bit float tensor type.
|
TFloat64 |
IEEE-754 double-precision 64-bit float tensor type.
|
TFloating |
Common interface for all floating point tensors.
|
TFOutOfRangeException |
|
TFPermissionDeniedException |
|
TfRecordDataset |
Creates a dataset that emits the records from one or more TFRecord files.
|
TfRecordDataset.Inputs |
|
TfRecordDataset.Options |
|
TfRecordReader |
A Reader that outputs the records from a TensorFlow Records file.
|
TfRecordReader.Inputs |
|
TfRecordReader.Options |
|
TFResourceExhaustedException |
|
TFUnauthenticatedException |
|
TFUnimplementedException |
|
ThreadingOptions |
next: 3
|
ThreadingOptions.Builder |
next: 3
|
ThreadingOptions.OptionalMaxIntraOpParallelismCase |
|
ThreadingOptions.OptionalPrivateThreadpoolSizeCase |
|
ThreadingOptionsOrBuilder |
|
ThreadPoolDataset |
Creates a dataset that uses a custom thread pool to compute input_dataset .
|
ThreadPoolDataset |
Creates a dataset that uses a custom thread pool to compute input_dataset .
|
ThreadPoolDataset.Inputs |
|
ThreadPoolDataset.Inputs |
|
ThreadPoolHandle |
Creates a dataset that uses a custom thread pool to compute input_dataset .
|
ThreadPoolHandle |
Creates a dataset that uses a custom thread pool to compute input_dataset .
|
ThreadPoolHandle.Inputs |
|
ThreadPoolHandle.Inputs |
|
ThreadPoolHandle.Options |
|
ThreadPoolHandle.Options |
|
ThreadPoolOptionProto |
Protobuf type tensorflow.ThreadPoolOptionProto
|
ThreadPoolOptionProto.Builder |
Protobuf type tensorflow.ThreadPoolOptionProto
|
ThreadPoolOptionProtoOrBuilder |
|
Tile<T extends TType> |
Constructs a tensor by tiling a given tensor.
|
Tile.Inputs<T extends TType> |
|
TileGrad<T extends TType> |
Returns the gradient of Tile .
|
TileGrad.Inputs<T extends TType> |
|
Timestamp |
Provides the time since epoch in seconds.
|
Timestamp.Inputs |
|
TInt32 |
32-bit signed integer tensor type.
|
TInt64 |
64-bit signed integer tensor type.
|
TIntegral |
Common interface for all integral numeric tensors.
|
TNumber |
Common interface for all numeric tensors.
|
ToBool |
Converts a tensor to a scalar predicate.
|
ToBool.Inputs |
|
ToHashBucket |
Converts each string in the input Tensor to its hash mod by a number of buckets.
|
ToHashBucket.Inputs |
|
ToHashBucketFast |
Converts each string in the input Tensor to its hash mod by a number of buckets.
|
ToHashBucketFast.Inputs |
|
ToHashBucketStrong |
Converts each string in the input Tensor to its hash mod by a number of buckets.
|
ToHashBucketStrong.Inputs |
|
ToNumber<T extends TNumber> |
Converts each string in the input Tensor to the specified numeric type.
|
ToNumber.Inputs |
|
TopK<T extends TNumber> |
Finds values and indices of the k largest elements for the last dimension.
|
TopK.Inputs<T extends TNumber> |
|
TopK.Options |
Optional attributes for TopK
|
TopKUnique |
Returns the TopK unique values in the array in sorted order.
|
TopKUnique.Inputs |
|
TopKWithUnique |
Returns the TopK values in the array in sorted order.
|
TopKWithUnique.Inputs |
|
TPUCompilationResult |
Deprecated.
|
TPUCompilationResult.Inputs |
|
TPUEmbeddingActivations |
Deprecated.
|
TPUEmbeddingActivations.Inputs |
|
TpuHandleToProtoKey |
Converts XRT's uid handles to TensorFlow-friendly input format.
|
TpuHandleToProtoKey.Inputs |
|
TpuOps |
An API for building tpu operations as Op s
|
TPUReplicatedInput<T extends TType> |
Deprecated.
|
TPUReplicatedInput.Inputs<T extends TType> |
|
TPUReplicatedInput.Options |
|
TPUReplicatedOutput<T extends TType> |
Deprecated.
|
TPUReplicatedOutput.Inputs<T extends TType> |
|
TPUReplicateMetadata |
Deprecated.
|
TPUReplicateMetadata.Inputs |
|
TPUReplicateMetadata.Options |
|
TPUReshardVariables |
Op that reshards on-device TPU variables to specified state.
|
TPUReshardVariables.Inputs |
|
TPURoundRobin |
Round-robin load balancing on TPU cores.
|
TPURoundRobin.Inputs |
|
TrackableObjectGraph |
Protobuf type tensorflow.TrackableObjectGraph
|
TrackableObjectGraph.Builder |
Protobuf type tensorflow.TrackableObjectGraph
|
TrackableObjectGraph.TrackableObject |
Protobuf type tensorflow.TrackableObjectGraph.TrackableObject
|
TrackableObjectGraph.TrackableObject.Builder |
Protobuf type tensorflow.TrackableObjectGraph.TrackableObject
|
TrackableObjectGraph.TrackableObject.ObjectReference |
Protobuf type tensorflow.TrackableObjectGraph.TrackableObject.ObjectReference
|
TrackableObjectGraph.TrackableObject.ObjectReference.Builder |
Protobuf type tensorflow.TrackableObjectGraph.TrackableObject.ObjectReference
|
TrackableObjectGraph.TrackableObject.ObjectReferenceOrBuilder |
|
TrackableObjectGraph.TrackableObject.SerializedTensor |
Protobuf type tensorflow.TrackableObjectGraph.TrackableObject.SerializedTensor
|
TrackableObjectGraph.TrackableObject.SerializedTensor.Builder |
Protobuf type tensorflow.TrackableObjectGraph.TrackableObject.SerializedTensor
|
TrackableObjectGraph.TrackableObject.SerializedTensorOrBuilder |
|
TrackableObjectGraph.TrackableObject.SlotVariableReference |
Protobuf type tensorflow.TrackableObjectGraph.TrackableObject.SlotVariableReference
|
TrackableObjectGraph.TrackableObject.SlotVariableReference.Builder |
Protobuf type tensorflow.TrackableObjectGraph.TrackableObject.SlotVariableReference
|
TrackableObjectGraph.TrackableObject.SlotVariableReferenceOrBuilder |
|
TrackableObjectGraph.TrackableObjectOrBuilder |
|
TrackableObjectGraphOrBuilder |
|
TrackableObjectGraphProtos |
|
TrainOps |
An API for building train operations as Op s
|
TransportOptions |
|
TransportOptions.RecvBufRespExtra |
Extra data needed on a non-RDMA RecvBufResponse.
|
TransportOptions.RecvBufRespExtra.Builder |
Extra data needed on a non-RDMA RecvBufResponse.
|
TransportOptions.RecvBufRespExtraOrBuilder |
|
Transpose<T extends TType> |
Shuffle dimensions of x according to a permutation.
|
Transpose.Inputs<T extends TType> |
|
TriangularSolve<T extends TType> |
Solves systems of linear equations with upper or lower triangular matrices by backsubstitution.
|
TriangularSolve.Inputs<T extends TType> |
|
TriangularSolve.Options |
|
TridiagonalMatMul<T extends TType> |
Calculate product with tridiagonal matrix.
|
TridiagonalMatMul.Inputs<T extends TType> |
|
TridiagonalSolve<T extends TType> |
Solves tridiagonal systems of equations.
|
TridiagonalSolve.Inputs<T extends TType> |
|
TridiagonalSolve.Options |
|
TruncateDiv<T extends TType> |
Returns x / y element-wise for integer types.
|
TruncateDiv.Inputs<T extends TType> |
|
TruncatedNormal<U extends TNumber> |
Outputs random values from a truncated normal distribution.
|
TruncatedNormal.Inputs |
|
TruncatedNormal.Options |
|
TruncateMod<T extends TNumber> |
Returns element-wise remainder of division.
|
TruncateMod.Inputs<T extends TNumber> |
|
TString |
String type.
|
TType |
Common interface for all typed tensors.
|
TUint16 |
16-bit unsigned integer tensor type.
|
TUint8 |
8-bit unsigned integer tensor type.
|
TupleValue |
Represents a Python tuple.
|
TupleValue.Builder |
Represents a Python tuple.
|
TupleValueOrBuilder |
|
TypeSpecProto |
Represents a tf.TypeSpec
|
TypeSpecProto.Builder |
Represents a tf.TypeSpec
|
TypeSpecProto.TypeSpecClass |
Protobuf enum tensorflow.TypeSpecProto.TypeSpecClass
|
TypeSpecProtoOrBuilder |
|
TypesProtos |
|
Unbatch<T extends TType> |
Reverses the operation of Batch for a single output Tensor.
|
Unbatch.Inputs<T extends TType> |
|
Unbatch.Options |
|
UnbatchDataset |
A dataset that splits the elements of its input into multiple elements.
|
UnbatchDataset |
A dataset that splits the elements of its input into multiple elements.
|
UnbatchDataset.Inputs |
|
UnbatchDataset.Inputs |
|
UnbatchDataset.Options |
|
UnbatchGrad<T extends TType> |
Gradient of Unbatch.
|
UnbatchGrad.Inputs<T extends TType> |
|
UnbatchGrad.Options |
|
UncompressElement |
Uncompresses a compressed dataset element.
|
UncompressElement.Inputs |
|
UnicodeDecode<T extends TNumber> |
Decodes each string in input into a sequence of Unicode code points.
|
UnicodeDecode.Inputs |
|
UnicodeDecode.Options |
|
UnicodeDecodeWithOffsets<T extends TNumber> |
Decodes each string in input into a sequence of Unicode code points.
|
UnicodeDecodeWithOffsets.Inputs |
|
UnicodeDecodeWithOffsets.Options |
|
UnicodeEncode |
Encode a tensor of ints into unicode strings.
|
UnicodeEncode.Inputs |
|
UnicodeEncode.Options |
|
UnicodeScript |
Determine the script codes of a given tensor of Unicode integer code points.
|
UnicodeScript.Inputs |
|
UnicodeTranscode |
Transcode the input text from a source encoding to a destination encoding.
|
UnicodeTranscode.Inputs |
|
UnicodeTranscode.Options |
|
UniformCandidateSampler |
Generates labels for candidate sampling with a uniform distribution.
|
UniformCandidateSampler.Inputs |
|
UniformCandidateSampler.Options |
|
UniformDequantize<U extends TNumber> |
Perform dequantization on the quantized Tensor input .
|
UniformDequantize.Inputs |
|
UniformDequantize.Options |
|
UniformQuantizedDotHybrid<V extends TNumber> |
Perform hybrid quantized dot of float Tensor lhs and quantized Tensor rhs .
|
UniformQuantizedDotHybrid.Inputs |
|
UniformQuantizedDotHybrid.Options |
|
Unique<T extends TType,V extends TNumber> |
Finds unique elements along an axis of a tensor.
|
Unique.Inputs<T extends TType> |
|
UniqueDataset |
Creates a dataset that contains the unique elements of input_dataset .
|
UniqueDataset |
Creates a dataset that contains the unique elements of input_dataset .
|
UniqueDataset.Inputs |
|
UniqueDataset.Inputs |
|
UniqueDataset.Options |
|
UniqueWithCounts<T extends TType,V extends TNumber> |
Finds unique elements along an axis of a tensor.
|
UniqueWithCounts.Inputs<T extends TType> |
|
UnravelIndex<T extends TNumber> |
Converts an array of flat indices into a tuple of coordinate arrays.
|
UnravelIndex.Inputs<T extends TNumber> |
|
UnsortedSegmentJoin |
The UnsortedSegmentJoin operation
|
UnsortedSegmentJoin.Inputs |
|
UnsortedSegmentJoin.Options |
|
UnsortedSegmentMax<T extends TNumber> |
Computes the maximum along segments of a tensor.
|
UnsortedSegmentMax.Inputs<T extends TNumber> |
|
UnsortedSegmentMin<T extends TNumber> |
Computes the minimum along segments of a tensor.
|
UnsortedSegmentMin.Inputs<T extends TNumber> |
|
UnsortedSegmentProd<T extends TType> |
Computes the product along segments of a tensor.
|
UnsortedSegmentProd.Inputs<T extends TType> |
|
UnsortedSegmentSum<T extends TType> |
Computes the sum along segments of a tensor.
|
UnsortedSegmentSum.Inputs<T extends TType> |
|
Unstack<T extends TType> |
Unpacks a given dimension of a rank-R tensor into num rank-(R-1) tensors.
|
Unstack.Inputs<T extends TType> |
|
Unstack.Options |
|
Unstage |
Op is similar to a lightweight Dequeue.
|
Unstage.Inputs |
|
Unstage.Options |
|
UnwrapDatasetVariant |
The UnwrapDatasetVariant operation
|
UnwrapDatasetVariant.Inputs |
|
Upper |
Converts all lowercase characters into their respective uppercase replacements.
|
Upper.Inputs |
|
Upper.Options |
Optional attributes for Upper
|
UpperBound<U extends TNumber> |
Applies upper_bound(sorted_search_values, values) along each row.
|
UpperBound.Inputs<T extends TType> |
|
ValuesDef |
Protocol buffer representing the values in ControlFlowContext.
|
ValuesDef.Builder |
Protocol buffer representing the values in ControlFlowContext.
|
ValuesDefOrBuilder |
|
VarHandleOp |
Creates a handle to a Variable resource.
|
VarHandleOp.Inputs |
|
VarHandleOp.Options |
|
Variable<T extends TType> |
Holds state in the form of a tensor that persists across steps.
|
Variable.Inputs |
|
Variable.Options |
|
VariableAggregation |
Indicates how a distributed variable will be aggregated.
|
VariableDef |
Protocol buffer representing a Variable.
|
VariableDef.Builder |
Protocol buffer representing a Variable.
|
VariableDefOrBuilder |
|
VariableProtos |
|
VariableShape<T extends TNumber> |
Returns the shape of the variable pointed to by resource .
|
VariableShape.Inputs |
|
VariableSynchronization |
Indicates when a distributed variable will be synced.
|
VariantTensorDataProto |
Protocol buffer representing the serialization format of DT_VARIANT tensors.
|
VariantTensorDataProto.Builder |
Protocol buffer representing the serialization format of DT_VARIANT tensors.
|
VariantTensorDataProtoOrBuilder |
|
VarIsInitializedOp |
Checks whether a resource handle-based variable has been initialized.
|
VarIsInitializedOp.Inputs |
|
VarLenFeatureProto |
Protobuf type tensorflow.VarLenFeatureProto
|
VarLenFeatureProto.Builder |
Protobuf type tensorflow.VarLenFeatureProto
|
VarLenFeatureProtoOrBuilder |
|
VerifierConfig |
The config for graph verifiers.
|
VerifierConfig.Builder |
The config for graph verifiers.
|
VerifierConfig.Toggle |
Protobuf enum tensorflow.VerifierConfig.Toggle
|
VerifierConfigOrBuilder |
|
VerifierConfigProtos |
|
VersionDef |
Version information for a piece of serialized data
There are different types of versions for each type of data
(GraphDef, etc.), but they all have the same common shape
described here.
|
VersionDef.Builder |
Version information for a piece of serialized data
There are different types of versions for each type of data
(GraphDef, etc.), but they all have the same common shape
described here.
|
VersionDefOrBuilder |
|
VersionsProtos |
|
WatchdogConfig |
Protobuf type tensorflow.WatchdogConfig
|
WatchdogConfig.Builder |
Protobuf type tensorflow.WatchdogConfig
|
WatchdogConfigOrBuilder |
|
Where |
Returns locations of nonzero / true values in a tensor.
|
Where.Inputs |
|
While |
output = input; While (Cond(output)) { output = Body(output) }
|
While |
output = input; While (Cond(output)) { output = Body(output) }
|
While.Inputs |
|
While.Options |
Optional attributes for While
|
WhileContextDef |
Protocol buffer representing a WhileContext object.
|
WhileContextDef.Builder |
Protocol buffer representing a WhileContext object.
|
WhileContextDefOrBuilder |
|
WholeFileReader |
A Reader that outputs the entire contents of a file as a value.
|
WholeFileReader.Inputs |
|
WholeFileReader.Options |
|
WindowDataset |
Combines (nests of) input elements into a dataset of (nests of) windows.
|
WindowDataset.Inputs |
|
WindowDataset.Options |
|
WindowOp |
The WindowOp operation
|
WindowOp.Inputs |
|
WorkerHealth |
Current health status of a worker.
|
WorkerHeartbeat |
Worker heartbeat op.
|
WorkerHeartbeat.Inputs |
|
WorkerHeartbeatRequest |
Protobuf type tensorflow.WorkerHeartbeatRequest
|
WorkerHeartbeatRequest.Builder |
Protobuf type tensorflow.WorkerHeartbeatRequest
|
WorkerHeartbeatRequestOrBuilder |
|
WorkerHeartbeatResponse |
Protobuf type tensorflow.WorkerHeartbeatResponse
|
WorkerHeartbeatResponse.Builder |
Protobuf type tensorflow.WorkerHeartbeatResponse
|
WorkerHeartbeatResponseOrBuilder |
|
WorkerShutdownMode |
Indicates the behavior of the worker when an internal error or shutdown
signal is received.
|
WrapDatasetVariant |
The WrapDatasetVariant operation
|
WrapDatasetVariant.Inputs |
|
WriteAudioSummary |
Writes an audio summary.
|
WriteAudioSummary.Inputs |
|
WriteAudioSummary.Options |
|
WriteFile |
Writes contents to the file at input filename .
|
WriteFile.Inputs |
|
WriteGraphSummary |
Writes a graph summary.
|
WriteGraphSummary.Inputs |
|
WriteHistogramSummary |
Writes a histogram summary.
|
WriteHistogramSummary.Inputs |
|
WriteImageSummary |
Writes an image summary.
|
WriteImageSummary.Inputs |
|
WriteImageSummary.Options |
|
WriteRawProtoSummary |
Writes a serialized proto summary.
|
WriteRawProtoSummary.Inputs |
|
WriteScalarSummary |
Writes a scalar summary.
|
WriteScalarSummary.Inputs |
|
WriteSummary |
Writes a tensor summary.
|
WriteSummary.Inputs |
|
Xdivy<T extends TType> |
Returns 0 if x == 0, and x / y otherwise, elementwise.
|
Xdivy.Inputs<T extends TType> |
|
XEvent |
An XEvent is a trace event, optionally annotated with XStats.
|
XEvent.Builder |
An XEvent is a trace event, optionally annotated with XStats.
|
XEvent.DataCase |
|
XEventMetadata |
Metadata for an XEvent, corresponds to an event type and is shared by
all XEvents with the same metadata_id.
|
XEventMetadata.Builder |
Metadata for an XEvent, corresponds to an event type and is shared by
all XEvents with the same metadata_id.
|
XEventMetadataOrBuilder |
|
XEventOrBuilder |
|
XlaCallModule |
Temporary op for experimenting with jax2tf.
|
XlaCallModule.Inputs |
|
XlaHostCompute |
A pseudo-op to represent host-side computation in an XLA program.
|
XlaHostCompute.Inputs |
|
XlaHostCompute.Options |
|
XlaLaunch |
XLA Launch Op.
|
XlaLaunch.Inputs |
|
XlaOps |
An API for building xla operations as Op s
|
XlaRecvFromHost<T extends TType> |
An op to receive a tensor from the host.
|
XlaRecvFromHost.Inputs |
|
XlaRecvTPUEmbeddingActivations |
An op that receives embedding activations on the TPU.
|
XlaRecvTPUEmbeddingActivations.Inputs |
|
XlaRecvTPUEmbeddingDeduplicationData |
Receives deduplication data (indices and weights) from the embedding core.
|
XlaRecvTPUEmbeddingDeduplicationData.Inputs |
|
XlaSendToHost |
An op to send a tensor to the host.
|
XlaSendToHost.Inputs |
|
XlaSendTPUEmbeddingGradients |
An op that performs gradient updates of embedding tables.
|
XlaSendTPUEmbeddingGradients.Inputs |
|
XlaSendTPUEmbeddingGradients.Options |
|
XlaSetBound |
Set a bound for the given input value as a hint to Xla compiler,
|
XlaSetBound.Inputs |
|
XlaVariadicReduce |
Wraps the variadic XLA Reduce operator.
|
XlaVariadicReduce.Inputs |
|
XlaVariadicSort |
Wraps the XLA Sort operator, documented at
https://www.tensorflow.org/performance/xla/operation_semantics#sort
.
|
XlaVariadicSort.Inputs |
|
XLine |
An XLine is a timeline of trace events (XEvents).
|
XLine.Builder |
An XLine is a timeline of trace events (XEvents).
|
XLineOrBuilder |
|
Xlog1py<T extends TType> |
Returns 0 if x == 0, and x * log1p(y) otherwise, elementwise.
|
Xlog1py.Inputs<T extends TType> |
|
Xlogy<T extends TType> |
Returns 0 if x == 0, and x * log(y) otherwise, elementwise.
|
Xlogy.Inputs<T extends TType> |
|
XPlane |
An XPlane is a container of parallel timelines (XLines), generated by a
profiling source or by post-processing one or more XPlanes.
|
XPlane.Builder |
An XPlane is a container of parallel timelines (XLines), generated by a
profiling source or by post-processing one or more XPlanes.
|
XPlaneOrBuilder |
|
XPlaneProtos |
|
XSpace |
A container of parallel XPlanes, generated by one or more profiling sources.
|
XSpace.Builder |
A container of parallel XPlanes, generated by one or more profiling sources.
|
XSpaceOrBuilder |
|
XStat |
An XStat is a named value associated with an XEvent, e.g., a performance
counter value, a metric computed by a formula applied over nested XEvents
and XStats.
|
XStat.Builder |
An XStat is a named value associated with an XEvent, e.g., a performance
counter value, a metric computed by a formula applied over nested XEvents
and XStats.
|
XStat.ValueCase |
|
XStatMetadata |
Metadata for an XStat, corresponds to a stat type and is shared by all
XStats with the same metadata_id.
|
XStatMetadata.Builder |
Metadata for an XStat, corresponds to a stat type and is shared by all
XStats with the same metadata_id.
|
XStatMetadataOrBuilder |
|
XStatOrBuilder |
|
Zeros<T extends TType> |
An operator creating a constant initialized with zeros of the shape given by `dims`.
|
ZerosLike<T extends TType> |
Returns a tensor of zeros with the same shape and type as x.
|
ZerosLike.Inputs<T extends TType> |
|
Zeta<T extends TNumber> |
Compute the Hurwitz zeta function \(\zeta(x, q)\).
|
Zeta.Inputs<T extends TNumber> |
|
ZipDataset |
Creates a dataset that zips together input_datasets .
|
ZipDataset.Inputs |
|
ZipDataset.Options |
|