All Classes Interface Summary Class Summary Enum Summary Annotation Types Summary
Class |
Description |
Abort |
Raise a exception to abort the process when called.
|
Abort.Inputs |
|
Abort.Options |
Optional attributes for Abort
|
Abs<T extends TNumber> |
Computes the absolute value of a tensor.
|
Abs.Inputs<T extends TNumber> |
|
AbstractGradientAdapter |
Helper base class for custom gradient adapters INTERNAL USE ONLY
|
AccumulateN<T extends TType> |
Returns the element-wise sum of a list of tensors.
|
AccumulateN.Inputs<T extends TType> |
|
AccumulatorApplyGradient |
Applies a gradient to a given accumulator.
|
AccumulatorApplyGradient.Inputs |
|
AccumulatorNumAccumulated |
Returns the number of gradients aggregated in the given accumulators.
|
AccumulatorNumAccumulated.Inputs |
|
AccumulatorSetGlobalStep |
Updates the accumulator with a new value for global_step.
|
AccumulatorSetGlobalStep.Inputs |
|
AccumulatorTakeGradient<T extends TType> |
Extracts the average gradient in the given ConditionalAccumulator.
|
AccumulatorTakeGradient.Inputs |
|
Acos<T extends TType> |
Computes acos of x element-wise.
|
Acos.Inputs<T extends TType> |
|
Acosh<T extends TType> |
Computes inverse hyperbolic cosine of x element-wise.
|
Acosh.Inputs<T extends TType> |
|
Add<T extends TType> |
Returns x + y element-wise.
|
Add.Inputs<T extends TType> |
|
AddManySparseToTensorsMap |
Add an N -minibatch SparseTensor to a SparseTensorsMap , return N handles.
|
AddManySparseToTensorsMap.Inputs |
|
AddManySparseToTensorsMap.Options |
|
AddN<T extends TType> |
Add all input tensors element wise.
|
AddN.Inputs<T extends TType> |
|
AddSparseToTensorsMap |
Add a SparseTensor to a SparseTensorsMap return its handle.
|
AddSparseToTensorsMap.Inputs |
|
AddSparseToTensorsMap.Options |
|
AdjustContrast<T extends TNumber> |
Adjust the contrast of one or more images.
|
AdjustContrast.Inputs<T extends TNumber> |
|
AdjustHue<T extends TNumber> |
Adjust the hue of one or more images.
|
AdjustHue.Inputs<T extends TNumber> |
|
AdjustSaturation<T extends TNumber> |
Adjust the saturation of one or more images.
|
AdjustSaturation.Inputs<T extends TNumber> |
|
All |
Computes the "logical and" of elements across dimensions of a tensor.
|
All.Inputs |
|
All.Options |
Optional attributes for All
|
AllCandidateSampler |
Generates labels for candidate sampling with a learned unigram distribution.
|
AllCandidateSampler.Inputs |
|
AllCandidateSampler.Options |
|
AllToAll<T extends TType> |
An Op to exchange data across TPU replicas.
|
AllToAll.Inputs<T extends TType> |
|
Angle<U extends TNumber> |
Returns the argument of a complex number.
|
Angle.Inputs |
|
AnonymousHashTable |
Creates a uninitialized anonymous hash table.
|
AnonymousHashTable.Inputs |
|
AnonymousIterator |
A container for an iterator resource.
|
AnonymousIterator.Inputs |
|
AnonymousMemoryCache |
The AnonymousMemoryCache operation
|
AnonymousMemoryCache.Inputs |
|
AnonymousMultiDeviceIterator |
A container for a multi device iterator resource.
|
AnonymousMultiDeviceIterator.Inputs |
|
AnonymousMutableDenseHashTable |
Creates an empty anonymous mutable hash table that uses tensors as the backing store.
|
AnonymousMutableDenseHashTable.Inputs<T extends TType> |
|
AnonymousMutableDenseHashTable.Options |
|
AnonymousMutableHashTable |
Creates an empty anonymous mutable hash table.
|
AnonymousMutableHashTable.Inputs |
|
AnonymousMutableHashTableOfTensors |
Creates an empty anonymous mutable hash table of vector values.
|
AnonymousMutableHashTableOfTensors.Inputs |
|
AnonymousMutableHashTableOfTensors.Options |
|
AnonymousRandomSeedGenerator |
The AnonymousRandomSeedGenerator operation
|
AnonymousRandomSeedGenerator.Inputs |
|
AnonymousSeedGenerator |
The AnonymousSeedGenerator operation
|
AnonymousSeedGenerator.Inputs |
|
Any |
Computes the "logical or" of elements across dimensions of a tensor.
|
Any.Inputs |
|
Any.Options |
Optional attributes for Any
|
ApplyAdadelta<T extends TType> |
Update '*var' according to the adadelta scheme.
|
ApplyAdadelta.Inputs<T extends TType> |
|
ApplyAdadelta.Options |
|
ApplyAdagrad<T extends TType> |
Update '*var' according to the adagrad scheme.
|
ApplyAdagrad.Inputs<T extends TType> |
|
ApplyAdagrad.Options |
|
ApplyAdagradDa<T extends TType> |
Update '*var' according to the proximal adagrad scheme.
|
ApplyAdagradDa.Inputs<T extends TType> |
|
ApplyAdagradDa.Options |
|
ApplyAdagradV2<T extends TType> |
Update '*var' according to the adagrad scheme.
|
ApplyAdagradV2.Inputs<T extends TType> |
|
ApplyAdagradV2.Options |
|
ApplyAdam<T extends TType> |
Update '*var' according to the Adam algorithm.
|
ApplyAdam.Inputs<T extends TType> |
|
ApplyAdam.Options |
|
ApplyAdaMax<T extends TType> |
Update '*var' according to the AdaMax algorithm.
|
ApplyAdaMax.Inputs<T extends TType> |
|
ApplyAdaMax.Options |
|
ApplyAddSign<T extends TType> |
Update '*var' according to the AddSign update.
|
ApplyAddSign.Inputs<T extends TType> |
|
ApplyAddSign.Options |
|
ApplyCenteredRmsProp<T extends TType> |
Update '*var' according to the centered RMSProp algorithm.
|
ApplyCenteredRmsProp.Inputs<T extends TType> |
|
ApplyCenteredRmsProp.Options |
|
ApplyFtrl<T extends TType> |
Update '*var' according to the Ftrl-proximal scheme.
|
ApplyFtrl.Inputs<T extends TType> |
|
ApplyFtrl.Options |
|
ApplyGradientDescent<T extends TType> |
Update '*var' by subtracting 'alpha' * 'delta' from it.
|
ApplyGradientDescent.Inputs<T extends TType> |
|
ApplyGradientDescent.Options |
|
ApplyMomentum<T extends TType> |
Update '*var' according to the momentum scheme.
|
ApplyMomentum.Inputs<T extends TType> |
|
ApplyMomentum.Options |
|
ApplyPowerSign<T extends TType> |
Update '*var' according to the AddSign update.
|
ApplyPowerSign.Inputs<T extends TType> |
|
ApplyPowerSign.Options |
|
ApplyProximalAdagrad<T extends TType> |
Update '*var' and '*accum' according to FOBOS with Adagrad learning rate.
|
ApplyProximalAdagrad.Inputs<T extends TType> |
|
ApplyProximalAdagrad.Options |
|
ApplyProximalGradientDescent<T extends TType> |
Update '*var' as FOBOS algorithm with fixed learning rate.
|
ApplyProximalGradientDescent.Inputs<T extends TType> |
|
ApplyProximalGradientDescent.Options |
|
ApplyRmsProp<T extends TType> |
Update '*var' according to the RMSProp algorithm.
|
ApplyRmsProp.Inputs<T extends TType> |
|
ApplyRmsProp.Options |
|
ApproximateEqual |
Returns the truth value of abs(x-y) < tolerance element-wise.
|
ApproximateEqual.Inputs<T extends TType> |
|
ApproximateEqual.Options |
|
ApproxTopK<T extends TNumber> |
Returns min/max k values and their indices of the input operand in an approximate manner.
|
ApproxTopK.Inputs<T extends TNumber> |
|
ApproxTopK.Options |
|
ArgMax<V extends TNumber> |
Returns the index with the largest value across dimensions of a tensor.
|
ArgMax.Inputs |
|
ArgMin<V extends TNumber> |
Returns the index with the smallest value across dimensions of a tensor.
|
ArgMin.Inputs |
|
Asin<T extends TType> |
Computes the trignometric inverse sine of x element-wise.
|
Asin.Inputs<T extends TType> |
|
Asinh<T extends TType> |
Computes inverse hyperbolic sine of x element-wise.
|
Asinh.Inputs<T extends TType> |
|
AssertCardinalityDataset |
The AssertCardinalityDataset operation
|
AssertCardinalityDataset.Inputs |
|
AssertNextDataset |
A transformation that asserts which transformations happen next.
|
AssertNextDataset |
The ExperimentalAssertNextDataset operation
|
AssertNextDataset.Inputs |
|
AssertNextDataset.Inputs |
|
AssertPrevDataset |
A transformation that asserts which transformations happened previously.
|
AssertPrevDataset.Inputs |
|
AssertThat |
Asserts that the given condition is true.
|
AssertThat.Inputs |
|
AssertThat.Options |
|
Assign<T extends TType> |
Update 'ref' by assigning 'value' to it.
|
Assign.Inputs<T extends TType> |
|
Assign.Options |
Optional attributes for Assign
|
AssignAdd<T extends TType> |
Update 'ref' by adding 'value' to it.
|
AssignAdd.Inputs<T extends TType> |
|
AssignAdd.Options |
|
AssignAddVariableOp |
Adds a value to the current value of a variable.
|
AssignAddVariableOp.Inputs |
|
AssignSub<T extends TType> |
Update 'ref' by subtracting 'value' from it.
|
AssignSub.Inputs<T extends TType> |
|
AssignSub.Options |
|
AssignSubVariableOp |
Subtracts a value from the current value of a variable.
|
AssignSubVariableOp.Inputs |
|
AssignVariableConcatND |
Concats input tensor across all dimensions.
|
AssignVariableConcatND.Inputs |
|
AssignVariableConcatND.Options |
|
AssignVariableOp |
Assigns a new value to a variable.
|
AssignVariableOp.Inputs |
|
AssignVariableOp.Options |
|
AsString |
Converts each entry in the given tensor to strings.
|
AsString.Inputs |
|
AsString.Options |
|
Atan<T extends TType> |
Computes the trignometric inverse tangent of x element-wise.
|
Atan.Inputs<T extends TType> |
|
Atan2<T extends TNumber> |
Computes arctangent of y/x element-wise, respecting signs of the arguments.
|
Atan2.Inputs<T extends TNumber> |
|
Atanh<T extends TType> |
Computes inverse hyperbolic tangent of x element-wise.
|
Atanh.Inputs<T extends TType> |
|
AttributeMetadata |
Metadata of an op's attribute.
|
AudioOps |
An API for building audio operations as Op s
|
AudioSpectrogram |
Produces a visualization of audio data over time.
|
AudioSpectrogram.Inputs |
|
AudioSpectrogram.Options |
|
AudioSummary |
Outputs a Summary protocol buffer with audio.
|
AudioSummary.Inputs |
|
AudioSummary.Options |
|
AutoShardDataset |
Creates a dataset that shards the input dataset.
|
AutoShardDataset |
Creates a dataset that shards the input dataset.
|
AutoShardDataset.Inputs |
|
AutoShardDataset.Inputs |
|
AutoShardDataset.Options |
|
AutoShardDataset.Options |
|
AvgPool<T extends TNumber> |
Performs average pooling on the input.
|
AvgPool.Inputs<T extends TNumber> |
|
AvgPool.Options |
|
AvgPool3d<T extends TNumber> |
Performs 3D average pooling on the input.
|
AvgPool3d.Inputs<T extends TNumber> |
|
AvgPool3d.Options |
|
AvgPool3dGrad<T extends TNumber> |
Computes gradients of average pooling function.
|
AvgPool3dGrad.Inputs<T extends TNumber> |
|
AvgPool3dGrad.Options |
|
AvgPoolGrad<T extends TNumber> |
Computes gradients of the average pooling function.
|
AvgPoolGrad.Inputs<T extends TNumber> |
|
AvgPoolGrad.Options |
|
BandedTriangularSolve<T extends TType> |
The BandedTriangularSolve operation
|
BandedTriangularSolve.Inputs<T extends TType> |
|
BandedTriangularSolve.Options |
|
BandPart<T extends TType> |
Copy a tensor setting everything outside a central band in each innermost matrix to zero.
|
BandPart.Inputs<T extends TType,U extends TNumber> |
|
Barrier |
Defines a barrier that persists across different graph executions.
|
Barrier.Inputs |
|
Barrier.Options |
|
BarrierClose |
Closes the given barrier.
|
BarrierClose.Inputs |
|
BarrierClose.Options |
|
BarrierIncompleteSize |
Computes the number of incomplete elements in the given barrier.
|
BarrierIncompleteSize.Inputs |
|
BarrierInsertMany |
For each key, assigns the respective value to the specified component.
|
BarrierInsertMany.Inputs |
|
BarrierReadySize |
Computes the number of complete elements in the given barrier.
|
BarrierReadySize.Inputs |
|
BarrierTakeMany |
Takes the given number of completed elements from a barrier.
|
BarrierTakeMany.Inputs |
|
BarrierTakeMany.Options |
|
Batch |
Batches all input tensors nondeterministically.
|
Batch.Inputs |
|
Batch.Options |
Optional attributes for Batch
|
BatchCholesky<T extends TNumber> |
The BatchCholesky operation
|
BatchCholesky.Inputs<T extends TNumber> |
|
BatchCholeskyGrad<T extends TNumber> |
The BatchCholeskyGrad operation
|
BatchCholeskyGrad.Inputs<T extends TNumber> |
|
BatchDataset |
Creates a dataset that batches batch_size elements from input_dataset .
|
BatchDataset.Inputs |
|
BatchDataset.Options |
|
BatchFft |
The BatchFFT operation
|
BatchFft.Inputs |
|
BatchFft2d |
The BatchFFT2D operation
|
BatchFft2d.Inputs |
|
BatchFft3d |
The BatchFFT3D operation
|
BatchFft3d.Inputs |
|
BatchFunction |
Batches all the inputs tensors to the computation done by the function.
|
BatchFunction.Inputs |
|
BatchFunction.Options |
|
BatchIfft |
The BatchIFFT operation
|
BatchIfft.Inputs |
|
BatchIfft2d |
The BatchIFFT2D operation
|
BatchIfft2d.Inputs |
|
BatchIfft3d |
The BatchIFFT3D operation
|
BatchIfft3d.Inputs |
|
BatchMatMul<V extends TType> |
Multiplies slices of two tensors in batches.
|
BatchMatMul.Inputs |
|
BatchMatMul.Options |
|
BatchMatrixBandPart<T extends TType> |
The BatchMatrixBandPart operation
|
BatchMatrixBandPart.Inputs<T extends TType> |
|
BatchMatrixDeterminant<T extends TType> |
The BatchMatrixDeterminant operation
|
BatchMatrixDeterminant.Inputs<T extends TType> |
|
BatchMatrixDiag<T extends TType> |
The BatchMatrixDiag operation
|
BatchMatrixDiag.Inputs<T extends TType> |
|
BatchMatrixDiagPart<T extends TType> |
The BatchMatrixDiagPart operation
|
BatchMatrixDiagPart.Inputs<T extends TType> |
|
BatchMatrixInverse<T extends TNumber> |
The BatchMatrixInverse operation
|
BatchMatrixInverse.Inputs<T extends TNumber> |
|
BatchMatrixInverse.Options |
|
BatchMatrixSetDiag<T extends TType> |
The BatchMatrixSetDiag operation
|
BatchMatrixSetDiag.Inputs<T extends TType> |
|
BatchMatrixSolve<T extends TNumber> |
The BatchMatrixSolve operation
|
BatchMatrixSolve.Inputs<T extends TNumber> |
|
BatchMatrixSolve.Options |
|
BatchMatrixSolveLs<T extends TNumber> |
The BatchMatrixSolveLs operation
|
BatchMatrixSolveLs.Inputs<T extends TNumber> |
|
BatchMatrixSolveLs.Options |
|
BatchMatrixTriangularSolve<T extends TNumber> |
The BatchMatrixTriangularSolve operation
|
BatchMatrixTriangularSolve.Inputs<T extends TNumber> |
|
BatchMatrixTriangularSolve.Options |
|
BatchNormWithGlobalNormalization<T extends TType> |
Batch normalization.
|
BatchNormWithGlobalNormalization.Inputs<T extends TType> |
|
BatchNormWithGlobalNormalizationGrad<T extends TType> |
Gradients for batch normalization.
|
BatchNormWithGlobalNormalizationGrad.Inputs<T extends TType> |
|
BatchSelfAdjointEig<T extends TNumber> |
The BatchSelfAdjointEigV2 operation
|
BatchSelfAdjointEig.Inputs<T extends TNumber> |
|
BatchSelfAdjointEig.Options |
|
BatchSvd<T extends TType> |
The BatchSvd operation
|
BatchSvd.Inputs<T extends TType> |
|
BatchSvd.Options |
|
BatchToSpace<T extends TType> |
BatchToSpace for 4-D tensors of type T.
|
BatchToSpace.Inputs<T extends TType> |
|
BatchToSpaceNd<T extends TType> |
BatchToSpace for N-D tensors of type T.
|
BatchToSpaceNd.Inputs<T extends TType> |
|
BesselI0<T extends TNumber> |
The BesselI0 operation
|
BesselI0.Inputs<T extends TNumber> |
|
BesselI0e<T extends TNumber> |
The BesselI0e operation
|
BesselI0e.Inputs<T extends TNumber> |
|
BesselI1<T extends TNumber> |
The BesselI1 operation
|
BesselI1.Inputs<T extends TNumber> |
|
BesselI1e<T extends TNumber> |
The BesselI1e operation
|
BesselI1e.Inputs<T extends TNumber> |
|
BesselJ0<T extends TNumber> |
The BesselJ0 operation
|
BesselJ0.Inputs<T extends TNumber> |
|
BesselJ1<T extends TNumber> |
The BesselJ1 operation
|
BesselJ1.Inputs<T extends TNumber> |
|
BesselK0<T extends TNumber> |
The BesselK0 operation
|
BesselK0.Inputs<T extends TNumber> |
|
BesselK0e<T extends TNumber> |
The BesselK0e operation
|
BesselK0e.Inputs<T extends TNumber> |
|
BesselK1<T extends TNumber> |
The BesselK1 operation
|
BesselK1.Inputs<T extends TNumber> |
|
BesselK1e<T extends TNumber> |
The BesselK1e operation
|
BesselK1e.Inputs<T extends TNumber> |
|
BesselY0<T extends TNumber> |
The BesselY0 operation
|
BesselY0.Inputs<T extends TNumber> |
|
BesselY1<T extends TNumber> |
The BesselY1 operation
|
BesselY1.Inputs<T extends TNumber> |
|
Betainc<T extends TNumber> |
Compute the regularized incomplete beta integral \(I_x(a, b)\).
|
Betainc.Inputs<T extends TNumber> |
|
BiasAdd<T extends TType> |
Adds bias to value .
|
BiasAdd.Inputs<T extends TType> |
|
BiasAdd.Options |
|
BiasAddGrad<T extends TType> |
The backward operation for "BiasAdd" on the "bias" tensor.
|
BiasAddGrad.Inputs<T extends TType> |
|
BiasAddGrad.Options |
|
Bincount<T extends TNumber> |
Counts the number of occurrences of each value in an integer array.
|
Bincount.Inputs<T extends TNumber> |
|
Bitcast<U extends TType> |
Bitcasts a tensor from one type to another without copying data.
|
Bitcast.Inputs |
|
BitwiseAnd<T extends TNumber> |
Elementwise computes the bitwise AND of x and y .
|
BitwiseAnd.Inputs<T extends TNumber> |
|
BitwiseOps |
An API for building bitwise operations as Op s
|
BitwiseOr<T extends TNumber> |
Elementwise computes the bitwise OR of x and y .
|
BitwiseOr.Inputs<T extends TNumber> |
|
BitwiseXor<T extends TNumber> |
Elementwise computes the bitwise XOR of x and y .
|
BitwiseXor.Inputs<T extends TNumber> |
|
BlockLSTM<T extends TNumber> |
Computes the LSTM cell forward propagation for all the time steps.
|
BlockLSTM.Inputs<T extends TNumber> |
|
BlockLSTM.Options |
|
BlockLSTMGrad<T extends TNumber> |
Computes the LSTM cell backward propagation for the entire time sequence.
|
BlockLSTMGrad.Inputs<T extends TNumber> |
|
BooleanMask |
|
BooleanMask.Options |
|
BooleanMaskUpdate |
|
BooleanMaskUpdate.Options |
|
BroadcastDynamicShape<T extends TNumber> |
Return the shape of s0 op s1 with broadcast.
|
BroadcastDynamicShape.Inputs<T extends TNumber> |
|
BroadcastGradientArgs<T extends TNumber> |
Return the reduction indices for computing gradients of s0 op s1 with broadcast.
|
BroadcastGradientArgs.Inputs<T extends TNumber> |
|
BroadcastTo<T extends TType> |
Broadcast an array for a compatible shape.
|
BroadcastTo.Inputs<T extends TType> |
|
Bucketize |
Bucketizes 'input' based on 'boundaries'.
|
Bucketize.Inputs |
|
BytesProducedStatsDataset |
Records the bytes size of each element of input_dataset in a StatsAggregator.
|
BytesProducedStatsDataset |
Records the bytes size of each element of input_dataset in a StatsAggregator.
|
BytesProducedStatsDataset.Inputs |
|
BytesProducedStatsDataset.Inputs |
|
CacheDataset |
The CacheDatasetV2 operation
|
CacheDataset.Inputs |
|
CacheDataset.Options |
|
Case |
An n-way switch statement which calls a single branch function.
|
Case.Options |
Optional attributes for Case
|
Cast<U extends TType> |
Cast x of type SrcT to y of DstT.
|
Cast.Inputs |
|
Cast.Options |
Optional attributes for Cast
|
Ceil<T extends TNumber> |
Returns element-wise smallest integer not less than x.
|
Ceil.Inputs<T extends TNumber> |
|
CheckNumerics<T extends TNumber> |
Checks a tensor for NaN, -Inf and +Inf values.
|
CheckNumerics.Inputs<T extends TNumber> |
|
Cholesky<T extends TType> |
Computes the Cholesky decomposition of one or more square matrices.
|
Cholesky.Inputs<T extends TType> |
|
CholeskyGrad<T extends TNumber> |
Computes the reverse mode backpropagated gradient of the Cholesky algorithm.
|
CholeskyGrad.Inputs<T extends TNumber> |
|
ChooseFastestBranchDataset |
The ChooseFastestBranchDataset operation
|
ChooseFastestBranchDataset.Inputs |
|
ChooseFastestDataset |
The ChooseFastestDataset operation
|
ChooseFastestDataset |
The ExperimentalChooseFastestDataset operation
|
ChooseFastestDataset.Inputs |
|
ChooseFastestDataset.Inputs |
|
ClipByValue<T extends TType> |
Clips tensor values to a specified min and max.
|
ClipByValue.Inputs<T extends TType> |
|
CloseSummaryWriter |
The CloseSummaryWriter operation
|
CloseSummaryWriter.Inputs |
|
ClusterOps |
An API for building cluster operations as Op s
|
CollateTPUEmbeddingMemory |
An op that merges the string-encoded memory config protos from all hosts.
|
CollateTPUEmbeddingMemory.Inputs |
|
CollectiveAllToAll<T extends TNumber> |
Mutually exchanges multiple tensors of identical type and shape.
|
CollectiveAllToAll.Inputs<T extends TNumber> |
|
CollectiveAllToAll.Options |
|
CollectiveAssignGroup |
Assign group keys based on group assignment.
|
CollectiveAssignGroup.Inputs |
|
CollectiveBcastRecv<U extends TType> |
Receives a tensor value broadcast from another device.
|
CollectiveBcastRecv.Inputs |
|
CollectiveBcastRecv.Options |
|
CollectiveBcastSend<T extends TType> |
Broadcasts a tensor value to one or more other devices.
|
CollectiveBcastSend.Inputs<T extends TType> |
|
CollectiveBcastSend.Options |
|
CollectiveGather<T extends TNumber> |
Mutually accumulates multiple tensors of identical type and shape.
|
CollectiveGather.Inputs<T extends TNumber> |
|
CollectiveGather.Options |
|
CollectiveInitializeCommunicator |
Initializes a group for collective operations.
|
CollectiveInitializeCommunicator.Inputs |
|
CollectiveInitializeCommunicator.Options |
|
CollectiveOps |
An API for building collective operations as Op s
|
CollectivePermute<T extends TType> |
An Op to permute tensors across replicated TPU instances.
|
CollectivePermute.Inputs<T extends TType> |
|
CollectiveReduce<T extends TNumber> |
Mutually reduces multiple tensors of identical type and shape.
|
CollectiveReduce.Inputs<T extends TNumber> |
|
CollectiveReduce.Options |
|
CollectiveReduceScatter<T extends TNumber> |
Mutually reduces multiple tensors of identical type and shape and scatters the result.
|
CollectiveReduceScatter.Inputs<T extends TNumber> |
|
CollectiveReduceScatter.Options |
|
CombinedNonMaxSuppression |
Greedily selects a subset of bounding boxes in descending order of score,
This operation performs non_max_suppression on the inputs per batch, across
all classes.
|
CombinedNonMaxSuppression.Inputs |
|
CombinedNonMaxSuppression.Options |
|
CompilationResult |
Returns the result of a TPU compilation.
|
CompilationResult.Inputs |
|
Compile |
Compiles a computations for execution on one or more TPU devices.
|
Compile.Inputs |
|
CompileSucceededAssert |
Asserts that compilation succeeded.
|
CompileSucceededAssert.Inputs |
|
Complex<U extends TType> |
Converts two real numbers to a complex number.
|
Complex.Inputs<T extends TNumber> |
|
ComplexAbs<U extends TNumber> |
Computes the complex absolute value of a tensor.
|
ComplexAbs.Inputs |
|
CompositeTensorVariantFromComponents |
Encodes an ExtensionType value into a variant scalar Tensor.
|
CompositeTensorVariantFromComponents.Inputs |
|
CompositeTensorVariantToComponents |
Decodes a variant scalar Tensor into an ExtensionType value.
|
CompositeTensorVariantToComponents.Inputs |
|
CompressElement |
Compresses a dataset element.
|
CompressElement.Inputs |
|
ComputeAccidentalHits |
Computes the ids of the positions in sampled_candidates that match true_labels.
|
ComputeAccidentalHits.Inputs |
|
ComputeAccidentalHits.Options |
|
ComputeBatchSize |
Computes the static batch size of a dataset sans partial batches.
|
ComputeBatchSize.Inputs |
|
ComputeDedupDataSize |
An op computes the size of the deduplication data from embedding core and returns the updated config.
|
ComputeDedupDataSize.Inputs |
|
ComputeDedupDataTupleMask |
An op computes tuple mask of deduplication data from embedding core.
|
ComputeDedupDataTupleMask.Inputs |
|
Concat<T extends TType> |
Concatenates tensors along one dimension.
|
Concat.Inputs<T extends TType> |
|
ConcatenateDataset |
Creates a dataset that concatenates input_dataset with another_dataset .
|
ConcatenateDataset.Inputs |
|
ConcatenateDataset.Options |
|
ConcatND<T extends TType> |
Concats input tensor across all dimensions.
|
ConcatND.Inputs<T extends TType> |
|
ConcatND.Options |
|
ConcatOffset<T extends TNumber> |
Computes offsets of concat inputs within its output.
|
ConcatOffset.Inputs<T extends TNumber> |
|
ConcreteFunction |
A graph that can be invoked as a single function, with an input and output signature.
|
ConditionalAccumulator |
A conditional accumulator for aggregating gradients.
|
ConditionalAccumulator.Inputs |
|
ConditionalAccumulator.Options |
|
ConfigureAndInitializeGlobalTPU |
An op that sets up the centralized structures for a distributed TPU system.
|
ConfigureAndInitializeGlobalTPU.Inputs |
|
ConfigureAndInitializeGlobalTPU.Options |
|
ConfigureDistributedTPU |
Sets up the centralized structures for a distributed TPU system.
|
ConfigureDistributedTPU.Inputs |
|
ConfigureDistributedTPU.Options |
|
ConfigureTPUEmbedding |
Sets up TPUEmbedding in a distributed TPU system.
|
ConfigureTPUEmbedding.Inputs |
|
ConfigureTPUEmbeddingHost |
An op that configures the TPUEmbedding software on a host.
|
ConfigureTPUEmbeddingHost.Inputs |
|
ConfigureTPUEmbeddingMemory |
An op that configures the TPUEmbedding software on a host.
|
ConfigureTPUEmbeddingMemory.Inputs |
|
Conj<T extends TType> |
Returns the complex conjugate of a complex number.
|
Conj.Inputs<T extends TType> |
|
ConjugateTranspose<T extends TType> |
Shuffle dimensions of x according to a permutation and conjugate the result.
|
ConjugateTranspose.Inputs<T extends TType> |
|
ConnectTPUEmbeddingHosts |
An op that sets up communication between TPUEmbedding host software instances
after ConfigureTPUEmbeddingHost has been called on each host.
|
ConnectTPUEmbeddingHosts.Inputs |
|
Constant<T extends TType> |
An operator producing a constant value.
|
ConsumeMutexLock |
This op consumes a lock created by MutexLock .
|
ConsumeMutexLock.Inputs |
|
ControlTrigger |
Does nothing.
|
ControlTrigger.Inputs |
|
Conv<T extends TNumber> |
Computes a N-D convolution given (N+1+batch_dims)-D input and (N+2)-D filter tensors.
|
Conv.Inputs<T extends TNumber> |
|
Conv.Options |
Optional attributes for Conv
|
Conv2d<T extends TNumber> |
Computes a 2-D convolution given 4-D input and filter tensors.
|
Conv2d.Inputs<T extends TNumber> |
|
Conv2d.Options |
Optional attributes for Conv2d
|
Conv2dBackpropFilter<T extends TNumber> |
Computes the gradients of convolution with respect to the filter.
|
Conv2dBackpropFilter.Inputs<T extends TNumber> |
|
Conv2dBackpropFilter.Options |
|
Conv2dBackpropFilterV2<T extends TNumber> |
Computes the gradients of convolution with respect to the filter.
|
Conv2dBackpropFilterV2.Inputs<T extends TNumber> |
|
Conv2dBackpropFilterV2.Options |
|
Conv2dBackpropInput<T extends TNumber> |
Computes the gradients of convolution with respect to the input.
|
Conv2dBackpropInput.Inputs<T extends TNumber> |
|
Conv2dBackpropInput.Options |
|
Conv2dBackpropInputV2<T extends TNumber> |
Computes the gradients of convolution with respect to the input.
|
Conv2dBackpropInputV2.Inputs<T extends TNumber> |
|
Conv2dBackpropInputV2.Options |
|
Conv3d<T extends TNumber> |
Computes a 3-D convolution given 5-D input and filter tensors.
|
Conv3d.Inputs<T extends TNumber> |
|
Conv3d.Options |
Optional attributes for Conv3d
|
Conv3dBackpropFilter<T extends TNumber> |
Computes the gradients of 3-D convolution with respect to the filter.
|
Conv3dBackpropFilter.Inputs<T extends TNumber> |
|
Conv3dBackpropFilter.Options |
|
Conv3dBackpropInput<U extends TNumber> |
Computes the gradients of 3-D convolution with respect to the input.
|
Conv3dBackpropInput.Inputs<U extends TNumber> |
|
Conv3dBackpropInput.Options |
|
ConvertToCooTensor |
The ConvertToCooTensor operation
|
ConvertToCooTensor.Inputs |
|
Copy<T extends TType> |
Copy a tensor from CPU-to-CPU or GPU-to-GPU.
|
Copy.Inputs<T extends TType> |
|
Copy.Options |
Optional attributes for Copy
|
CopyHost<T extends TType> |
Copy a tensor to host.
|
CopyHost.Inputs<T extends TType> |
|
CopyHost.Options |
|
CopyToMesh<T extends TType> |
The CopyToMesh operation
|
CopyToMesh.Inputs<T extends TType> |
|
CopyToMeshGrad<T extends TType> |
The CopyToMeshGrad operation
|
CopyToMeshGrad.Inputs<T extends TType> |
|
Cos<T extends TType> |
Computes cos of x element-wise.
|
Cos.Inputs<T extends TType> |
|
Cosh<T extends TType> |
Computes hyperbolic cosine of x element-wise.
|
Cosh.Inputs<T extends TType> |
|
CountUpTo<T extends TNumber> |
Increments 'ref' until it reaches 'limit'.
|
CountUpTo.Inputs<T extends TNumber> |
|
CreateSummaryDbWriter |
The CreateSummaryDbWriter operation
|
CreateSummaryDbWriter.Inputs |
|
CreateSummaryFileWriter |
The CreateSummaryFileWriter operation
|
CreateSummaryFileWriter.Inputs |
|
CropAndResize |
Extracts crops from the input image tensor and resizes them.
|
CropAndResize.Inputs |
|
CropAndResize.Options |
|
CropAndResizeGradBoxes |
Computes the gradient of the crop_and_resize op wrt the input boxes tensor.
|
CropAndResizeGradBoxes.Inputs |
|
CropAndResizeGradBoxes.Options |
|
CropAndResizeGradImage<T extends TNumber> |
Computes the gradient of the crop_and_resize op wrt the input image tensor.
|
CropAndResizeGradImage.Inputs |
|
CropAndResizeGradImage.Options |
|
Cross<T extends TNumber> |
Compute the pairwise cross product.
|
Cross.Inputs<T extends TNumber> |
|
CrossReplicaSum<T extends TNumber> |
An Op to sum inputs across replicated TPU instances.
|
CrossReplicaSum.Inputs<T extends TNumber> |
|
CSRSparseMatrixComponents<T extends TType> |
Reads out the CSR components at batch index .
|
CSRSparseMatrixComponents.Inputs |
|
CSRSparseMatrixToDense<T extends TType> |
Convert a (possibly batched) CSRSparseMatrix to dense.
|
CSRSparseMatrixToDense.Inputs |
|
CSRSparseMatrixToSparseTensor<T extends TType> |
Converts a (possibly batched) CSRSparesMatrix to a SparseTensor.
|
CSRSparseMatrixToSparseTensor.Inputs |
|
CSVDataset |
The CSVDatasetV2 operation
|
CSVDataset |
The ExperimentalCSVDataset operation
|
CSVDataset.Inputs |
|
CSVDataset.Inputs |
|
CtcBeamSearchDecoder<T extends TNumber> |
Performs beam search decoding on the logits given in input.
|
CtcBeamSearchDecoder.Inputs<T extends TNumber> |
|
CtcBeamSearchDecoder.Options |
|
CtcGreedyDecoder<T extends TNumber> |
Performs greedy decoding on the logits given in inputs.
|
CtcGreedyDecoder.Inputs<T extends TNumber> |
|
CtcGreedyDecoder.Options |
|
CtcLoss<T extends TNumber> |
Calculates the CTC Loss (log probability) for each batch entry.
|
CtcLoss.Inputs<T extends TNumber> |
|
CtcLoss.Options |
|
CTCLossV2 |
Calculates the CTC Loss (log probability) for each batch entry.
|
CTCLossV2.Inputs |
|
CTCLossV2.Options |
|
CudnnRNN<T extends TNumber> |
A RNN backed by cuDNN.
|
CudnnRNN.Inputs<T extends TNumber> |
|
CudnnRNN.Options |
|
CudnnRNNBackprop<T extends TNumber> |
Backprop step of CudnnRNNV3.
|
CudnnRNNBackprop.Inputs<T extends TNumber> |
|
CudnnRNNBackprop.Options |
|
CudnnRNNCanonicalToParams<T extends TNumber> |
Converts CudnnRNN params from canonical form to usable form.
|
CudnnRNNCanonicalToParams.Inputs<T extends TNumber> |
|
CudnnRNNCanonicalToParams.Options |
|
CudnnRnnParamsSize<T extends TNumber> |
Computes size of weights that can be used by a Cudnn RNN model.
|
CudnnRnnParamsSize.Inputs |
|
CudnnRnnParamsSize.Options |
|
CudnnRNNParamsToCanonical<T extends TNumber> |
Retrieves CudnnRNN params in canonical form.
|
CudnnRNNParamsToCanonical.Inputs<T extends TNumber> |
|
CudnnRNNParamsToCanonical.Options |
|
Cumprod<T extends TType> |
Compute the cumulative product of the tensor x along axis .
|
Cumprod.Inputs<T extends TType> |
|
Cumprod.Options |
|
Cumsum<T extends TType> |
Compute the cumulative sum of the tensor x along axis .
|
Cumsum.Inputs<T extends TType> |
|
Cumsum.Options |
Optional attributes for Cumsum
|
CumulativeLogsumexp<T extends TNumber> |
Compute the cumulative product of the tensor x along axis .
|
CumulativeLogsumexp.Inputs<T extends TNumber> |
|
CumulativeLogsumexp.Options |
|
CustomGradient<T extends RawOpInputs> |
|
DataExperimentalOps |
An API for building data.experimental operations as Op s
|
DataFormatDimMap<T extends TNumber> |
Returns the dimension index in the destination data format given the one in
the source data format.
|
DataFormatDimMap.Inputs<T extends TNumber> |
|
DataFormatDimMap.Options |
|
DataFormatVecPermute<T extends TNumber> |
Permute input tensor from src_format to dst_format .
|
DataFormatVecPermute.Inputs<T extends TNumber> |
|
DataFormatVecPermute.Options |
|
DataOps |
An API for building data operations as Op s
|
DataServiceDataset |
Creates a dataset that reads data from the tf.data service.
|
DataServiceDataset.Inputs |
|
DataServiceDataset.Options |
|
DatasetCardinality |
Returns the cardinality of input_dataset .
|
DatasetCardinality |
Returns the cardinality of input_dataset .
|
DatasetCardinality.Inputs |
|
DatasetCardinality.Inputs |
|
DatasetCardinality.Options |
|
DatasetFingerprint |
Returns the fingerprint of input_dataset .
|
DatasetFingerprint.Inputs |
|
DatasetFromGraph |
Creates a dataset from the given graph_def .
|
DatasetFromGraph.Inputs |
|
DatasetToGraph |
Returns a serialized GraphDef representing input_dataset .
|
DatasetToGraph.Inputs |
|
DatasetToGraph.Options |
|
DatasetToSingleElement |
Outputs the single element from the given dataset.
|
DatasetToSingleElement.Inputs |
|
DatasetToSingleElement.Options |
|
DatasetToTfRecord |
Writes the given dataset to the given file using the TFRecord format.
|
DatasetToTFRecord |
Writes the given dataset to the given file using the TFRecord format.
|
DatasetToTfRecord.Inputs |
|
DatasetToTFRecord.Inputs |
|
Dawsn<T extends TNumber> |
The Dawsn operation
|
Dawsn.Inputs<T extends TNumber> |
|
DebuggingOps |
An API for building debugging operations as Op s
|
DebugGradientIdentity<T extends TType> |
Identity op for gradient debugging.
|
DebugGradientIdentity.Inputs<T extends TType> |
|
DebugGradientRefIdentity<T extends TType> |
Identity op for gradient debugging.
|
DebugGradientRefIdentity.Inputs<T extends TType> |
|
DebugIdentity<T extends TType> |
Provides an identity mapping of the non-Ref type input tensor for debugging.
|
DebugIdentity.Inputs<T extends TType> |
|
DebugIdentity.Options |
|
DebugNanCount |
Debug NaN Value Counter Op.
|
DebugNanCount.Inputs |
|
DebugNanCount.Options |
|
DebugNumericsSummary<U extends TNumber> |
Debug Numeric Summary V2 Op.
|
DebugNumericsSummary.Inputs |
|
DebugNumericsSummary.Options |
|
DecodeAndCropJpeg |
Decode and Crop a JPEG-encoded image to a uint8 tensor.
|
DecodeAndCropJpeg.Inputs |
|
DecodeAndCropJpeg.Options |
|
DecodeBase64 |
Decode web-safe base64-encoded strings.
|
DecodeBase64.Inputs |
|
DecodeBmp |
Decode the first frame of a BMP-encoded image to a uint8 tensor.
|
DecodeBmp.Inputs |
|
DecodeBmp.Options |
|
DecodeCompressed |
Decompress strings.
|
DecodeCompressed.Inputs |
|
DecodeCompressed.Options |
|
DecodeCsv |
Convert CSV records to tensors.
|
DecodeCsv.Inputs |
|
DecodeCsv.Options |
|
DecodeGif |
Decode the frame(s) of a GIF-encoded image to a uint8 tensor.
|
DecodeGif.Inputs |
|
DecodeImage<T extends TNumber> |
Function for decode_bmp, decode_gif, decode_jpeg, and decode_png.
|
DecodeImage.Inputs |
|
DecodeImage.Options |
|
DecodeJpeg |
Decode a JPEG-encoded image to a uint8 tensor.
|
DecodeJpeg.Inputs |
|
DecodeJpeg.Options |
|
DecodeJsonExample |
Convert JSON-encoded Example records to binary protocol buffer strings.
|
DecodeJsonExample.Inputs |
|
DecodePaddedRaw<T extends TNumber> |
Reinterpret the bytes of a string as a vector of numbers.
|
DecodePaddedRaw.Inputs |
|
DecodePaddedRaw.Options |
|
DecodePng<T extends TNumber> |
Decode a PNG-encoded image to a uint8 or uint16 tensor.
|
DecodePng.Inputs |
|
DecodePng.Options |
|
DecodeProto |
The op extracts fields from a serialized protocol buffers message into tensors.
|
DecodeProto.Inputs |
|
DecodeProto.Options |
|
DecodeRaw<T extends TType> |
Reinterpret the bytes of a string as a vector of numbers.
|
DecodeRaw.Inputs |
|
DecodeRaw.Options |
|
DecodeWav |
Decode a 16-bit PCM WAV file to a float tensor.
|
DecodeWav.Inputs |
|
DecodeWav.Options |
|
DeepCopy<T extends TType> |
Makes a copy of x .
|
DeepCopy.Inputs<T extends TType> |
|
DeleteIterator |
A container for an iterator resource.
|
DeleteIterator.Inputs |
|
DeleteMemoryCache |
The DeleteMemoryCache operation
|
DeleteMemoryCache.Inputs |
|
DeleteMultiDeviceIterator |
A container for an iterator resource.
|
DeleteMultiDeviceIterator.Inputs |
|
DeleteRandomSeedGenerator |
The DeleteRandomSeedGenerator operation
|
DeleteRandomSeedGenerator.Inputs |
|
DeleteSeedGenerator |
The DeleteSeedGenerator operation
|
DeleteSeedGenerator.Inputs |
|
DeleteSessionTensor |
Delete the tensor specified by its handle in the session.
|
DeleteSessionTensor.Inputs |
|
DenseBincount<U extends TNumber> |
Counts the number of occurrences of each value in an integer array.
|
DenseBincount.Inputs<T extends TNumber,U extends TNumber> |
|
DenseBincount.Options |
|
DenseCountSparseOutput<U extends TNumber> |
Performs sparse-output bin counting for a tf.tensor input.
|
DenseCountSparseOutput.Inputs<U extends TNumber> |
|
DenseCountSparseOutput.Options |
|
DenseToCSRSparseMatrix |
Converts a dense tensor to a (possibly batched) CSRSparseMatrix.
|
DenseToCSRSparseMatrix.Inputs |
|
DenseToDenseSetOperation<T extends TType> |
Applies set operation along last dimension of 2 Tensor inputs.
|
DenseToDenseSetOperation.Inputs<T extends TType> |
|
DenseToDenseSetOperation.Options |
|
DenseToSparseBatchDataset |
Creates a dataset that batches input elements into a SparseTensor.
|
DenseToSparseBatchDataset |
Creates a dataset that batches input elements into a SparseTensor.
|
DenseToSparseBatchDataset.Inputs |
|
DenseToSparseBatchDataset.Inputs |
|
DenseToSparseSetOperation<T extends TType> |
Applies set operation along last dimension of Tensor and SparseTensor .
|
DenseToSparseSetOperation.Inputs<T extends TType> |
|
DenseToSparseSetOperation.Options |
|
DepthToSpace<T extends TType> |
DepthToSpace for tensors of type T.
|
DepthToSpace.Inputs<T extends TType> |
|
DepthToSpace.Options |
|
DepthwiseConv2dNative<T extends TNumber> |
Computes a 2-D depthwise convolution given 4-D input and filter tensors.
|
DepthwiseConv2dNative.Inputs<T extends TNumber> |
|
DepthwiseConv2dNative.Options |
|
DepthwiseConv2dNativeBackpropFilter<T extends TNumber> |
Computes the gradients of depthwise convolution with respect to the filter.
|
DepthwiseConv2dNativeBackpropFilter.Inputs<T extends TNumber> |
|
DepthwiseConv2dNativeBackpropFilter.Options |
|
DepthwiseConv2dNativeBackpropInput<T extends TNumber> |
Computes the gradients of depthwise convolution with respect to the input.
|
DepthwiseConv2dNativeBackpropInput.Inputs<T extends TNumber> |
|
DepthwiseConv2dNativeBackpropInput.Options |
|
Dequantize<U extends TNumber> |
Dequantize the 'input' tensor into a float or bfloat16 Tensor.
|
Dequantize.Inputs |
|
Dequantize.Options |
|
DeserializeIterator |
Converts the given variant tensor to an iterator and stores it in the given resource.
|
DeserializeIterator.Inputs |
|
DeserializeManySparse<T extends TType> |
Deserialize and concatenate SparseTensors from a serialized minibatch.
|
DeserializeManySparse.Inputs |
|
DeserializeSparse<U extends TType> |
Deserialize SparseTensor objects.
|
DeserializeSparse.Inputs |
|
DestroyResourceOp |
Deletes the resource specified by the handle.
|
DestroyResourceOp.Inputs |
|
DestroyResourceOp.Options |
|
DestroyTemporaryVariable<T extends TType> |
Destroys the temporary variable and returns its final value.
|
DestroyTemporaryVariable.Inputs<T extends TType> |
|
Det<T extends TType> |
Computes the determinant of one or more square matrices.
|
Det.Inputs<T extends TType> |
|
DeviceIndex |
Return the index of device the op runs.
|
DeviceIndex.Inputs |
|
DeviceSpec |
Represents a (possibly partial) specification for a TensorFlow device.
|
DeviceSpec.Builder |
|
DeviceSpec.DeviceType |
|
Digamma<T extends TNumber> |
Computes Psi, the derivative of Lgamma (the log of the absolute value of
Gamma(x) ), element-wise.
|
Digamma.Inputs<T extends TNumber> |
|
Dilation2d<T extends TNumber> |
Computes the grayscale dilation of 4-D input and 3-D filter tensors.
|
Dilation2d.Inputs<T extends TNumber> |
|
Dilation2dBackpropFilter<T extends TNumber> |
Computes the gradient of morphological 2-D dilation with respect to the filter.
|
Dilation2dBackpropFilter.Inputs<T extends TNumber> |
|
Dilation2dBackpropInput<T extends TNumber> |
Computes the gradient of morphological 2-D dilation with respect to the input.
|
Dilation2dBackpropInput.Inputs<T extends TNumber> |
|
DirectedInterleaveDataset |
A substitute for InterleaveDataset on a fixed list of N datasets.
|
DirectedInterleaveDataset |
A substitute for InterleaveDataset on a fixed list of N datasets.
|
DirectedInterleaveDataset.Inputs |
|
DirectedInterleaveDataset.Inputs |
|
DirectedInterleaveDataset.Options |
|
DisableCopyOnRead |
Turns off the copy-on-read mode.
|
DisableCopyOnRead.Inputs |
|
DistributedSave |
The DistributedSave operation
|
DistributedSave.Inputs |
|
DistributedSave.Options |
|
DistributeOps |
An API for building distribute operations as Op s
|
Div<T extends TType> |
Returns x / y element-wise.
|
Div.Inputs<T extends TType> |
|
DivNoNan<T extends TType> |
Returns 0 if the denominator is zero.
|
DivNoNan.Inputs<T extends TType> |
|
DrawBoundingBoxes<T extends TNumber> |
Draw bounding boxes on a batch of images.
|
DrawBoundingBoxes.Inputs<T extends TNumber> |
|
DTensorRestore |
The DTensorRestoreV2 operation
|
DTensorRestore.Inputs |
|
DtypesOps |
An API for building dtypes operations as Op s
|
DummyIterationCounter |
The DummyIterationCounter operation
|
DummyIterationCounter.Inputs |
|
DummyMemoryCache |
The DummyMemoryCache operation
|
DummyMemoryCache.Inputs |
|
DummySeedGenerator |
The DummySeedGenerator operation
|
DummySeedGenerator.Inputs |
|
DynamicEnqueueTPUEmbeddingArbitraryTensorBatch |
Eases the porting of code that uses tf.nn.embedding_lookup_sparse().
|
DynamicEnqueueTPUEmbeddingArbitraryTensorBatch.Inputs |
|
DynamicEnqueueTPUEmbeddingArbitraryTensorBatch.Options |
|
DynamicEnqueueTPUEmbeddingRaggedTensorBatch |
The DynamicEnqueueTPUEmbeddingRaggedTensorBatch operation
|
DynamicEnqueueTPUEmbeddingRaggedTensorBatch.Inputs |
|
DynamicEnqueueTPUEmbeddingRaggedTensorBatch.Options |
|
DynamicPartition<T extends TType> |
Partitions data into num_partitions tensors using indices from partitions .
|
DynamicPartition.Inputs<T extends TType> |
|
DynamicStitch<T extends TType> |
Interleave the values from the data tensors into a single tensor.
|
DynamicStitch.Inputs<T extends TType> |
|
EagerSession |
An environment for executing TensorFlow operations eagerly.
|
EagerSession.DevicePlacementPolicy |
Controls how to act when we try to run an operation on a given device but some input tensors
are not on that device.
|
EagerSession.Options |
|
EditDistance |
Computes the (possibly normalized) Levenshtein Edit Distance.
|
EditDistance.Inputs<T extends TType> |
|
EditDistance.Options |
|
Eig<U extends TType> |
Computes the eigen decomposition of one or more square matrices.
|
Eig.Inputs |
|
Eig.Options |
Optional attributes for Eig
|
Einsum<T extends TType> |
Tensor contraction according to Einstein summation convention.
|
Einsum.Inputs<T extends TType> |
|
Elu<T extends TNumber> |
Computes the exponential linear function.
|
Elu.Inputs<T extends TNumber> |
|
EluGrad<T extends TNumber> |
Computes gradients for the exponential linear (Elu) operation.
|
EluGrad.Inputs<T extends TNumber> |
|
EmbeddingActivations |
An op enabling differentiation of TPU Embeddings.
|
EmbeddingActivations.Inputs |
|
Empty<T extends TType> |
Creates a tensor with the given shape.
|
Empty.Inputs |
|
Empty.Options |
Optional attributes for Empty
|
EmptyTensorList |
Creates and returns an empty tensor list.
|
EmptyTensorList.Inputs |
|
EmptyTensorMap |
Creates and returns an empty tensor map.
|
EmptyTensorMap.Inputs |
|
EncodeBase64 |
Encode strings into web-safe base64 format.
|
EncodeBase64.Inputs |
|
EncodeBase64.Options |
|
EncodeJpeg |
JPEG-encode an image.
|
EncodeJpeg.Inputs |
|
EncodeJpeg.Options |
|
EncodeJpegVariableQuality |
JPEG encode input image with provided compression quality.
|
EncodeJpegVariableQuality.Inputs |
|
EncodePng |
PNG-encode an image.
|
EncodePng.Inputs |
|
EncodePng.Options |
|
EncodeProto |
The op serializes protobuf messages provided in the input tensors.
|
EncodeProto.Inputs |
|
EncodeProto.Options |
|
EncodeWav |
Encode audio data using the WAV file format.
|
EncodeWav.Inputs |
|
Endpoint |
Annotation used to mark a method of a class annotated with @Operator that should
generate an endpoint into Ops or one of its groups.
|
EnqueueTPUEmbeddingArbitraryTensorBatch |
Eases the porting of code that uses tf.nn.embedding_lookup_sparse().
|
EnqueueTPUEmbeddingArbitraryTensorBatch.Inputs |
|
EnqueueTPUEmbeddingArbitraryTensorBatch.Options |
|
EnqueueTPUEmbeddingBatch |
An op that enqueues a list of input batch tensors to TPUEmbedding.
|
EnqueueTPUEmbeddingBatch.Inputs |
|
EnqueueTPUEmbeddingBatch.Options |
|
EnqueueTPUEmbeddingIntegerBatch |
An op that enqueues a list of input batch tensors to TPUEmbedding.
|
EnqueueTPUEmbeddingIntegerBatch.Inputs |
|
EnqueueTPUEmbeddingIntegerBatch.Options |
|
EnqueueTPUEmbeddingRaggedTensorBatch |
Eases the porting of code that uses tf.nn.embedding_lookup().
|
EnqueueTPUEmbeddingRaggedTensorBatch.Inputs |
|
EnqueueTPUEmbeddingRaggedTensorBatch.Options |
|
EnqueueTPUEmbeddingSparseBatch |
An op that enqueues TPUEmbedding input indices from a SparseTensor.
|
EnqueueTPUEmbeddingSparseBatch.Inputs |
|
EnqueueTPUEmbeddingSparseBatch.Options |
|
EnqueueTPUEmbeddingSparseTensorBatch |
Eases the porting of code that uses tf.nn.embedding_lookup_sparse().
|
EnqueueTPUEmbeddingSparseTensorBatch.Inputs |
|
EnqueueTPUEmbeddingSparseTensorBatch.Options |
|
EnsureShape<T extends TType> |
Ensures that the tensor's shape matches the expected shape.
|
EnsureShape.Inputs<T extends TType> |
|
Enter<T extends TType> |
Creates or finds a child frame, and makes data available to the child frame.
|
Enter.Inputs<T extends TType> |
|
Enter.Options |
Optional attributes for Enter
|
Equal |
Returns the truth value of (x == y) element-wise.
|
Equal.Inputs<T extends TType> |
|
Equal.Options |
Optional attributes for Equal
|
Erf<T extends TNumber> |
|
Erf.Inputs<T extends TNumber> |
|
Erfc<T extends TNumber> |
Computes the complementary error function of x element-wise.
|
Erfc.Inputs<T extends TNumber> |
|
erfinv<T extends TNumber> |
The Erfinv operation
|
erfinv.Inputs<T extends TNumber> |
|
EuclideanNorm<T extends TType> |
Computes the euclidean norm of elements across dimensions of a tensor.
|
EuclideanNorm.Inputs<T extends TType> |
|
EuclideanNorm.Options |
|
Execute |
Op that loads and executes a TPU program on a TPU device.
|
Execute.Inputs |
|
ExecuteAndUpdateVariables |
Op that executes a program with optional in-place variable updates.
|
ExecuteAndUpdateVariables.Inputs |
|
ExecuteTPUEmbeddingPartitioner |
An op that executes the TPUEmbedding partitioner on the central configuration
device and computes the HBM size (in bytes) required for TPUEmbedding operation.
|
ExecuteTPUEmbeddingPartitioner.Inputs |
|
ExecutionEnvironment |
Defines an environment for creating and executing TensorFlow Operation s.
|
ExecutionEnvironment.Types |
|
Exit<T extends TType> |
Exits the current frame to its parent frame.
|
Exit.Inputs<T extends TType> |
|
Exp<T extends TType> |
Computes exponential of x element-wise.
|
Exp.Inputs<T extends TType> |
|
ExpandDims<T extends TType> |
Inserts a dimension of 1 into a tensor's shape.
|
ExpandDims.Inputs<T extends TType> |
|
Expint<T extends TNumber> |
The Expint operation
|
Expint.Inputs<T extends TNumber> |
|
Expm1<T extends TType> |
Computes exp(x) - 1 element-wise.
|
Expm1.Inputs<T extends TType> |
|
ExtractGlimpse |
Extracts a glimpse from the input tensor.
|
ExtractGlimpse.Inputs |
|
ExtractGlimpse.Options |
|
ExtractImagePatches<T extends TType> |
Extract patches from images and put them in the "depth" output dimension.
|
ExtractImagePatches.Inputs<T extends TType> |
|
ExtractJpegShape<T extends TNumber> |
Extract the shape information of a JPEG-encoded image.
|
ExtractJpegShape.Inputs |
|
ExtractVolumePatches<T extends TNumber> |
Extract patches from input and put them in the "depth" output dimension.
|
ExtractVolumePatches.Inputs<T extends TNumber> |
|
Fact |
Output a fact about factorials.
|
Fact.Inputs |
|
FakeParam<T extends TType> |
This op is used as a placeholder in If branch functions.
|
FakeParam.Inputs |
|
FakeQuantWithMinMaxArgs |
Fake-quantize the 'inputs' tensor, type float to 'outputs' tensor of same shape and type.
|
FakeQuantWithMinMaxArgs.Inputs |
|
FakeQuantWithMinMaxArgs.Options |
|
FakeQuantWithMinMaxArgsGradient |
Compute gradients for a FakeQuantWithMinMaxArgs operation.
|
FakeQuantWithMinMaxArgsGradient.Inputs |
|
FakeQuantWithMinMaxArgsGradient.Options |
|
FakeQuantWithMinMaxVars |
Fake-quantize the 'inputs' tensor of type float via global float scalars
Fake-quantize the inputs tensor of type float via global float scalars
min and max to outputs tensor of same shape as inputs .
|
FakeQuantWithMinMaxVars.Inputs |
|
FakeQuantWithMinMaxVars.Options |
|
FakeQuantWithMinMaxVarsGradient |
Compute gradients for a FakeQuantWithMinMaxVars operation.
|
FakeQuantWithMinMaxVarsGradient.Inputs |
|
FakeQuantWithMinMaxVarsGradient.Options |
|
FakeQuantWithMinMaxVarsPerChannel |
Fake-quantize the 'inputs' tensor of type float via per-channel floats
Fake-quantize the inputs tensor of type float per-channel and one of the
shapes: [d] , [b, d] [b, h, w, d] via per-channel floats min and max
of shape [d] to outputs tensor of same shape as inputs .
|
FakeQuantWithMinMaxVarsPerChannel.Inputs |
|
FakeQuantWithMinMaxVarsPerChannel.Options |
|
FakeQuantWithMinMaxVarsPerChannelGradient |
Compute gradients for a FakeQuantWithMinMaxVarsPerChannel operation.
|
FakeQuantWithMinMaxVarsPerChannelGradient.Inputs |
|
FakeQuantWithMinMaxVarsPerChannelGradient.Options |
|
FakeQueue |
Deprecated.
|
FakeQueue.Inputs |
|
Fft<T extends TType> |
Fast Fourier transform.
|
Fft.Inputs<T extends TType> |
|
Fft2d<T extends TType> |
2D fast Fourier transform.
|
Fft2d.Inputs<T extends TType> |
|
Fft3d<T extends TType> |
3D fast Fourier transform.
|
Fft3d.Inputs<T extends TType> |
|
FftNd<T extends TType> |
ND fast Fourier transform.
|
FftNd.Inputs<T extends TType> |
|
FifoQueue |
A queue that produces elements in first-in first-out order.
|
FifoQueue.Inputs |
|
FifoQueue.Options |
|
FileSystemSetConfiguration |
Set configuration of the file system.
|
FileSystemSetConfiguration.Inputs |
|
Fill<U extends TType> |
Creates a tensor filled with a scalar value.
|
Fill.Inputs<U extends TType> |
|
FilterByLastComponentDataset |
Creates a dataset containing elements of first component of input_dataset having true in the last component.
|
FilterByLastComponentDataset.Inputs |
|
FilterDataset |
Creates a dataset containing elements of input_dataset matching predicate .
|
FilterDataset.Inputs |
|
FilterDataset.Options |
|
FinalizeDataset |
Creates a dataset by applying tf.data.Options to input_dataset .
|
FinalizeDataset.Inputs |
|
FinalizeDataset.Options |
|
FinalizeTPUEmbedding |
An op that finalizes the TPUEmbedding configuration.
|
FinalizeTPUEmbedding.Inputs |
|
Fingerprint |
Generates fingerprint values.
|
Fingerprint.Inputs |
|
FixedLengthRecordDataset |
The FixedLengthRecordDatasetV2 operation
|
FixedLengthRecordDataset.Inputs |
|
FixedLengthRecordDataset.Options |
|
FixedLengthRecordReader |
A Reader that outputs fixed-length records from a file.
|
FixedLengthRecordReader.Inputs |
|
FixedLengthRecordReader.Options |
|
FixedUnigramCandidateSampler |
Generates labels for candidate sampling with a learned unigram distribution.
|
FixedUnigramCandidateSampler.Inputs |
|
FixedUnigramCandidateSampler.Options |
|
FlatMapDataset |
Creates a dataset that applies f to the outputs of input_dataset .
|
FlatMapDataset.Inputs |
|
FlatMapDataset.Options |
|
Floor<T extends TNumber> |
Returns element-wise largest integer not greater than x.
|
Floor.Inputs<T extends TNumber> |
|
FloorDiv<T extends TType> |
Returns x // y element-wise.
|
FloorDiv.Inputs<T extends TType> |
|
FloorMod<T extends TNumber> |
Returns element-wise remainder of division.
|
FloorMod.Inputs<T extends TNumber> |
|
FlushSummaryWriter |
The FlushSummaryWriter operation
|
FlushSummaryWriter.Inputs |
|
For |
Applies a for loop.
|
For.Inputs |
|
FractionalAvgPool<T extends TNumber> |
Performs fractional average pooling on the input.
|
FractionalAvgPool.Inputs<T extends TNumber> |
|
FractionalAvgPool.Options |
|
FractionalAvgPoolGrad<T extends TNumber> |
Computes gradient of the FractionalAvgPool function.
|
FractionalAvgPoolGrad.Inputs<T extends TNumber> |
|
FractionalAvgPoolGrad.Options |
|
FractionalMaxPool<T extends TNumber> |
Performs fractional max pooling on the input.
|
FractionalMaxPool.Inputs<T extends TNumber> |
|
FractionalMaxPool.Options |
|
FractionalMaxPoolGrad<T extends TNumber> |
Computes gradient of the FractionalMaxPool function.
|
FractionalMaxPoolGrad.Inputs<T extends TNumber> |
|
FractionalMaxPoolGrad.Options |
|
FresnelCos<T extends TNumber> |
The FresnelCos operation
|
FresnelCos.Inputs<T extends TNumber> |
|
FresnelSin<T extends TNumber> |
The FresnelSin operation
|
FresnelSin.Inputs<T extends TNumber> |
|
Function |
|
FusedBatchNorm<T extends TNumber,U extends TNumber> |
Batch normalization.
|
FusedBatchNorm.Inputs<T extends TNumber,U extends TNumber> |
|
FusedBatchNorm.Options |
|
FusedBatchNormGrad<T extends TNumber,U extends TNumber> |
Gradient for batch normalization.
|
FusedBatchNormGrad.Inputs<T extends TNumber,U extends TNumber> |
|
FusedBatchNormGrad.Options |
|
FusedPadConv2d<T extends TNumber> |
Performs a padding as a preprocess during a convolution.
|
FusedPadConv2d.Inputs<T extends TNumber> |
|
FusedResizeAndPadConv2d<T extends TNumber> |
Performs a resize and padding as a preprocess during a convolution.
|
FusedResizeAndPadConv2d.Inputs<T extends TNumber> |
|
FusedResizeAndPadConv2d.Options |
|
Gather<T extends TType> |
Gather slices from params axis axis according to indices .
|
Gather.Inputs<T extends TType> |
|
Gather.Options |
Optional attributes for Gather
|
GatherNd<T extends TType> |
Gather slices from params into a Tensor with shape specified by indices .
|
GatherNd.Inputs<T extends TType> |
|
GenerateBoundingBoxProposals |
This op produces Region of Interests from given bounding boxes(bbox_deltas) encoded wrt anchors according to eq.2 in arXiv:1506.01497
|
GenerateBoundingBoxProposals.Inputs |
|
GenerateBoundingBoxProposals.Options |
|
GenerateVocabRemapping |
Given a path to new and old vocabulary files, returns a remapping Tensor of
length num_new_vocab , where remapping[i] contains the row number in the old
vocabulary that corresponds to row i in the new vocabulary (starting at line
new_vocab_offset and up to num_new_vocab entities), or -1 if entry i
in the new vocabulary is not in the old vocabulary.
|
GenerateVocabRemapping.Inputs |
|
GenerateVocabRemapping.Options |
|
GeneratorDataset |
Creates a dataset that invokes a function to generate elements.
|
GeneratorDataset.Inputs |
|
GeneratorDataset.Options |
|
GetElementAtIndex |
Gets the element at the specified index in a dataset.
|
GetElementAtIndex.Inputs |
|
GetMinibatchesInCsrWithPhysicalReplica |
The GetMinibatchesInCsrWithPhysicalReplica operation
|
GetMinibatchesInCsrWithPhysicalReplica.Inputs |
|
GetMinibatchSplitsWithPhysicalReplica |
The GetMinibatchSplitsWithPhysicalReplica operation
|
GetMinibatchSplitsWithPhysicalReplica.Inputs |
|
GetOptions |
Returns the tf.data.Options attached to input_dataset .
|
GetOptions.Inputs |
|
GetSessionHandle |
Store the input tensor in the state of the current session.
|
GetSessionHandle.Inputs |
|
GetSessionTensor<T extends TType> |
Get the value of the tensor specified by its handle.
|
GetSessionTensor.Inputs |
|
GlobalIterId |
The GlobalIterId operation
|
GlobalIterId.Inputs |
|
Gradients |
Adds operations to compute the partial derivatives of sum of y s w.r.t x s, i.e.,
d(y_1 + y_2 + ...)/dx_1, d(y_1 + y_2 + ...)/dx_2...
|
Gradients.Options |
|
Graph |
A data flow graph representing a TensorFlow computation.
|
Graph.WhileSubgraphBuilder |
Used to instantiate an abstract class which overrides the buildSubgraph method to build a
conditional or body subgraph for a while loop.
|
GraphOperation |
|
GraphOperationBuilder |
|
Greater |
Returns the truth value of (x > y) element-wise.
|
Greater.Inputs<T extends TNumber> |
|
GreaterEqual |
Returns the truth value of (x >= y) element-wise.
|
GreaterEqual.Inputs<T extends TNumber> |
|
GroupByReducerDataset |
Creates a dataset that computes a group-by on input_dataset .
|
GroupByReducerDataset |
Creates a dataset that computes a group-by on input_dataset .
|
GroupByReducerDataset.Inputs |
|
GroupByReducerDataset.Inputs |
|
GroupByWindowDataset |
Creates a dataset that computes a windowed group-by on input_dataset .
|
GroupByWindowDataset |
Creates a dataset that computes a windowed group-by on input_dataset .
|
GroupByWindowDataset.Inputs |
|
GroupByWindowDataset.Inputs |
|
GroupByWindowDataset.Options |
|
GRUBlockCell<T extends TNumber> |
Computes the GRU cell forward propagation for 1 time step.
|
GRUBlockCell.Inputs<T extends TNumber> |
|
GRUBlockCellGrad<T extends TNumber> |
Computes the GRU cell back-propagation for 1 time step.
|
GRUBlockCellGrad.Inputs<T extends TNumber> |
|
GuaranteeConst<T extends TType> |
Gives a guarantee to the TF runtime that the input tensor is a constant.
|
GuaranteeConst.Inputs<T extends TType> |
|
HashTable |
Creates a non-initialized hash table.
|
HashTable.Inputs |
|
HashTable.Options |
|
Helpers |
Container class for core methods which add or perform several operations and return one of them.
|
HistogramFixedWidth<U extends TNumber> |
Return histogram of values.
|
HistogramFixedWidth.Inputs<T extends TNumber> |
|
HistogramSummary |
Outputs a Summary protocol buffer with a histogram.
|
HistogramSummary.Inputs |
|
HostConst<T extends TType> |
Returns a constant tensor on the host.
|
HostConst.Inputs |
|
HsvToRgb<T extends TNumber> |
Convert one or more images from HSV to RGB.
|
HsvToRgb.Inputs<T extends TNumber> |
|
Identity<T extends TType> |
Return a tensor with the same shape and contents as the input tensor or value.
|
Identity.Inputs<T extends TType> |
|
IdentityN |
Returns a list of tensors with the same shapes and contents as the input
tensors.
|
IdentityN.Inputs |
|
IdentityReader |
A Reader that outputs the queued work as both the key and value.
|
IdentityReader.Inputs |
|
IdentityReader.Options |
|
If |
output = cond ? then_branch(input) : else_branch(input)
|
If.Options |
Optional attributes for If
|
Ifft<T extends TType> |
Inverse fast Fourier transform.
|
Ifft.Inputs<T extends TType> |
|
Ifft2d<T extends TType> |
Inverse 2D fast Fourier transform.
|
Ifft2d.Inputs<T extends TType> |
|
Ifft3d<T extends TType> |
Inverse 3D fast Fourier transform.
|
Ifft3d.Inputs<T extends TType> |
|
IfftNd<T extends TType> |
ND inverse fast Fourier transform.
|
IfftNd.Inputs<T extends TType> |
|
Igamma<T extends TNumber> |
Compute the lower regularized incomplete Gamma function P(a, x) .
|
Igamma.Inputs<T extends TNumber> |
|
Igammac<T extends TNumber> |
Compute the upper regularized incomplete Gamma function Q(a, x) .
|
Igammac.Inputs<T extends TNumber> |
|
IgammaGradA<T extends TNumber> |
Computes the gradient of igamma(a, x) wrt a .
|
IgammaGradA.Inputs<T extends TNumber> |
|
IgnoreErrorsDataset |
Creates a dataset that contains the elements of input_dataset ignoring errors.
|
IgnoreErrorsDataset |
Creates a dataset that contains the elements of input_dataset ignoring errors.
|
IgnoreErrorsDataset.Inputs |
|
IgnoreErrorsDataset.Inputs |
|
IgnoreErrorsDataset.Options |
|
IgnoreErrorsDataset.Options |
|
Imag<U extends TNumber> |
Returns the imaginary part of a complex number.
|
Imag.Inputs |
|
ImageOps |
An API for building image operations as Op s
|
ImageProjectiveTransformV2<T extends TNumber> |
Applies the given transform to each of the images.
|
ImageProjectiveTransformV2.Inputs<T extends TNumber> |
|
ImageProjectiveTransformV2.Options |
|
ImageProjectiveTransformV3<T extends TNumber> |
Applies the given transform to each of the images.
|
ImageProjectiveTransformV3.Inputs<T extends TNumber> |
|
ImageProjectiveTransformV3.Options |
|
ImageSummary |
Outputs a Summary protocol buffer with images.
|
ImageSummary.Inputs |
|
ImageSummary.Options |
|
ImmutableConst<T extends TType> |
Returns immutable tensor from memory region.
|
ImmutableConst.Inputs |
|
ImportEvent |
The ImportEvent operation
|
ImportEvent.Inputs |
|
InfeedDequeue<T extends TType> |
A placeholder op for a value that will be fed into the computation.
|
InfeedDequeue.Inputs |
|
InfeedDequeueTuple |
Fetches multiple values from infeed as an XLA tuple.
|
InfeedDequeueTuple.Inputs |
|
InfeedEnqueue |
An op which feeds a single Tensor value into the computation.
|
InfeedEnqueue.Inputs |
|
InfeedEnqueue.Options |
|
InfeedEnqueuePrelinearizedBuffer |
An op which enqueues prelinearized buffer into TPU infeed.
|
InfeedEnqueuePrelinearizedBuffer.Inputs |
|
InfeedEnqueuePrelinearizedBuffer.Options |
|
InfeedEnqueueTuple |
Feeds multiple Tensor values into the computation as an XLA tuple.
|
InfeedEnqueueTuple.Inputs |
|
InfeedEnqueueTuple.Options |
|
InitializeTable |
Table initializer that takes two tensors for keys and values respectively.
|
InitializeTable.Inputs |
|
InitializeTableFromDataset |
The InitializeTableFromDataset operation
|
InitializeTableFromDataset.Inputs |
|
InitializeTableFromTextFile |
Initializes a table from a text file.
|
InitializeTableFromTextFile.Inputs |
|
InitializeTableFromTextFile.Options |
|
InplaceAdd<T extends TType> |
Adds v into specified rows of x.
|
InplaceAdd.Inputs<T extends TType> |
|
InplaceSub<T extends TType> |
Subtracts `v` into specified rows of `x`.
|
InplaceSub.Inputs<T extends TType> |
|
InplaceUpdate<T extends TType> |
Updates specified rows 'i' with values 'v'.
|
InplaceUpdate.Inputs<T extends TType> |
|
InterleaveDataset |
Creates a dataset that applies f to the outputs of input_dataset .
|
InterleaveDataset.Inputs |
|
InterleaveDataset.Options |
|
InTopK |
Says whether the targets are in the top K predictions.
|
InTopK.Inputs<T extends TNumber> |
|
Inv<T extends TType> |
Computes the inverse of one or more square invertible matrices or their adjoints (conjugate transposes).
|
Inv.Inputs<T extends TType> |
|
Inv.Options |
Optional attributes for Inv
|
Invert<T extends TNumber> |
Invert (flip) each bit of supported types; for example, type uint8 value 01010101 becomes 10101010.
|
Invert.Inputs<T extends TNumber> |
|
InvertPermutation<T extends TNumber> |
Computes the inverse permutation of a tensor.
|
InvertPermutation.Inputs<T extends TNumber> |
|
InvGrad<T extends TType> |
Computes the gradient for the inverse of x wrt its input.
|
InvGrad.Inputs<T extends TType> |
|
IoOps |
An API for building io operations as Op s
|
Irfft<U extends TNumber> |
Inverse real-valued fast Fourier transform.
|
Irfft.Inputs |
|
Irfft2d<U extends TNumber> |
Inverse 2D real-valued fast Fourier transform.
|
Irfft2d.Inputs |
|
Irfft3d<U extends TNumber> |
Inverse 3D real-valued fast Fourier transform.
|
Irfft3d.Inputs |
|
IrfftNd<U extends TNumber> |
ND inverse real fast Fourier transform.
|
IrfftNd.Inputs |
|
IsFinite |
Returns which elements of x are finite.
|
IsFinite.Inputs |
|
IsInf |
Returns which elements of x are Inf.
|
IsInf.Inputs |
|
IsNan |
Returns which elements of x are NaN.
|
IsNan.Inputs |
|
IsotonicRegression<U extends TNumber> |
Solves a batch of isotonic regression problems.
|
IsotonicRegression.Inputs |
|
IsTPUEmbeddingInitialized |
Whether TPU Embedding is initialized in a distributed TPU system.
|
IsTPUEmbeddingInitialized.Inputs |
|
IsTPUEmbeddingInitialized.Options |
|
IsVariableInitialized |
Checks whether a tensor has been initialized.
|
IsVariableInitialized.Inputs |
|
Iterator |
The IteratorV2 operation
|
Iterator.Inputs |
|
IteratorFromStringHandle |
The IteratorFromStringHandleV2 operation
|
IteratorFromStringHandle.Inputs |
|
IteratorFromStringHandle.Options |
|
IteratorGetDevice |
Returns the name of the device on which resource has been placed.
|
IteratorGetDevice |
Returns the name of the device on which resource has been placed.
|
IteratorGetDevice.Inputs |
|
IteratorGetDevice.Inputs |
|
IteratorGetNext |
Gets the next output from the given iterator .
|
IteratorGetNext.Inputs |
|
IteratorGetNextAsOptional |
Gets the next output from the given iterator as an Optional variant.
|
IteratorGetNextAsOptional.Inputs |
|
IteratorGetNextSync |
Gets the next output from the given iterator.
|
IteratorGetNextSync.Inputs |
|
IteratorToStringHandle |
Converts the given resource_handle representing an iterator to a string.
|
IteratorToStringHandle.Inputs |
|
Join |
Joins the strings in the given list of string tensors into one tensor;
with the given separator (default is an empty separator).
|
Join.Inputs |
|
Join.Options |
Optional attributes for Join
|
KMC2ChainInitialization |
Returns the index of a data point that should be added to the seed set.
|
KMC2ChainInitialization.Inputs |
|
KmeansPlusPlusInitialization |
Selects num_to_sample rows of input using the KMeans++ criterion.
|
KmeansPlusPlusInitialization.Inputs |
|
KthOrderStatistic |
Computes the Kth order statistic of a data set.
|
KthOrderStatistic.Inputs |
|
L2Loss<T extends TNumber> |
L2 Loss.
|
L2Loss.Inputs<T extends TNumber> |
|
LatencyStatsDataset |
Records the latency of producing input_dataset elements in a StatsAggregator.
|
LatencyStatsDataset |
Records the latency of producing input_dataset elements in a StatsAggregator.
|
LatencyStatsDataset.Inputs |
|
LatencyStatsDataset.Inputs |
|
LeakyRelu<T extends TNumber> |
Computes rectified linear: max(features, features * alpha) .
|
LeakyRelu.Inputs<T extends TNumber> |
|
LeakyRelu.Options |
|
LeakyReluGrad<T extends TNumber> |
Computes rectified linear gradients for a LeakyRelu operation.
|
LeakyReluGrad.Inputs<T extends TNumber> |
|
LeakyReluGrad.Options |
|
LearnedUnigramCandidateSampler |
Generates labels for candidate sampling with a learned unigram distribution.
|
LearnedUnigramCandidateSampler.Inputs |
|
LearnedUnigramCandidateSampler.Options |
|
LeftShift<T extends TNumber> |
Elementwise computes the bitwise left-shift of x and y .
|
LeftShift.Inputs<T extends TNumber> |
|
LegacyParallelInterleaveDataset |
Creates a dataset that applies f to the outputs of input_dataset .
|
LegacyParallelInterleaveDataset.Inputs |
|
LegacyParallelInterleaveDataset.Options |
|
Less |
Returns the truth value of (x < y) element-wise.
|
Less.Inputs<T extends TNumber> |
|
LessEqual |
Returns the truth value of (x <= y) element-wise.
|
LessEqual.Inputs<T extends TNumber> |
|
Lgamma<T extends TNumber> |
Computes the log of the absolute value of Gamma(x) element-wise.
|
Lgamma.Inputs<T extends TNumber> |
|
LinalgOps |
An API for building linalg operations as Op s
|
LinalgSparseOps |
An API for building linalg.sparse operations as Op s
|
LinSpace<T extends TNumber> |
Generates values in an interval.
|
LinSpace.Inputs<T extends TNumber> |
|
ListDataset |
Creates a dataset that emits each of tensors once.
|
ListDataset.Inputs |
|
ListDataset.Options |
|
ListSnapshotChunksDataset |
The ListSnapshotChunksDataset operation
|
ListSnapshotChunksDataset.Inputs |
|
LmdbDataset |
The ExperimentalLMDBDataset operation
|
LMDBDataset |
Creates a dataset that emits the key-value pairs in one or more LMDB files.
|
LmdbDataset.Inputs |
|
LMDBDataset.Inputs |
|
LmdbReader |
A Reader that outputs the records from a LMDB file.
|
LmdbReader.Inputs |
|
LmdbReader.Options |
|
LoadAllTPUEmbeddingParameters |
An op that loads optimization parameters into embedding memory.
|
LoadAllTPUEmbeddingParameters.Inputs |
|
LoadAndRemapMatrix |
Loads a 2-D (matrix) Tensor with name old_tensor_name from the checkpoint
at ckpt_path and potentially reorders its rows and columns using the
specified remappings.
|
LoadAndRemapMatrix.Inputs |
|
LoadAndRemapMatrix.Options |
|
LoadDataset |
The LoadDataset operation
|
LoadDataset.Inputs |
|
LoadDataset.Options |
|
LoadTPUEmbeddingAdadeltaParameters |
Load Adadelta embedding parameters.
|
LoadTPUEmbeddingAdadeltaParameters.Inputs |
|
LoadTPUEmbeddingAdadeltaParameters.Options |
|
LoadTPUEmbeddingAdagradMomentumParameters |
Load Adagrad Momentum embedding parameters.
|
LoadTPUEmbeddingAdagradMomentumParameters.Inputs |
|
LoadTPUEmbeddingAdagradMomentumParameters.Options |
|
LoadTPUEmbeddingAdagradParameters |
Load Adagrad embedding parameters.
|
LoadTPUEmbeddingAdagradParameters.Inputs |
|
LoadTPUEmbeddingAdagradParameters.Options |
|
LoadTPUEmbeddingADAMParameters |
Load ADAM embedding parameters.
|
LoadTPUEmbeddingADAMParameters.Inputs |
|
LoadTPUEmbeddingADAMParameters.Options |
|
LoadTPUEmbeddingCenteredRMSPropParameters |
Load centered RMSProp embedding parameters.
|
LoadTPUEmbeddingCenteredRMSPropParameters.Inputs |
|
LoadTPUEmbeddingCenteredRMSPropParameters.Options |
|
LoadTPUEmbeddingFrequencyEstimatorParameters |
Load frequency estimator embedding parameters.
|
LoadTPUEmbeddingFrequencyEstimatorParameters.Inputs |
|
LoadTPUEmbeddingFrequencyEstimatorParameters.Options |
|
LoadTPUEmbeddingFTRLParameters |
Load FTRL embedding parameters.
|
LoadTPUEmbeddingFTRLParameters.Inputs |
|
LoadTPUEmbeddingFTRLParameters.Options |
|
LoadTPUEmbeddingMDLAdagradLightParameters |
Load MDL Adagrad Light embedding parameters.
|
LoadTPUEmbeddingMDLAdagradLightParameters.Inputs |
|
LoadTPUEmbeddingMDLAdagradLightParameters.Options |
|
LoadTPUEmbeddingMomentumParameters |
Load Momentum embedding parameters.
|
LoadTPUEmbeddingMomentumParameters.Inputs |
|
LoadTPUEmbeddingMomentumParameters.Options |
|
LoadTPUEmbeddingProximalAdagradParameters |
Load proximal Adagrad embedding parameters.
|
LoadTPUEmbeddingProximalAdagradParameters.Inputs |
|
LoadTPUEmbeddingProximalAdagradParameters.Options |
|
LoadTPUEmbeddingProximalYogiParameters |
The LoadTPUEmbeddingProximalYogiParameters operation
|
LoadTPUEmbeddingProximalYogiParameters.Inputs |
|
LoadTPUEmbeddingProximalYogiParameters.Options |
|
LoadTPUEmbeddingRMSPropParameters |
Load RMSProp embedding parameters.
|
LoadTPUEmbeddingRMSPropParameters.Inputs |
|
LoadTPUEmbeddingRMSPropParameters.Options |
|
LoadTPUEmbeddingStochasticGradientDescentParameters |
Load SGD embedding parameters.
|
LoadTPUEmbeddingStochasticGradientDescentParameters.Inputs |
|
LoadTPUEmbeddingStochasticGradientDescentParameters.Options |
|
LocalResponseNormalization<T extends TNumber> |
Local Response Normalization.
|
LocalResponseNormalization.Inputs<T extends TNumber> |
|
LocalResponseNormalization.Options |
|
LocalResponseNormalizationGrad<T extends TNumber> |
Gradients for Local Response Normalization.
|
LocalResponseNormalizationGrad.Inputs<T extends TNumber> |
|
LocalResponseNormalizationGrad.Options |
|
Log<T extends TType> |
Computes natural logarithm of x element-wise.
|
Log.Inputs<T extends TType> |
|
Log1p<T extends TType> |
Computes natural logarithm of (1 + x) element-wise.
|
Log1p.Inputs<T extends TType> |
|
LogicalAnd |
Returns the truth value of x AND y element-wise.
|
LogicalAnd.Inputs |
|
LogicalNot |
Returns the truth value of NOT x element-wise.
|
LogicalNot.Inputs |
|
LogicalOr |
Returns the truth value of x OR y element-wise.
|
LogicalOr.Inputs |
|
LogMatrixDeterminant<T extends TType> |
Computes the sign and the log of the absolute value of the determinant of
one or more square matrices.
|
LogMatrixDeterminant.Inputs<T extends TType> |
|
LogSoftmax<T extends TNumber> |
Computes log softmax activations.
|
LogSoftmax.Inputs<T extends TNumber> |
|
LogUniformCandidateSampler |
Generates labels for candidate sampling with a log-uniform distribution.
|
LogUniformCandidateSampler.Inputs |
|
LogUniformCandidateSampler.Options |
|
LookupTableExport<T extends TType,U extends TType> |
Outputs all keys and values in the table.
|
LookupTableExport.Inputs |
|
LookupTableFind<U extends TType> |
Looks up keys in a table, outputs the corresponding values.
|
LookupTableFind.Inputs<U extends TType> |
|
LookupTableImport |
Replaces the contents of the table with the specified keys and values.
|
LookupTableImport.Inputs |
|
LookupTableInsert |
Updates the table to associates keys with values.
|
LookupTableInsert.Inputs |
|
LookupTableRemove |
Removes keys and its associated values from a table.
|
LookupTableRemove.Inputs |
|
LookupTableSize |
Computes the number of elements in the given table.
|
LookupTableSize.Inputs |
|
LoopCond |
Forwards the input to the output.
|
LoopCond.Inputs |
|
Lower |
Converts all uppercase characters into their respective lowercase replacements.
|
Lower.Inputs |
|
Lower.Options |
Optional attributes for Lower
|
LowerBound<U extends TNumber> |
Applies lower_bound(sorted_search_values, values) along each row.
|
LowerBound.Inputs<T extends TType> |
|
LSTMBlockCell<T extends TNumber> |
Computes the LSTM cell forward propagation for 1 time step.
|
LSTMBlockCell.Inputs<T extends TNumber> |
|
LSTMBlockCell.Options |
|
LSTMBlockCellGrad<T extends TNumber> |
Computes the LSTM cell backward propagation for 1 timestep.
|
LSTMBlockCellGrad.Inputs<T extends TNumber> |
|
Lu<T extends TType,U extends TNumber> |
Computes the LU decomposition of one or more square matrices.
|
Lu.Inputs<T extends TType> |
|
MakeIterator |
Makes a new iterator from the given dataset and stores it in iterator .
|
MakeIterator.Inputs |
|
MakeUnique |
Make all elements in the non-Batch dimension unique, but "close" to
their initial value.
|
MakeUnique.Inputs |
|
MapAndBatchDataset |
Creates a dataset that fuses mapping with batching.
|
MapAndBatchDataset |
Creates a dataset that fuses mapping with batching.
|
MapAndBatchDataset.Inputs |
|
MapAndBatchDataset.Inputs |
|
MapAndBatchDataset.Options |
|
MapAndBatchDataset.Options |
|
MapClear |
Op removes all elements in the underlying container.
|
MapClear.Inputs |
|
MapClear.Options |
|
MapDataset |
Creates a dataset that applies f to the outputs of input_dataset .
|
MapDataset |
Creates a dataset that applies f to the outputs of input_dataset .
|
MapDataset.Inputs |
|
MapDataset.Inputs |
|
MapDataset.Options |
|
MapDataset.Options |
|
MapDefun |
Maps a function on the list of tensors unpacked from arguments on dimension 0.
|
MapDefun.Inputs |
|
MapDefun.Options |
|
MapIncompleteSize |
Op returns the number of incomplete elements in the underlying container.
|
MapIncompleteSize.Inputs |
|
MapIncompleteSize.Options |
|
MapPeek |
Op peeks at the values at the specified key.
|
MapPeek.Inputs |
|
MapPeek.Options |
|
MapSize |
Op returns the number of elements in the underlying container.
|
MapSize.Inputs |
|
MapSize.Options |
|
MapStage |
Stage (key, values) in the underlying container which behaves like a hashtable.
|
MapStage.Inputs |
|
MapStage.Options |
|
MapUnstage |
Op removes and returns the values associated with the key
from the underlying container.
|
MapUnstage.Inputs |
|
MapUnstage.Options |
|
MapUnstageNoKey |
Op removes and returns a random (key, value)
from the underlying container.
|
MapUnstageNoKey.Inputs |
|
MapUnstageNoKey.Options |
|
MatchingFiles |
Returns the set of files matching one or more glob patterns.
|
MatchingFiles.Inputs |
|
MatchingFilesDataset |
The ExperimentalMatchingFilesDataset operation
|
MatchingFilesDataset |
The MatchingFilesDataset operation
|
MatchingFilesDataset.Inputs |
|
MatchingFilesDataset.Inputs |
|
MathOps |
An API for building math operations as Op s
|
MathSpecialOps |
An API for building math.special operations as Op s
|
MatMul<T extends TType> |
Multiply the matrix "a" by the matrix "b".
|
MatMul.Inputs<T extends TType> |
|
MatMul.Options |
Optional attributes for MatMul
|
MatrixDiag<T extends TType> |
Returns a batched diagonal tensor with given batched diagonal values.
|
MatrixDiag.Inputs<T extends TType> |
|
MatrixDiagPart<T extends TType> |
Returns the batched diagonal part of a batched tensor.
|
MatrixDiagPart.Inputs<T extends TType> |
|
MatrixDiagPartV3<T extends TType> |
Returns the batched diagonal part of a batched tensor.
|
MatrixDiagPartV3.Inputs<T extends TType> |
|
MatrixDiagPartV3.Options |
|
MatrixDiagV3<T extends TType> |
Returns a batched diagonal tensor with given batched diagonal values.
|
MatrixDiagV3.Inputs<T extends TType> |
|
MatrixDiagV3.Options |
|
MatrixExponential<T extends TType> |
Deprecated, use python implementation tf.linalg.matrix_exponential.
|
MatrixExponential.Inputs<T extends TType> |
|
MatrixLogarithm<T extends TType> |
Computes the matrix logarithm of one or more square matrices:
\(log(exp(A)) = A\)
|
MatrixLogarithm.Inputs<T extends TType> |
|
MatrixSetDiag<T extends TType> |
Returns a batched matrix tensor with new batched diagonal values.
|
MatrixSetDiag.Inputs<T extends TType> |
|
MatrixSetDiag.Options |
|
MatrixSolveLs<T extends TType> |
Solves one or more linear least-squares problems.
|
MatrixSolveLs.Inputs<T extends TType> |
|
MatrixSolveLs.Options |
|
Max<T extends TNumber> |
Computes the maximum of elements across dimensions of a tensor.
|
Max.Inputs<T extends TNumber> |
|
Max.Options |
Optional attributes for Max
|
Maximum<T extends TNumber> |
Returns the max of x and y (i.e.
|
Maximum.Inputs<T extends TNumber> |
|
MaxIntraOpParallelismDataset |
Creates a dataset that overrides the maximum intra-op parallelism.
|
MaxIntraOpParallelismDataset |
Creates a dataset that overrides the maximum intra-op parallelism.
|
MaxIntraOpParallelismDataset.Inputs |
|
MaxIntraOpParallelismDataset.Inputs |
|
MaxPool<T extends TNumber> |
Performs max pooling on the input.
|
MaxPool.Inputs<T extends TNumber> |
|
MaxPool.Options |
|
MaxPool3d<T extends TNumber> |
Performs 3D max pooling on the input.
|
MaxPool3d.Inputs<T extends TNumber> |
|
MaxPool3d.Options |
|
MaxPool3dGrad<U extends TNumber> |
Computes gradients of 3D max pooling function.
|
MaxPool3dGrad.Inputs<T extends TNumber,U extends TNumber> |
|
MaxPool3dGrad.Options |
|
MaxPool3dGradGrad<T extends TNumber> |
Computes second-order gradients of the maxpooling function.
|
MaxPool3dGradGrad.Inputs<T extends TNumber> |
|
MaxPool3dGradGrad.Options |
|
MaxPoolGrad<T extends TNumber> |
Computes gradients of the maxpooling function.
|
MaxPoolGrad.Inputs<T extends TNumber> |
|
MaxPoolGrad.Options |
|
MaxPoolGradGrad<T extends TNumber> |
Computes second-order gradients of the maxpooling function.
|
MaxPoolGradGrad.Inputs<T extends TNumber> |
|
MaxPoolGradGrad.Options |
|
MaxPoolGradGradWithArgmax<T extends TNumber> |
Computes second-order gradients of the maxpooling function.
|
MaxPoolGradGradWithArgmax.Inputs<T extends TNumber> |
|
MaxPoolGradGradWithArgmax.Options |
|
MaxPoolGradWithArgmax<T extends TNumber> |
Computes gradients of the maxpooling function.
|
MaxPoolGradWithArgmax.Inputs<T extends TNumber> |
|
MaxPoolGradWithArgmax.Options |
|
MaxPoolWithArgmax<T extends TNumber,U extends TNumber> |
Performs max pooling on the input and outputs both max values and indices.
|
MaxPoolWithArgmax.Inputs<T extends TNumber> |
|
MaxPoolWithArgmax.Options |
|
Mean<T extends TType> |
Computes the mean of elements across dimensions of a tensor.
|
Mean.Inputs<T extends TType> |
|
Mean.Options |
Optional attributes for Mean
|
Merge<T extends TType> |
Forwards the value of an available tensor from inputs to output .
|
Merge.Inputs<T extends TType> |
|
MergeDedupData |
An op merges elements of integer and float tensors into deduplication data as
XLA tuple.
|
MergeDedupData.Inputs |
|
MergeDedupData.Options |
|
MergeSummary |
Merges summaries.
|
MergeSummary.Inputs |
|
MergeV2Checkpoints |
V2 format specific: merges the metadata files of sharded checkpoints.
|
MergeV2Checkpoints.Inputs |
|
MergeV2Checkpoints.Options |
|
Mfcc |
Transforms a spectrogram into a form that's useful for speech recognition.
|
Mfcc.Inputs |
|
Mfcc.Options |
Optional attributes for Mfcc
|
Min<T extends TNumber> |
Computes the minimum of elements across dimensions of a tensor.
|
Min.Inputs<T extends TNumber> |
|
Min.Options |
Optional attributes for Min
|
Minimum<T extends TNumber> |
Returns the min of x and y (i.e.
|
Minimum.Inputs<T extends TNumber> |
|
MirrorPad<T extends TType> |
Pads a tensor with mirrored values.
|
MirrorPad.Inputs<T extends TType> |
|
MirrorPadGrad<T extends TType> |
Gradient op for MirrorPad op.
|
MirrorPadGrad.Inputs<T extends TType> |
|
MlirPassthroughOp |
Wraps an arbitrary MLIR computation expressed as a module with a main() function.
|
MlirPassthroughOp.Inputs |
|
Mod<T extends TNumber> |
Returns element-wise remainder of division.
|
Mod.Inputs<T extends TNumber> |
|
ModelDataset |
Identity transformation that models performance.
|
ModelDataset.Inputs |
|
ModelDataset.Options |
|
Mul<T extends TType> |
Returns x * y element-wise.
|
Mul.Inputs<T extends TType> |
|
MulNoNan<T extends TType> |
Returns x * y element-wise.
|
MulNoNan.Inputs<T extends TType> |
|
MultiDeviceIterator |
Creates a MultiDeviceIterator resource.
|
MultiDeviceIterator.Inputs |
|
MultiDeviceIteratorFromStringHandle |
Generates a MultiDeviceIterator resource from its provided string handle.
|
MultiDeviceIteratorFromStringHandle.Inputs |
|
MultiDeviceIteratorFromStringHandle.Options |
|
MultiDeviceIteratorGetNextFromShard |
Gets next element for the provided shard number.
|
MultiDeviceIteratorGetNextFromShard.Inputs |
|
MultiDeviceIteratorInit |
Initializes the multi device iterator with the given dataset.
|
MultiDeviceIteratorInit.Inputs |
|
MultiDeviceIteratorToStringHandle |
Produces a string handle for the given MultiDeviceIterator.
|
MultiDeviceIteratorToStringHandle.Inputs |
|
Multinomial<U extends TNumber> |
Draws samples from a multinomial distribution.
|
Multinomial.Inputs |
|
Multinomial.Options |
|
MutableDenseHashTable |
Creates an empty hash table that uses tensors as the backing store.
|
MutableDenseHashTable.Inputs<T extends TType> |
|
MutableDenseHashTable.Options |
|
MutableHashTable |
Creates an empty hash table.
|
MutableHashTable.Inputs |
|
MutableHashTable.Options |
|
MutableHashTableOfTensors |
Creates an empty hash table.
|
MutableHashTableOfTensors.Inputs |
|
MutableHashTableOfTensors.Options |
|
Mutex |
Creates a Mutex resource that can be locked by MutexLock .
|
Mutex.Inputs |
|
Mutex.Options |
Optional attributes for Mutex
|
MutexLock |
Locks a mutex resource.
|
MutexLock.Inputs |
|
NativeScope |
A Scope implementation backed by a native scope.
|
NcclAllReduce<T extends TNumber> |
Deprecated.
|
NcclAllReduce<T extends TNumber> |
Outputs a tensor containing the reduction across all input tensors.
|
NcclAllReduce.Inputs<T extends TNumber> |
|
NcclAllReduce.Inputs<T extends TNumber> |
|
NcclBroadcast<T extends TNumber> |
Deprecated.
|
NcclBroadcast<T extends TNumber> |
Sends input to all devices that are connected to the output.
|
NcclBroadcast.Inputs<T extends TNumber> |
|
NcclBroadcast.Inputs<T extends TNumber> |
|
NcclReduce<T extends TNumber> |
Deprecated.
|
NcclReduce<T extends TNumber> |
Reduces input from num_devices using reduction to a single device.
|
NcclReduce.Inputs<T extends TNumber> |
|
NcclReduce.Inputs<T extends TNumber> |
|
Ndtri<T extends TNumber> |
The Ndtri operation
|
Ndtri.Inputs<T extends TNumber> |
|
NearestNeighbors |
Selects the k nearest centers for each point.
|
NearestNeighbors.Inputs |
|
Neg<T extends TType> |
Computes numerical negative value element-wise.
|
Neg.Inputs<T extends TType> |
|
NegTrain |
Training via negative sampling.
|
NegTrain.Inputs |
|
NextAfter<T extends TNumber> |
Returns the next representable value of x1 in the direction of x2 , element-wise.
|
NextAfter.Inputs<T extends TNumber> |
|
NextIteration<T extends TType> |
Makes its input available to the next iteration.
|
NextIteration.Inputs<T extends TType> |
|
NnOps |
An API for building nn operations as Op s
|
NonDeterministicInts<U extends TType> |
Non-deterministically generates some integers.
|
NonDeterministicInts.Inputs |
|
NonMaxSuppression<T extends TNumber> |
Greedily selects a subset of bounding boxes in descending order of score,
pruning away boxes that have high intersection-over-union (IOU) overlap
with previously selected boxes.
|
NonMaxSuppression.Inputs<T extends TNumber> |
|
NonMaxSuppression.Options |
|
NonMaxSuppressionWithOverlaps |
Greedily selects a subset of bounding boxes in descending order of score,
pruning away boxes that have high overlaps
with previously selected boxes.
|
NonMaxSuppressionWithOverlaps.Inputs |
|
NonSerializableDataset |
The ExperimentalNonSerializableDataset operation
|
NonSerializableDataset |
The NonSerializableDataset operation
|
NonSerializableDataset.Inputs |
|
NonSerializableDataset.Inputs |
|
NoOp |
Does nothing.
|
NoOp.Inputs |
|
NotEqual |
Returns the truth value of (x != y) element-wise.
|
NotEqual.Inputs<T extends TType> |
|
NotEqual.Options |
|
NthElement<T extends TNumber> |
Finds values of the n -th order statistic for the last dimension.
|
NthElement.Inputs<T extends TNumber> |
|
NthElement.Options |
|
OneHot<U extends TType> |
Returns a one-hot tensor.
|
OneHot.Inputs<U extends TType> |
|
OneHot.Options |
Optional attributes for OneHot
|
Ones<T extends TType> |
An operator creating a constant initialized with ones of the shape given by `dims`.
|
OneShotIterator |
Makes a "one-shot" iterator that can be iterated only once.
|
OneShotIterator.Inputs |
|
OneShotIterator.Options |
|
OnesLike<T extends TType> |
Returns a tensor of ones with the same shape and type as x.
|
OnesLike.Inputs<T extends TType> |
|
Op |
A logical unit of computation.
|
Operand<T extends TType> |
Interface implemented by operands of a TensorFlow operation.
|
Operands |
Utilities for manipulating operand related types and lists.
|
Operation |
Performs computation on Tensors.
|
OperationAttributeInspector |
Helper type for attribute getters, so we don't clutter the operation classes too much.
|
OperationBuilder |
|
Operator |
Annotation used by classes to make TensorFlow operations conveniently accessible via
org.tensorflow.op.Ops or one of its groups.
|
OpInputsMetadata |
An annotation to provide metadata about an op inputs accessor class.
|
OpMetadata |
An annotation to provide metadata about an op.
|
Ops |
An API for building operations as Op s
|
OpScope |
A Java implementation of Scope .
|
OptimizeDataset |
Creates a dataset by applying related optimizations to input_dataset .
|
OptimizeDataset.Inputs |
|
OptimizeDataset.Options |
|
OptionalFromValue |
Constructs an Optional variant from a tuple of tensors.
|
OptionalFromValue.Inputs |
|
OptionalGetValue |
Returns the value stored in an Optional variant or raises an error if none exists.
|
OptionalGetValue.Inputs |
|
OptionalHasValue |
Returns true if and only if the given Optional variant has a value.
|
OptionalHasValue.Inputs |
|
OptionalNone |
Creates an Optional variant with no value.
|
OptionalNone.Inputs |
|
OptionsDataset |
Creates a dataset by attaching tf.data.Options to input_dataset .
|
OptionsDataset.Inputs |
|
OptionsDataset.Options |
|
OrderedMapClear |
Op removes all elements in the underlying container.
|
OrderedMapClear.Inputs |
|
OrderedMapClear.Options |
|
OrderedMapIncompleteSize |
Op returns the number of incomplete elements in the underlying container.
|
OrderedMapIncompleteSize.Inputs |
|
OrderedMapIncompleteSize.Options |
|
OrderedMapPeek |
Op peeks at the values at the specified key.
|
OrderedMapPeek.Inputs |
|
OrderedMapPeek.Options |
|
OrderedMapSize |
Op returns the number of elements in the underlying container.
|
OrderedMapSize.Inputs |
|
OrderedMapSize.Options |
|
OrderedMapStage |
Stage (key, values) in the underlying container which behaves like a ordered
associative container.
|
OrderedMapStage.Inputs |
|
OrderedMapStage.Options |
|
OrderedMapUnstage |
Op removes and returns the values associated with the key
from the underlying container.
|
OrderedMapUnstage.Inputs |
|
OrderedMapUnstage.Options |
|
OrderedMapUnstageNoKey |
Op removes and returns the (key, value) element with the smallest
key from the underlying container.
|
OrderedMapUnstageNoKey.Inputs |
|
OrderedMapUnstageNoKey.Options |
|
OrdinalSelector |
A TPU core selector Op.
|
OrdinalSelector.Inputs |
|
OutfeedDequeue<T extends TType> |
Retrieves a single tensor from the computation outfeed.
|
OutfeedDequeue.Inputs |
|
OutfeedDequeue.Options |
|
OutfeedDequeueTuple |
Retrieve multiple values from the computation outfeed.
|
OutfeedDequeueTuple.Inputs |
|
OutfeedDequeueTuple.Options |
|
OutfeedDequeueTupleV2 |
Retrieve multiple values from the computation outfeed.
|
OutfeedDequeueTupleV2.Inputs |
|
OutfeedDequeueV2<T extends TType> |
Retrieves a single tensor from the computation outfeed.
|
OutfeedDequeueV2.Inputs |
|
OutfeedEnqueue |
Enqueue a Tensor on the computation outfeed.
|
OutfeedEnqueue.Inputs |
|
OutfeedEnqueueTuple |
Enqueue multiple Tensor values on the computation outfeed.
|
OutfeedEnqueueTuple.Inputs |
|
Output<T extends TType> |
A symbolic handle to a tensor produced by an Operation .
|
Pad<T extends TType> |
Pads a tensor.
|
Pad.Inputs<T extends TType> |
|
PaddedBatchDataset |
Creates a dataset that batches and pads batch_size elements from the input.
|
PaddedBatchDataset.Inputs |
|
PaddedBatchDataset.Options |
|
PaddingFifoQueue |
A queue that produces elements in first-in first-out order.
|
PaddingFifoQueue.Inputs |
|
PaddingFifoQueue.Options |
|
ParallelBatchDataset |
The ParallelBatchDataset operation
|
ParallelBatchDataset.Inputs |
|
ParallelBatchDataset.Options |
|
ParallelConcat<T extends TType> |
Concatenates a list of N tensors along the first dimension.
|
ParallelConcat.Inputs<T extends TType> |
|
ParallelDynamicStitch<T extends TType> |
Interleave the values from the data tensors into a single tensor.
|
ParallelDynamicStitch.Inputs<T extends TType> |
|
ParallelFilterDataset |
Creates a dataset containing elements of input_dataset matching predicate .
|
ParallelFilterDataset.Inputs |
|
ParallelFilterDataset.Options |
|
ParallelInterleaveDataset |
Creates a dataset that applies f to the outputs of input_dataset .
|
ParallelInterleaveDataset |
Creates a dataset that applies f to the outputs of input_dataset .
|
ParallelInterleaveDataset.Inputs |
|
ParallelInterleaveDataset.Inputs |
|
ParallelInterleaveDataset.Options |
|
ParallelMapDataset |
Creates a dataset that applies f to the outputs of input_dataset .
|
ParallelMapDataset.Inputs |
|
ParallelMapDataset.Options |
|
ParameterizedTruncatedNormal<U extends TNumber> |
Outputs random values from a normal distribution.
|
ParameterizedTruncatedNormal.Inputs<U extends TNumber> |
|
ParameterizedTruncatedNormal.Options |
|
ParseExample |
Transforms a vector of tf.Example protos (as strings) into typed tensors.
|
ParseExample.Inputs |
|
ParseExampleDataset |
Transforms input_dataset containing Example protos as vectors of DT_STRING into a dataset of Tensor or SparseTensor objects representing the parsed features.
|
ParseExampleDataset |
Transforms input_dataset containing Example protos as vectors of DT_STRING into a dataset of Tensor or SparseTensor objects representing the parsed features.
|
ParseExampleDataset.Inputs |
|
ParseExampleDataset.Inputs |
|
ParseExampleDataset.Options |
|
ParseExampleDataset.Options |
|
ParseSequenceExample |
Transforms a vector of tf.io.SequenceExample protos (as strings) into
typed tensors.
|
ParseSequenceExample.Inputs |
|
ParseSequenceExample.Options |
|
ParseSingleExample |
Transforms a tf.Example proto (as a string) into typed tensors.
|
ParseSingleExample.Inputs |
|
ParseSingleSequenceExample |
Transforms a scalar brain.SequenceExample proto (as strings) into typed tensors.
|
ParseSingleSequenceExample.Inputs |
|
ParseSingleSequenceExample.Options |
|
ParseTensor<T extends TType> |
Transforms a serialized tensorflow.TensorProto proto into a Tensor.
|
ParseTensor.Inputs |
|
PartitionedCall |
returns f(inputs) , where f 's body is placed and partitioned.
|
PartitionedCall |
Calls a function placed on a specified TPU device.
|
PartitionedCall.Inputs |
|
PartitionedCall.Inputs |
|
PartitionedCall.Options |
|
PartitionedCall.Options |
|
PartitionedInput<T extends TType> |
An op that groups a list of partitioned inputs together.
|
PartitionedInput.Inputs<T extends TType> |
|
PartitionedInput.Options |
|
PartitionedOutput<T extends TType> |
An op that demultiplexes a tensor to be sharded by XLA to a list of partitioned
outputs outside the XLA computation.
|
PartitionedOutput.Inputs<T extends TType> |
|
Placeholder<T extends TType> |
A placeholder op for a value that will be fed into the computation.
|
Placeholder.Inputs |
|
Placeholder.Options |
|
PlaceholderWithDefault<T extends TType> |
A placeholder op that passes through input when its output is not fed.
|
PlaceholderWithDefault.Inputs<T extends TType> |
|
Polygamma<T extends TNumber> |
Compute the polygamma function \(\psi^{(n)}(x)\).
|
Polygamma.Inputs<T extends TNumber> |
|
PopulationCount |
Computes element-wise population count (a.k.a.
|
PopulationCount.Inputs |
|
Pow<T extends TType> |
Computes the power of one value to another.
|
Pow.Inputs<T extends TType> |
|
PrefetchDataset |
Creates a dataset that asynchronously prefetches elements from input_dataset .
|
PrefetchDataset.Inputs |
|
PrefetchDataset.Options |
|
Prelinearize |
An op which linearizes one Tensor value to an opaque variant tensor.
|
Prelinearize.Inputs |
|
Prelinearize.Options |
|
PrelinearizeTuple |
An op which linearizes multiple Tensor values to an opaque variant tensor.
|
PrelinearizeTuple.Inputs |
|
PrelinearizeTuple.Options |
|
PreventGradient<T extends TType> |
An identity op that triggers an error if a gradient is requested.
|
PreventGradient.Inputs<T extends TType> |
|
PreventGradient.Options |
|
Print |
Prints a string scalar.
|
Print.Inputs |
|
Print.Options |
Optional attributes for Print
|
PriorityQueue |
A queue that produces elements sorted by the first component value.
|
PriorityQueue.Inputs |
|
PriorityQueue.Options |
|
PrivateThreadPoolDataset |
Creates a dataset that uses a custom thread pool to compute input_dataset .
|
PrivateThreadPoolDataset |
Creates a dataset that uses a custom thread pool to compute input_dataset .
|
PrivateThreadPoolDataset.Inputs |
|
PrivateThreadPoolDataset.Inputs |
|
Prod<T extends TType> |
Computes the product of elements across dimensions of a tensor.
|
Prod.Inputs<T extends TType> |
|
Prod.Options |
Optional attributes for Prod
|
Qr<T extends TType> |
Computes the QR decompositions of one or more matrices.
|
Qr.Inputs<T extends TType> |
|
Qr.Options |
Optional attributes for Qr
|
QuantizationOps |
An API for building quantization operations as Op s
|
Quantize<T extends TNumber> |
Quantize the 'input' tensor of type float to 'output' tensor of type 'T'.
|
Quantize.Inputs |
|
Quantize.Options |
|
QuantizeAndDequantize<T extends TNumber> |
Quantizes then dequantizes a tensor.
|
QuantizeAndDequantize.Inputs<T extends TNumber> |
|
QuantizeAndDequantize.Options |
|
QuantizeAndDequantizeV3<T extends TNumber> |
Quantizes then dequantizes a tensor.
|
QuantizeAndDequantizeV3.Inputs<T extends TNumber> |
|
QuantizeAndDequantizeV3.Options |
|
QuantizeAndDequantizeV4<T extends TNumber> |
Quantizes then dequantizes a tensor.
|
QuantizeAndDequantizeV4.Inputs<T extends TNumber> |
|
QuantizeAndDequantizeV4.Options |
|
QuantizeAndDequantizeV4Grad<T extends TNumber> |
Returns the gradient of QuantizeAndDequantizeV4 .
|
QuantizeAndDequantizeV4Grad.Inputs<T extends TNumber> |
|
QuantizeAndDequantizeV4Grad.Options |
|
QuantizedAdd<V extends TNumber> |
Returns x + y element-wise, working on quantized buffers.
|
QuantizedAdd.Inputs |
|
QuantizedAvgPool<T extends TNumber> |
Produces the average pool of the input tensor for quantized types.
|
QuantizedAvgPool.Inputs<T extends TNumber> |
|
QuantizedBatchNormWithGlobalNormalization<U extends TNumber> |
Quantized Batch normalization.
|
QuantizedBatchNormWithGlobalNormalization.Inputs<T extends TNumber> |
|
QuantizedBiasAdd<V extends TNumber> |
Adds Tensor 'bias' to Tensor 'input' for Quantized types.
|
QuantizedBiasAdd.Inputs |
|
QuantizedConcat<T extends TType> |
Concatenates quantized tensors along one dimension.
|
QuantizedConcat.Inputs<T extends TType> |
|
QuantizedConv2d<V extends TNumber> |
Computes a 2D convolution given quantized 4D input and filter tensors.
|
QuantizedConv2d.Inputs |
|
QuantizedConv2d.Options |
|
QuantizedConv2DAndRelu<V extends TNumber> |
The QuantizedConv2DAndRelu operation
|
QuantizedConv2DAndRelu.Inputs |
|
QuantizedConv2DAndRelu.Options |
|
QuantizedConv2DAndReluAndRequantize<V extends TNumber> |
The QuantizedConv2DAndReluAndRequantize operation
|
QuantizedConv2DAndReluAndRequantize.Inputs |
|
QuantizedConv2DAndReluAndRequantize.Options |
|
QuantizedConv2DAndRequantize<V extends TNumber> |
The QuantizedConv2DAndRequantize operation
|
QuantizedConv2DAndRequantize.Inputs |
|
QuantizedConv2DAndRequantize.Options |
|
QuantizedConv2DPerChannel<V extends TNumber> |
Computes QuantizedConv2D per channel.
|
QuantizedConv2DPerChannel.Inputs |
|
QuantizedConv2DPerChannel.Options |
|
QuantizedConv2DWithBias<V extends TNumber> |
The QuantizedConv2DWithBias operation
|
QuantizedConv2DWithBias.Inputs |
|
QuantizedConv2DWithBias.Options |
|
QuantizedConv2DWithBiasAndRelu<V extends TNumber> |
The QuantizedConv2DWithBiasAndRelu operation
|
QuantizedConv2DWithBiasAndRelu.Inputs |
|
QuantizedConv2DWithBiasAndRelu.Options |
|
QuantizedConv2DWithBiasAndReluAndRequantize<W extends TNumber> |
The QuantizedConv2DWithBiasAndReluAndRequantize operation
|
QuantizedConv2DWithBiasAndReluAndRequantize.Inputs |
|
QuantizedConv2DWithBiasAndReluAndRequantize.Options |
|
QuantizedConv2DWithBiasAndRequantize<W extends TNumber> |
The QuantizedConv2DWithBiasAndRequantize operation
|
QuantizedConv2DWithBiasAndRequantize.Inputs |
|
QuantizedConv2DWithBiasAndRequantize.Options |
|
QuantizedConv2DWithBiasSignedSumAndReluAndRequantize<X extends TNumber> |
The QuantizedConv2DWithBiasSignedSumAndReluAndRequantize operation
|
QuantizedConv2DWithBiasSignedSumAndReluAndRequantize.Inputs |
|
QuantizedConv2DWithBiasSignedSumAndReluAndRequantize.Options |
|
QuantizedConv2DWithBiasSumAndRelu<V extends TNumber> |
The QuantizedConv2DWithBiasSumAndRelu operation
|
QuantizedConv2DWithBiasSumAndRelu.Inputs |
|
QuantizedConv2DWithBiasSumAndRelu.Options |
|
QuantizedConv2DWithBiasSumAndReluAndRequantize<X extends TNumber> |
The QuantizedConv2DWithBiasSumAndReluAndRequantize operation
|
QuantizedConv2DWithBiasSumAndReluAndRequantize.Inputs |
|
QuantizedConv2DWithBiasSumAndReluAndRequantize.Options |
|
QuantizedDepthwiseConv2D<V extends TNumber> |
Computes quantized depthwise Conv2D.
|
QuantizedDepthwiseConv2D.Inputs |
|
QuantizedDepthwiseConv2D.Options |
|
QuantizedDepthwiseConv2DWithBias<V extends TNumber> |
Computes quantized depthwise Conv2D with Bias.
|
QuantizedDepthwiseConv2DWithBias.Inputs |
|
QuantizedDepthwiseConv2DWithBias.Options |
|
QuantizedDepthwiseConv2DWithBiasAndRelu<V extends TNumber> |
Computes quantized depthwise Conv2D with Bias and Relu.
|
QuantizedDepthwiseConv2DWithBiasAndRelu.Inputs |
|
QuantizedDepthwiseConv2DWithBiasAndRelu.Options |
|
QuantizedDepthwiseConv2DWithBiasAndReluAndRequantize<W extends TNumber> |
Computes quantized depthwise Conv2D with Bias, Relu and Requantize.
|
QuantizedDepthwiseConv2DWithBiasAndReluAndRequantize.Inputs |
|
QuantizedDepthwiseConv2DWithBiasAndReluAndRequantize.Options |
|
QuantizedInstanceNorm<T extends TNumber> |
Quantized Instance normalization.
|
QuantizedInstanceNorm.Inputs<T extends TNumber> |
|
QuantizedInstanceNorm.Options |
|
QuantizedMatMul<V extends TNumber> |
Perform a quantized matrix multiplication of a by the matrix b .
|
QuantizedMatMul.Inputs |
|
QuantizedMatMul.Options |
|
QuantizedMatMulWithBias<W extends TNumber> |
Performs a quantized matrix multiplication of a by the matrix b with bias
add.
|
QuantizedMatMulWithBias.Inputs |
|
QuantizedMatMulWithBias.Options |
|
QuantizedMatMulWithBiasAndDequantize<W extends TNumber> |
The QuantizedMatMulWithBiasAndDequantize operation
|
QuantizedMatMulWithBiasAndDequantize.Inputs |
|
QuantizedMatMulWithBiasAndDequantize.Options |
|
QuantizedMatMulWithBiasAndRelu<V extends TNumber> |
Perform a quantized matrix multiplication of a by the matrix b with bias
add and relu fusion.
|
QuantizedMatMulWithBiasAndRelu.Inputs |
|
QuantizedMatMulWithBiasAndRelu.Options |
|
QuantizedMatMulWithBiasAndReluAndRequantize<W extends TNumber> |
Perform a quantized matrix multiplication of a by the matrix b with bias
add and relu and requantize fusion.
|
QuantizedMatMulWithBiasAndReluAndRequantize.Inputs |
|
QuantizedMatMulWithBiasAndReluAndRequantize.Options |
|
QuantizedMatMulWithBiasAndRequantize<W extends TNumber> |
The QuantizedMatMulWithBiasAndRequantize operation
|
QuantizedMatMulWithBiasAndRequantize.Inputs |
|
QuantizedMatMulWithBiasAndRequantize.Options |
|
QuantizedMaxPool<T extends TNumber> |
Produces the max pool of the input tensor for quantized types.
|
QuantizedMaxPool.Inputs<T extends TNumber> |
|
QuantizedMul<V extends TNumber> |
Returns x * y element-wise, working on quantized buffers.
|
QuantizedMul.Inputs |
|
QuantizeDownAndShrinkRange<U extends TNumber> |
Convert the quantized 'input' tensor into a lower-precision 'output', using the
actual distribution of the values to maximize the usage of the lower bit depth
and adjusting the output min and max ranges accordingly.
|
QuantizeDownAndShrinkRange.Inputs |
|
QuantizedRelu<U extends TNumber> |
Computes Quantized Rectified Linear: max(features, 0)
|
QuantizedRelu.Inputs |
|
QuantizedRelu6<U extends TNumber> |
Computes Quantized Rectified Linear 6: min(max(features, 0), 6)
|
QuantizedRelu6.Inputs |
|
QuantizedReluX<U extends TNumber> |
Computes Quantized Rectified Linear X: min(max(features, 0), max_value)
|
QuantizedReluX.Inputs |
|
QuantizedReshape<T extends TType> |
Reshapes a quantized tensor as per the Reshape op.
|
QuantizedReshape.Inputs<T extends TType> |
|
QuantizedResizeBilinear<T extends TNumber> |
Resize quantized images to size using quantized bilinear interpolation.
|
QuantizedResizeBilinear.Inputs<T extends TNumber> |
|
QuantizedResizeBilinear.Options |
|
QueueClose |
Closes the given queue.
|
QueueClose.Inputs |
|
QueueClose.Options |
|
QueueDequeue |
Dequeues a tuple of one or more tensors from the given queue.
|
QueueDequeue.Inputs |
|
QueueDequeue.Options |
|
QueueDequeueMany |
Dequeues n tuples of one or more tensors from the given queue.
|
QueueDequeueMany.Inputs |
|
QueueDequeueMany.Options |
|
QueueDequeueUpTo |
Dequeues n tuples of one or more tensors from the given queue.
|
QueueDequeueUpTo.Inputs |
|
QueueDequeueUpTo.Options |
|
QueueEnqueue |
Enqueues a tuple of one or more tensors in the given queue.
|
QueueEnqueue.Inputs |
|
QueueEnqueue.Options |
|
QueueEnqueueMany |
Enqueues zero or more tuples of one or more tensors in the given queue.
|
QueueEnqueueMany.Inputs |
|
QueueEnqueueMany.Options |
|
QueueIsClosed |
Returns true if queue is closed.
|
QueueIsClosed.Inputs |
|
QueueSize |
Computes the number of elements in the given queue.
|
QueueSize.Inputs |
|
RaggedBincount<U extends TNumber> |
Counts the number of occurrences of each value in an integer array.
|
RaggedBincount.Inputs<T extends TNumber,U extends TNumber> |
|
RaggedBincount.Options |
|
RaggedCountSparseOutput<U extends TNumber> |
Performs sparse-output bin counting for a ragged tensor input.
|
RaggedCountSparseOutput.Inputs<U extends TNumber> |
|
RaggedCountSparseOutput.Options |
|
RaggedCross<T extends TType,U extends TNumber> |
Generates a feature cross from a list of tensors, and returns it as a
RaggedTensor.
|
RaggedCross.Inputs |
|
RaggedFillEmptyRows<T extends TType> |
The RaggedFillEmptyRows operation
|
RaggedFillEmptyRows.Inputs<T extends TType> |
|
RaggedFillEmptyRowsGrad<T extends TType> |
The RaggedFillEmptyRowsGrad operation
|
RaggedFillEmptyRowsGrad.Inputs<T extends TType> |
|
RaggedGather<T extends TNumber,U extends TType> |
Gather ragged slices from params axis 0 according to indices .
|
RaggedGather.Inputs<T extends TNumber,U extends TType> |
|
RaggedOps |
An API for building ragged operations as Op s
|
RaggedRange<U extends TNumber,T extends TNumber> |
Returns a RaggedTensor containing the specified sequences of numbers.
|
RaggedRange.Inputs<T extends TNumber> |
|
RaggedTensorFromVariant<T extends TNumber,U extends TType> |
Decodes a variant Tensor into a RaggedTensor .
|
RaggedTensorFromVariant.Inputs |
|
RaggedTensorToSparse<U extends TType> |
Converts a RaggedTensor into a SparseTensor with the same values.
|
RaggedTensorToSparse.Inputs<U extends TType> |
|
RaggedTensorToTensor<U extends TType> |
Create a dense tensor from a ragged tensor, possibly altering its shape.
|
RaggedTensorToTensor.Inputs<U extends TType> |
|
RaggedTensorToVariant |
Encodes a RaggedTensor into a variant Tensor.
|
RaggedTensorToVariant.Inputs |
|
RaggedTensorToVariantGradient<U extends TType> |
Helper used to compute the gradient for RaggedTensorToVariant .
|
RaggedTensorToVariantGradient.Inputs |
|
RandomCrop<T extends TNumber> |
Randomly crop image .
|
RandomCrop.Inputs<T extends TNumber> |
|
RandomCrop.Options |
|
RandomDataset |
Creates a Dataset that returns pseudorandom numbers.
|
RandomDataset |
Creates a Dataset that returns pseudorandom numbers.
|
RandomDataset.Inputs |
|
RandomDataset.Inputs |
|
RandomDataset.Options |
|
RandomExperimentalOps |
An API for building random.experimental operations as Op s
|
RandomGamma<U extends TNumber> |
Outputs random values from the Gamma distribution(s) described by alpha.
|
RandomGamma.Inputs<U extends TNumber> |
|
RandomGamma.Options |
|
RandomGammaGrad<T extends TNumber> |
Computes the derivative of a Gamma random sample w.r.t.
|
RandomGammaGrad.Inputs<T extends TNumber> |
|
RandomIndexShuffle<T extends TNumber> |
Outputs the position of value in a permutation of [0, ..., max_index].
|
RandomIndexShuffle.Inputs<T extends TNumber> |
|
RandomIndexShuffle.Options |
|
RandomOps |
An API for building random operations as Op s
|
RandomPoisson<V extends TNumber> |
Outputs random values from the Poisson distribution(s) described by rate.
|
RandomPoisson.Inputs |
|
RandomPoisson.Options |
|
RandomShuffle<T extends TType> |
Randomly shuffles a tensor along its first dimension.
|
RandomShuffle.Inputs<T extends TType> |
|
RandomShuffle.Options |
|
RandomShuffleQueue |
A queue that randomizes the order of elements.
|
RandomShuffleQueue.Inputs |
|
RandomShuffleQueue.Options |
|
RandomStandardNormal<U extends TNumber> |
Outputs random values from a normal distribution.
|
RandomStandardNormal.Inputs |
|
RandomStandardNormal.Options |
|
RandomUniform<U extends TNumber> |
Outputs random values from a uniform distribution.
|
RandomUniform.Inputs |
|
RandomUniform.Options |
|
RandomUniformInt<U extends TNumber> |
Outputs random integers from a uniform distribution.
|
RandomUniformInt.Inputs<U extends TNumber> |
|
RandomUniformInt.Options |
|
Range<T extends TNumber> |
Creates a sequence of numbers.
|
Range.Inputs<T extends TNumber> |
|
RangeDataset |
Creates a dataset with a range of values.
|
RangeDataset.Inputs |
|
RangeDataset.Options |
|
Rank |
Returns the rank of a tensor.
|
Rank.Inputs |
|
RawCustomGradient |
A custom gradient for an op of unspecified type.
|
RawOp |
A base class for Op implementations that are backed by a single Operation .
|
RawOpInputs<T extends RawOp> |
A base class for operation input accessors.
|
RawTensor |
A tensor which memory has not been mapped to a data space directly accessible from the JVM.
|
ReaderNumRecordsProduced |
Returns the number of records this Reader has produced.
|
ReaderNumRecordsProduced.Inputs |
|
ReaderNumWorkUnitsCompleted |
Returns the number of work units this Reader has finished processing.
|
ReaderNumWorkUnitsCompleted.Inputs |
|
ReaderRead |
Returns the next record (key, value pair) produced by a Reader.
|
ReaderRead.Inputs |
|
ReaderReadUpTo |
Returns up to num_records (key, value) pairs produced by a Reader.
|
ReaderReadUpTo.Inputs |
|
ReaderReset |
Restore a Reader to its initial clean state.
|
ReaderReset.Inputs |
|
ReaderRestoreState |
Restore a reader to a previously saved state.
|
ReaderRestoreState.Inputs |
|
ReaderSerializeState |
Produce a string tensor that encodes the state of a Reader.
|
ReaderSerializeState.Inputs |
|
ReadFile |
Reads and outputs the entire contents of the input filename.
|
ReadFile.Inputs |
|
ReadVariableOp<T extends TType> |
Reads the value of a variable.
|
ReadVariableOp.Inputs |
|
ReadVariableSplitND<T extends TType> |
Splits resource variable input tensor across all dimensions.
|
ReadVariableSplitND.Inputs |
|
ReadVariableSplitND.Options |
|
Real<U extends TNumber> |
Returns the real part of a complex number.
|
Real.Inputs |
|
RealDiv<T extends TType> |
Returns x / y element-wise for real types.
|
RealDiv.Inputs<T extends TType> |
|
RebatchDataset |
Creates a dataset that changes the batch size.
|
RebatchDataset.Inputs |
|
RebatchDataset.Options |
|
RebatchDatasetV2 |
Creates a dataset that changes the batch size.
|
RebatchDatasetV2.Inputs |
|
Reciprocal<T extends TType> |
Computes the reciprocal of x element-wise.
|
Reciprocal.Inputs<T extends TType> |
|
ReciprocalGrad<T extends TType> |
Computes the gradient for the inverse of x wrt its input.
|
ReciprocalGrad.Inputs<T extends TType> |
|
RecordInput |
Emits randomized records.
|
RecordInput.Inputs |
|
RecordInput.Options |
|
Recv<T extends TType> |
Receives the named tensor from send_device on recv_device.
|
Recv.Inputs |
|
Recv.Options |
Optional attributes for Recv
|
RecvTPUEmbeddingActivations |
An op that receives embedding activations on the TPU.
|
RecvTPUEmbeddingActivations.Inputs |
|
ReduceAll |
Computes the "logical and" of elements across dimensions of a tensor.
|
ReduceAll.Inputs |
|
ReduceAll.Options |
|
ReduceAny |
Computes the "logical or" of elements across dimensions of a tensor.
|
ReduceAny.Inputs |
|
ReduceAny.Options |
|
ReduceDataset |
Reduces the input dataset to a singleton using a reduce function.
|
ReduceDataset.Inputs |
|
ReduceDataset.Options |
|
ReduceJoin |
Joins a string Tensor across the given dimensions.
|
ReduceJoin.Inputs |
|
ReduceJoin.Options |
|
ReduceMax<T extends TNumber> |
Computes the maximum of elements across dimensions of a tensor.
|
ReduceMax.Inputs<T extends TNumber> |
|
ReduceMax.Options |
|
ReduceMin<T extends TNumber> |
Computes the minimum of elements across dimensions of a tensor.
|
ReduceMin.Inputs<T extends TNumber> |
|
ReduceMin.Options |
|
ReduceProd<T extends TType> |
Computes the product of elements across dimensions of a tensor.
|
ReduceProd.Inputs<T extends TType> |
|
ReduceProd.Options |
|
ReduceSum<T extends TType> |
Computes the sum of elements across dimensions of a tensor.
|
ReduceSum.Inputs<T extends TType> |
|
ReduceSum.Options |
|
RefEnter<T extends TType> |
Creates or finds a child frame, and makes data available to the child frame.
|
RefEnter.Inputs<T extends TType> |
|
RefEnter.Options |
|
RefExit<T extends TType> |
Exits the current frame to its parent frame.
|
RefExit.Inputs<T extends TType> |
|
RefIdentity<T extends TType> |
Return the same ref tensor as the input ref tensor.
|
RefIdentity.Inputs<T extends TType> |
|
RefMerge<T extends TType> |
Forwards the value of an available tensor from inputs to output .
|
RefMerge.Inputs<T extends TType> |
|
RefNextIteration<T extends TType> |
Makes its input available to the next iteration.
|
RefNextIteration.Inputs<T extends TType> |
|
RefSelect<T extends TType> |
Forwards the index th element of inputs to output .
|
RefSelect.Inputs<T extends TType> |
|
RefSwitch<T extends TType> |
Forwards the ref tensor data to the output port determined by pred .
|
RefSwitch.Inputs<T extends TType> |
|
RegexFullMatch |
Check if the input matches the regex pattern.
|
RegexFullMatch.Inputs |
|
RegexReplace |
Replaces matches of the pattern regular expression in input with the
replacement string provided in rewrite .
|
RegexReplace.Inputs |
|
RegexReplace.Options |
|
RegisterDataset |
Registers a dataset with the tf.data service.
|
RegisterDataset.Inputs |
|
RegisterDataset.Options |
|
Relayout<T extends TType> |
The Relayout operation
|
Relayout.Inputs<T extends TType> |
|
RelayoutLike<T extends TType> |
The RelayoutLike operation
|
RelayoutLike.Inputs<T extends TType> |
|
Relu<T extends TNumber> |
Computes rectified linear: max(features, 0) .
|
Relu.Inputs<T extends TNumber> |
|
Relu6<T extends TNumber> |
Computes rectified linear 6: min(max(features, 0), 6) .
|
Relu6.Inputs<T extends TNumber> |
|
Relu6Grad<T extends TNumber> |
Computes rectified linear 6 gradients for a Relu6 operation.
|
Relu6Grad.Inputs<T extends TNumber> |
|
ReluGrad<T extends TNumber> |
Computes rectified linear gradients for a Relu operation.
|
ReluGrad.Inputs<T extends TNumber> |
|
RemoteCall |
Runs function f on a remote device indicated by target .
|
RemoteCall.Inputs |
|
RepeatDataset |
Creates a dataset that emits the outputs of input_dataset count times.
|
RepeatDataset.Inputs |
|
RepeatDataset.Options |
|
ReplicatedInput<T extends TType> |
Connects N inputs to an N-way replicated TPU computation.
|
ReplicatedInput.Inputs<T extends TType> |
|
ReplicatedInput.Options |
|
ReplicatedOutput<T extends TType> |
Connects N outputs from an N-way replicated TPU computation.
|
ReplicatedOutput.Inputs<T extends TType> |
|
ReplicateMetadata |
Metadata indicating how the TPU computation should be replicated.
|
ReplicateMetadata.Inputs |
|
ReplicateMetadata.Options |
|
RequantizationRange |
Computes a range that covers the actual values present in a quantized tensor.
|
RequantizationRange.Inputs |
|
RequantizationRangePerChannel |
Computes requantization range per channel.
|
RequantizationRangePerChannel.Inputs |
|
Requantize<U extends TNumber> |
Converts the quantized input tensor into a lower-precision output .
|
Requantize.Inputs |
|
RequantizePerChannel<U extends TNumber> |
Requantizes input with min and max values known per channel.
|
RequantizePerChannel.Inputs |
|
Reshape<T extends TType> |
Reshapes a tensor.
|
Reshape.Inputs<T extends TType> |
|
ResizeArea |
Resize images to size using area interpolation.
|
ResizeArea.Inputs |
|
ResizeArea.Options |
|
ResizeBicubic |
Resize images to size using bicubic interpolation.
|
ResizeBicubic.Inputs |
|
ResizeBicubic.Options |
|
ResizeBicubicGrad<T extends TNumber> |
Computes the gradient of bicubic interpolation.
|
ResizeBicubicGrad.Inputs<T extends TNumber> |
|
ResizeBicubicGrad.Options |
|
ResizeBilinear |
Resize images to size using bilinear interpolation.
|
ResizeBilinear.Inputs |
|
ResizeBilinear.Options |
|
ResizeBilinearGrad<T extends TNumber> |
Computes the gradient of bilinear interpolation.
|
ResizeBilinearGrad.Inputs<T extends TNumber> |
|
ResizeBilinearGrad.Options |
|
ResizeNearestNeighbor<T extends TNumber> |
Resize images to size using nearest neighbor interpolation.
|
ResizeNearestNeighbor.Inputs<T extends TNumber> |
|
ResizeNearestNeighbor.Options |
|
ResizeNearestNeighborGrad<T extends TNumber> |
Computes the gradient of nearest neighbor interpolation.
|
ResizeNearestNeighborGrad.Inputs<T extends TNumber> |
|
ResizeNearestNeighborGrad.Options |
|
ResourceAccumulatorApplyGradient |
Applies a gradient to a given accumulator.
|
ResourceAccumulatorApplyGradient.Inputs |
|
ResourceAccumulatorNumAccumulated |
Returns the number of gradients aggregated in the given accumulators.
|
ResourceAccumulatorNumAccumulated.Inputs |
|
ResourceAccumulatorSetGlobalStep |
Updates the accumulator with a new value for global_step.
|
ResourceAccumulatorSetGlobalStep.Inputs |
|
ResourceAccumulatorTakeGradient<T extends TType> |
Extracts the average gradient in the given ConditionalAccumulator.
|
ResourceAccumulatorTakeGradient.Inputs |
|
ResourceApplyAdadelta |
Update '*var' according to the adadelta scheme.
|
ResourceApplyAdadelta.Inputs<T extends TType> |
|
ResourceApplyAdadelta.Options |
|
ResourceApplyAdagrad |
Update '*var' according to the adagrad scheme.
|
ResourceApplyAdagrad.Inputs<T extends TType> |
|
ResourceApplyAdagrad.Options |
|
ResourceApplyAdagradDa |
Update '*var' according to the proximal adagrad scheme.
|
ResourceApplyAdagradDa.Inputs<T extends TType> |
|
ResourceApplyAdagradDa.Options |
|
ResourceApplyAdam |
Update '*var' according to the Adam algorithm.
|
ResourceApplyAdam.Inputs<T extends TType> |
|
ResourceApplyAdam.Options |
|
ResourceApplyAdaMax |
Update '*var' according to the AdaMax algorithm.
|
ResourceApplyAdaMax.Inputs<T extends TType> |
|
ResourceApplyAdaMax.Options |
|
ResourceApplyAdamWithAmsgrad |
Update '*var' according to the Adam algorithm.
|
ResourceApplyAdamWithAmsgrad.Inputs<T extends TType> |
|
ResourceApplyAdamWithAmsgrad.Options |
|
ResourceApplyAddSign |
Update '*var' according to the AddSign update.
|
ResourceApplyAddSign.Inputs<T extends TType> |
|
ResourceApplyAddSign.Options |
|
ResourceApplyCenteredRmsProp |
Update '*var' according to the centered RMSProp algorithm.
|
ResourceApplyCenteredRmsProp.Inputs<T extends TType> |
|
ResourceApplyCenteredRmsProp.Options |
|
ResourceApplyFtrl |
Update '*var' according to the Ftrl-proximal scheme.
|
ResourceApplyFtrl.Inputs<T extends TType> |
|
ResourceApplyFtrl.Options |
|
ResourceApplyGradientDescent |
Update '*var' by subtracting 'alpha' * 'delta' from it.
|
ResourceApplyGradientDescent.Inputs<T extends TType> |
|
ResourceApplyGradientDescent.Options |
|
ResourceApplyKerasMomentum |
Update '*var' according to the momentum scheme.
|
ResourceApplyKerasMomentum.Inputs<T extends TType> |
|
ResourceApplyKerasMomentum.Options |
|
ResourceApplyMomentum |
Update '*var' according to the momentum scheme.
|
ResourceApplyMomentum.Inputs<T extends TType> |
|
ResourceApplyMomentum.Options |
|
ResourceApplyPowerSign |
Update '*var' according to the AddSign update.
|
ResourceApplyPowerSign.Inputs<T extends TType> |
|
ResourceApplyPowerSign.Options |
|
ResourceApplyProximalAdagrad |
Update '*var' and '*accum' according to FOBOS with Adagrad learning rate.
|
ResourceApplyProximalAdagrad.Inputs<T extends TType> |
|
ResourceApplyProximalAdagrad.Options |
|
ResourceApplyProximalGradientDescent |
Update '*var' as FOBOS algorithm with fixed learning rate.
|
ResourceApplyProximalGradientDescent.Inputs<T extends TType> |
|
ResourceApplyProximalGradientDescent.Options |
|
ResourceApplyRmsProp |
Update '*var' according to the RMSProp algorithm.
|
ResourceApplyRmsProp.Inputs<T extends TType> |
|
ResourceApplyRmsProp.Options |
|
ResourceConditionalAccumulator |
A conditional accumulator for aggregating gradients.
|
ResourceConditionalAccumulator.Inputs |
|
ResourceConditionalAccumulator.Options |
|
ResourceCountUpTo<T extends TNumber> |
Increments variable pointed to by 'resource' until it reaches 'limit'.
|
ResourceCountUpTo.Inputs |
|
ResourceGather<U extends TType> |
Gather slices from the variable pointed to by resource according to indices .
|
ResourceGather.Inputs |
|
ResourceGather.Options |
|
ResourceGatherNd<U extends TType> |
The ResourceGatherNd operation
|
ResourceGatherNd.Inputs |
|
ResourceScatterAdd |
Adds sparse updates to the variable referenced by resource .
|
ResourceScatterAdd.Inputs |
|
ResourceScatterDiv |
Divides sparse updates into the variable referenced by resource .
|
ResourceScatterDiv.Inputs |
|
ResourceScatterMax |
Reduces sparse updates into the variable referenced by resource using the max operation.
|
ResourceScatterMax.Inputs |
|
ResourceScatterMin |
Reduces sparse updates into the variable referenced by resource using the min operation.
|
ResourceScatterMin.Inputs |
|
ResourceScatterMul |
Multiplies sparse updates into the variable referenced by resource .
|
ResourceScatterMul.Inputs |
|
ResourceScatterNdAdd |
Applies sparse addition to individual values or slices in a Variable.
|
ResourceScatterNdAdd.Inputs |
|
ResourceScatterNdAdd.Options |
|
ResourceScatterNdMax |
The ResourceScatterNdMax operation
|
ResourceScatterNdMax.Inputs |
|
ResourceScatterNdMax.Options |
|
ResourceScatterNdMin |
The ResourceScatterNdMin operation
|
ResourceScatterNdMin.Inputs |
|
ResourceScatterNdMin.Options |
|
ResourceScatterNdSub |
Applies sparse subtraction to individual values or slices in a Variable.
|
ResourceScatterNdSub.Inputs |
|
ResourceScatterNdSub.Options |
|
ResourceScatterNdUpdate |
Applies sparse updates to individual values or slices within a given
variable according to indices .
|
ResourceScatterNdUpdate.Inputs |
|
ResourceScatterNdUpdate.Options |
|
ResourceScatterSub |
Subtracts sparse updates from the variable referenced by resource .
|
ResourceScatterSub.Inputs |
|
ResourceScatterUpdate |
Assigns sparse updates to the variable referenced by resource .
|
ResourceScatterUpdate.Inputs |
|
ResourceSparseApplyAdadelta |
var: Should be from a Variable().
|
ResourceSparseApplyAdadelta.Inputs<T extends TType> |
|
ResourceSparseApplyAdadelta.Options |
|
ResourceSparseApplyAdagrad |
Update relevant entries in '*var' and '*accum' according to the adagrad scheme.
|
ResourceSparseApplyAdagrad.Inputs<T extends TType> |
|
ResourceSparseApplyAdagrad.Options |
|
ResourceSparseApplyAdagradDa |
Update entries in '*var' and '*accum' according to the proximal adagrad scheme.
|
ResourceSparseApplyAdagradDa.Inputs<T extends TType> |
|
ResourceSparseApplyAdagradDa.Options |
|
ResourceSparseApplyAdagradV2 |
Update relevant entries in '*var' and '*accum' according to the adagrad scheme.
|
ResourceSparseApplyAdagradV2.Inputs<T extends TType> |
|
ResourceSparseApplyAdagradV2.Options |
|
ResourceSparseApplyCenteredRmsProp |
Update '*var' according to the centered RMSProp algorithm.
|
ResourceSparseApplyCenteredRmsProp.Inputs<T extends TType> |
|
ResourceSparseApplyCenteredRmsProp.Options |
|
ResourceSparseApplyFtrl |
Update relevant entries in '*var' according to the Ftrl-proximal scheme.
|
ResourceSparseApplyFtrl.Inputs<T extends TType> |
|
ResourceSparseApplyFtrl.Options |
|
ResourceSparseApplyKerasMomentum |
Update relevant entries in '*var' and '*accum' according to the momentum scheme.
|
ResourceSparseApplyKerasMomentum.Inputs<T extends TType> |
|
ResourceSparseApplyKerasMomentum.Options |
|
ResourceSparseApplyMomentum |
Update relevant entries in '*var' and '*accum' according to the momentum scheme.
|
ResourceSparseApplyMomentum.Inputs<T extends TType> |
|
ResourceSparseApplyMomentum.Options |
|
ResourceSparseApplyProximalAdagrad |
Sparse update entries in '*var' and '*accum' according to FOBOS algorithm.
|
ResourceSparseApplyProximalAdagrad.Inputs<T extends TType> |
|
ResourceSparseApplyProximalAdagrad.Options |
|
ResourceSparseApplyProximalGradientDescent |
Sparse update '*var' as FOBOS algorithm with fixed learning rate.
|
ResourceSparseApplyProximalGradientDescent.Inputs<T extends TType> |
|
ResourceSparseApplyProximalGradientDescent.Options |
|
ResourceSparseApplyRmsProp |
Update '*var' according to the RMSProp algorithm.
|
ResourceSparseApplyRmsProp.Inputs<T extends TType> |
|
ResourceSparseApplyRmsProp.Options |
|
ResourceStridedSliceAssign |
Assign value to the sliced l-value reference of ref .
|
ResourceStridedSliceAssign.Inputs<T extends TNumber> |
|
ResourceStridedSliceAssign.Options |
|
Restore |
Restores tensors from a V2 checkpoint.
|
Restore.Inputs |
|
RestoreSlice<T extends TType> |
Restores a tensor from checkpoint files.
|
RestoreSlice.Inputs |
|
RestoreSlice.Options |
|
Result |
|
RetrieveAllTPUEmbeddingParameters |
An op that retrieves optimization parameters from embedding to host memory.
|
RetrieveAllTPUEmbeddingParameters.Inputs |
|
RetrieveTPUEmbeddingAdadeltaParameters |
Retrieve Adadelta embedding parameters.
|
RetrieveTPUEmbeddingAdadeltaParameters.Inputs |
|
RetrieveTPUEmbeddingAdadeltaParameters.Options |
|
RetrieveTPUEmbeddingAdagradMomentumParameters |
Retrieve Adagrad Momentum embedding parameters.
|
RetrieveTPUEmbeddingAdagradMomentumParameters.Inputs |
|
RetrieveTPUEmbeddingAdagradMomentumParameters.Options |
|
RetrieveTPUEmbeddingAdagradParameters |
Retrieve Adagrad embedding parameters.
|
RetrieveTPUEmbeddingAdagradParameters.Inputs |
|
RetrieveTPUEmbeddingAdagradParameters.Options |
|
RetrieveTPUEmbeddingADAMParameters |
Retrieve ADAM embedding parameters.
|
RetrieveTPUEmbeddingADAMParameters.Inputs |
|
RetrieveTPUEmbeddingADAMParameters.Options |
|
RetrieveTPUEmbeddingCenteredRMSPropParameters |
Retrieve centered RMSProp embedding parameters.
|
RetrieveTPUEmbeddingCenteredRMSPropParameters.Inputs |
|
RetrieveTPUEmbeddingCenteredRMSPropParameters.Options |
|
RetrieveTPUEmbeddingFrequencyEstimatorParameters |
Retrieve frequency estimator embedding parameters.
|
RetrieveTPUEmbeddingFrequencyEstimatorParameters.Inputs |
|
RetrieveTPUEmbeddingFrequencyEstimatorParameters.Options |
|
RetrieveTPUEmbeddingFTRLParameters |
Retrieve FTRL embedding parameters.
|
RetrieveTPUEmbeddingFTRLParameters.Inputs |
|
RetrieveTPUEmbeddingFTRLParameters.Options |
|
RetrieveTPUEmbeddingMDLAdagradLightParameters |
Retrieve MDL Adagrad Light embedding parameters.
|
RetrieveTPUEmbeddingMDLAdagradLightParameters.Inputs |
|
RetrieveTPUEmbeddingMDLAdagradLightParameters.Options |
|
RetrieveTPUEmbeddingMomentumParameters |
Retrieve Momentum embedding parameters.
|
RetrieveTPUEmbeddingMomentumParameters.Inputs |
|
RetrieveTPUEmbeddingMomentumParameters.Options |
|
RetrieveTPUEmbeddingProximalAdagradParameters |
Retrieve proximal Adagrad embedding parameters.
|
RetrieveTPUEmbeddingProximalAdagradParameters.Inputs |
|
RetrieveTPUEmbeddingProximalAdagradParameters.Options |
|
RetrieveTPUEmbeddingProximalYogiParameters |
The RetrieveTPUEmbeddingProximalYogiParameters operation
|
RetrieveTPUEmbeddingProximalYogiParameters.Inputs |
|
RetrieveTPUEmbeddingProximalYogiParameters.Options |
|
RetrieveTPUEmbeddingRMSPropParameters |
Retrieve RMSProp embedding parameters.
|
RetrieveTPUEmbeddingRMSPropParameters.Inputs |
|
RetrieveTPUEmbeddingRMSPropParameters.Options |
|
RetrieveTPUEmbeddingStochasticGradientDescentParameters |
Retrieve SGD embedding parameters.
|
RetrieveTPUEmbeddingStochasticGradientDescentParameters.Inputs |
|
RetrieveTPUEmbeddingStochasticGradientDescentParameters.Options |
|
Reverse<T extends TType> |
Reverses specific dimensions of a tensor.
|
Reverse.Inputs<T extends TType> |
|
ReverseSequence<T extends TType> |
Reverses variable length slices.
|
ReverseSequence.Inputs<T extends TType> |
|
ReverseSequence.Options |
|
RewriteDataset |
The RewriteDataset operation
|
RewriteDataset.Inputs |
|
Rfft<U extends TType> |
Real-valued fast Fourier transform.
|
Rfft.Inputs |
|
Rfft2d<U extends TType> |
2D real-valued fast Fourier transform.
|
Rfft2d.Inputs |
|
Rfft3d<U extends TType> |
3D real-valued fast Fourier transform.
|
Rfft3d.Inputs |
|
RfftNd<U extends TType> |
ND fast real Fourier transform.
|
RfftNd.Inputs |
|
RgbToHsv<T extends TNumber> |
Converts one or more images from RGB to HSV.
|
RgbToHsv.Inputs<T extends TNumber> |
|
RightShift<T extends TNumber> |
Elementwise computes the bitwise right-shift of x and y .
|
RightShift.Inputs<T extends TNumber> |
|
Rint<T extends TNumber> |
Returns element-wise integer closest to x.
|
Rint.Inputs<T extends TNumber> |
|
RngReadAndSkip |
Advance the counter of a counter-based RNG.
|
RngReadAndSkip.Inputs |
|
RngSkip |
Advance the counter of a counter-based RNG.
|
RngSkip.Inputs |
|
Roll<T extends TType> |
Rolls the elements of a tensor along an axis.
|
Roll.Inputs<T extends TType> |
|
Round<T extends TType> |
Rounds the values of a tensor to the nearest integer, element-wise.
|
Round.Inputs<T extends TType> |
|
Rsqrt<T extends TType> |
Computes reciprocal of square root of x element-wise.
|
Rsqrt.Inputs<T extends TType> |
|
RsqrtGrad<T extends TType> |
Computes the gradient for the rsqrt of x wrt its input.
|
RsqrtGrad.Inputs<T extends TType> |
|
SampleDistortedBoundingBox<T extends TNumber> |
Generate a single randomly distorted bounding box for an image.
|
SampleDistortedBoundingBox.Inputs<T extends TNumber> |
|
SampleDistortedBoundingBox.Options |
|
SamplingDataset |
Creates a dataset that takes a Bernoulli sample of the contents of another dataset.
|
SamplingDataset.Inputs |
|
Save |
Saves tensors in V2 checkpoint format.
|
Save.Inputs |
|
SaveDataset |
The SaveDatasetV2 operation
|
SaveDataset.Inputs |
|
SaveDataset.Options |
|
SavedModelBundle |
SavedModelBundle represents a model loaded from storage.
|
SavedModelBundle.Exporter |
Options for exporting a SavedModel.
|
SavedModelBundle.Loader |
Options for loading a SavedModel.
|
SaveSlices |
Saves input tensors slices to disk.
|
SaveSlices.Inputs |
|
ScalarSummary |
Outputs a Summary protocol buffer with scalar values.
|
ScalarSummary.Inputs |
|
ScaleAndTranslate |
The ScaleAndTranslate operation
|
ScaleAndTranslate.Inputs |
|
ScaleAndTranslate.Options |
|
ScaleAndTranslateGrad<T extends TNumber> |
The ScaleAndTranslateGrad operation
|
ScaleAndTranslateGrad.Inputs<T extends TNumber> |
|
ScaleAndTranslateGrad.Options |
|
ScanDataset |
Creates a dataset successively reduces f over the elements of input_dataset .
|
ScanDataset |
Creates a dataset successively reduces f over the elements of input_dataset .
|
ScanDataset.Inputs |
|
ScanDataset.Inputs |
|
ScanDataset.Options |
|
ScanDataset.Options |
|
ScatterAdd<T extends TType> |
Adds sparse updates to a variable reference.
|
ScatterAdd.Inputs<T extends TType> |
|
ScatterAdd.Options |
|
ScatterDiv<T extends TType> |
Divides a variable reference by sparse updates.
|
ScatterDiv.Inputs<T extends TType> |
|
ScatterDiv.Options |
|
ScatterMax<T extends TNumber> |
Reduces sparse updates into a variable reference using the max operation.
|
ScatterMax.Inputs<T extends TNumber> |
|
ScatterMax.Options |
|
ScatterMin<T extends TNumber> |
Reduces sparse updates into a variable reference using the min operation.
|
ScatterMin.Inputs<T extends TNumber> |
|
ScatterMin.Options |
|
ScatterMul<T extends TType> |
Multiplies sparse updates into a variable reference.
|
ScatterMul.Inputs<T extends TType> |
|
ScatterMul.Options |
|
ScatterNd<U extends TType> |
Scatters updates into a tensor of shape shape according to indices .
|
ScatterNd.Inputs<T extends TNumber,U extends TType> |
|
ScatterNdAdd<T extends TType> |
Applies sparse addition to individual values or slices in a Variable.
|
ScatterNdAdd.Inputs<T extends TType> |
|
ScatterNdAdd.Options |
|
ScatterNdMax<T extends TType> |
Computes element-wise maximum.
|
ScatterNdMax.Inputs<T extends TType> |
|
ScatterNdMax.Options |
|
ScatterNdMin<T extends TType> |
Computes element-wise minimum.
|
ScatterNdMin.Inputs<T extends TType> |
|
ScatterNdMin.Options |
|
ScatterNdNonAliasingAdd<T extends TType> |
Applies sparse addition to input using individual values or slices
from updates according to indices indices .
|
ScatterNdNonAliasingAdd.Inputs<T extends TType> |
|
ScatterNdSub<T extends TType> |
Applies sparse subtraction to individual values or slices in a Variable.
|
ScatterNdSub.Inputs<T extends TType> |
|
ScatterNdSub.Options |
|
ScatterNdUpdate<T extends TType> |
Applies sparse updates to individual values or slices within a given
variable according to indices .
|
ScatterNdUpdate.Inputs<T extends TType> |
|
ScatterNdUpdate.Options |
|
ScatterSub<T extends TType> |
Subtracts sparse updates to a variable reference.
|
ScatterSub.Inputs<T extends TType> |
|
ScatterSub.Options |
|
ScatterUpdate<T extends TType> |
Applies sparse updates to a variable reference.
|
ScatterUpdate.Inputs<T extends TType> |
|
ScatterUpdate.Options |
|
Scope |
Manages groups of related properties when creating Tensorflow Operations, such as a common name
prefix.
|
SdcaFprint |
Computes fingerprints of the input strings.
|
SdcaFprint.Inputs |
|
SdcaOptimizer |
Distributed version of Stochastic Dual Coordinate Ascent (SDCA) optimizer for
linear models with L1 + L2 regularization.
|
SdcaOptimizer.Inputs |
|
SdcaOptimizer.Options |
|
SdcaShrinkL1 |
Applies L1 regularization shrink step on the parameters.
|
SdcaShrinkL1.Inputs |
|
SegmentMax<T extends TNumber> |
Computes the maximum along segments of a tensor.
|
SegmentMax.Inputs<T extends TNumber> |
|
SegmentMean<T extends TType> |
Computes the mean along segments of a tensor.
|
SegmentMean.Inputs<T extends TType> |
|
SegmentMin<T extends TNumber> |
Computes the minimum along segments of a tensor.
|
SegmentMin.Inputs<T extends TNumber> |
|
SegmentProd<T extends TType> |
Computes the product along segments of a tensor.
|
SegmentProd.Inputs<T extends TType> |
|
SegmentSum<T extends TType> |
Computes the sum along segments of a tensor.
|
SegmentSum.Inputs<T extends TType> |
|
Select<T extends TType> |
The SelectV2 operation
|
Select.Inputs<T extends TType> |
|
SelfAdjointEig<T extends TType> |
Computes the eigen decomposition of one or more square self-adjoint matrices.
|
SelfAdjointEig.Inputs<T extends TType> |
|
SelfAdjointEig.Options |
|
Selu<T extends TNumber> |
Computes scaled exponential linear: scale * alpha * (exp(features) - 1)
if < 0, scale * features otherwise.
|
Selu.Inputs<T extends TNumber> |
|
SeluGrad<T extends TNumber> |
Computes gradients for the scaled exponential linear (Selu) operation.
|
SeluGrad.Inputs<T extends TNumber> |
|
Send |
Sends the named tensor from send_device to recv_device.
|
Send.Inputs |
|
Send.Options |
Optional attributes for Send
|
SendTPUEmbeddingGradients |
Performs gradient updates of embedding tables.
|
SendTPUEmbeddingGradients.Inputs |
|
SendTPUEmbeddingGradients.Options |
|
SerializeIterator |
Converts the given resource_handle representing an iterator to a variant tensor.
|
SerializeIterator.Inputs |
|
SerializeIterator.Options |
|
SerializeManySparse<U extends TType> |
Serialize an N -minibatch SparseTensor into an [N, 3] Tensor object.
|
SerializeManySparse.Inputs |
|
SerializeSparse<U extends TType> |
Serialize a SparseTensor into a [3] Tensor object.
|
SerializeSparse.Inputs |
|
SerializeTensor |
Transforms a Tensor into a serialized TensorProto proto.
|
SerializeTensor.Inputs |
|
Server |
An in-process TensorFlow server, for use in distributed training.
|
Session |
Driver for Graph execution.
|
SessionFunction |
A callable function backed by a session.
|
SetDiff1d<T extends TType,U extends TNumber> |
Computes the difference between two lists of numbers or strings.
|
SetDiff1d.Inputs<T extends TType> |
|
SetSize |
Number of unique elements along last dimension of input set .
|
SetSize.Inputs |
|
SetSize.Options |
|
SetStatsAggregatorDataset |
The ExperimentalSetStatsAggregatorDataset operation
|
SetStatsAggregatorDataset |
The SetStatsAggregatorDataset operation
|
SetStatsAggregatorDataset.Inputs |
|
SetStatsAggregatorDataset.Inputs |
|
Shape<U extends TNumber> |
Returns the shape of a tensor.
|
Shape.Inputs |
|
ShapeN<U extends TNumber> |
Returns shape of tensors.
|
ShapeN.Inputs |
|
ShapeOps |
An API for building shape operations as Op s
|
Shapes |
An operator providing methods on org.tensorflow.op.core.Shape tensors and 1d operands that
represent the dimensions of a shape.
|
ShardDataset |
Creates a Dataset that includes only 1/num_shards of this dataset.
|
ShardDataset.Inputs |
|
ShardDataset.Options |
|
ShardedFilename |
Generate a sharded filename.
|
ShardedFilename.Inputs |
|
ShardedFilespec |
Generate a glob pattern matching all sharded file names.
|
ShardedFilespec.Inputs |
|
ShuffleAndRepeatDataset |
The ShuffleAndRepeatDatasetV2 operation
|
ShuffleAndRepeatDataset.Inputs |
|
ShuffleAndRepeatDataset.Options |
|
ShuffleDataset |
The ShuffleDatasetV3 operation
|
ShuffleDataset.Inputs |
|
ShuffleDataset.Options |
|
ShutdownDistributedTPU |
Shuts down a running distributed TPU system.
|
ShutdownDistributedTPU.Inputs |
|
ShutdownTPUSystem |
An op that shuts down the TPU system.
|
ShutdownTPUSystem.Inputs |
|
Sigmoid<T extends TType> |
Computes sigmoid of x element-wise.
|
Sigmoid.Inputs<T extends TType> |
|
SigmoidGrad<T extends TType> |
Computes the gradient of the sigmoid of x wrt its input.
|
SigmoidGrad.Inputs<T extends TType> |
|
Sign<T extends TType> |
Returns an element-wise indication of the sign of a number.
|
Sign.Inputs<T extends TType> |
|
SignalOps |
An API for building signal operations as Op s
|
Signature |
Describe the inputs and outputs of an executable entity, such as a ConcreteFunction ,
among other useful metadata.
|
Signature.Builder |
Builds a new function signature.
|
Signature.TensorDescription |
|
Sin<T extends TType> |
Computes sine of x element-wise.
|
Sin.Inputs<T extends TType> |
|
Sinh<T extends TType> |
Computes hyperbolic sine of x element-wise.
|
Sinh.Inputs<T extends TType> |
|
Size<U extends TNumber> |
Returns the size of a tensor.
|
Size.Inputs |
|
SkipDataset |
Creates a dataset that skips count elements from the input_dataset .
|
SkipDataset.Inputs |
|
SkipDataset.Options |
|
Skipgram |
Parses a text file and creates a batch of examples.
|
Skipgram.Inputs |
|
Skipgram.Options |
|
SleepDataset |
The ExperimentalSleepDataset operation
|
SleepDataset |
The SleepDataset operation
|
SleepDataset.Inputs |
|
SleepDataset.Inputs |
|
Slice<T extends TType> |
Return a slice from 'input'.
|
Slice.Inputs<T extends TType,U extends TNumber> |
|
SlidingWindowDataset |
Creates a dataset that passes a sliding window over input_dataset .
|
SlidingWindowDataset |
Creates a dataset that passes a sliding window over input_dataset .
|
SlidingWindowDataset.Inputs |
|
SlidingWindowDataset.Inputs |
|
SlidingWindowDataset.Options |
|
Snapshot<T extends TType> |
Returns a copy of the input tensor.
|
Snapshot.Inputs<T extends TType> |
|
SnapshotChunkDataset |
The SnapshotChunkDataset operation
|
SnapshotChunkDataset.Inputs |
|
SnapshotChunkDataset.Options |
|
SnapshotDataset |
Creates a dataset that will write to / read from a snapshot.
|
SnapshotDataset.Inputs |
|
SnapshotDataset.Options |
|
SnapshotDatasetReader |
The SnapshotDatasetReader operation
|
SnapshotDatasetReader.Inputs |
|
SnapshotDatasetReader.Options |
|
SnapshotNestedDatasetReader |
The SnapshotNestedDatasetReader operation
|
SnapshotNestedDatasetReader.Inputs |
|
SobolSample<T extends TNumber> |
Generates points from the Sobol sequence.
|
SobolSample.Inputs |
|
Softmax<T extends TNumber> |
Computes softmax activations.
|
Softmax.Inputs<T extends TNumber> |
|
SoftmaxCrossEntropyWithLogits<T extends TNumber> |
Computes softmax cross entropy cost and gradients to backpropagate.
|
SoftmaxCrossEntropyWithLogits.Inputs<T extends TNumber> |
|
Softplus<T extends TNumber> |
The Softplus operation
|
Softplus.Inputs<T extends TNumber> |
|
SoftplusGrad<T extends TNumber> |
Computes softplus gradients for a softplus operation.
|
SoftplusGrad.Inputs<T extends TNumber> |
|
Softsign<T extends TNumber> |
Computes softsign: features / (abs(features) + 1) .
|
Softsign.Inputs<T extends TNumber> |
|
SoftsignGrad<T extends TNumber> |
Computes softsign gradients for a softsign operation.
|
SoftsignGrad.Inputs<T extends TNumber> |
|
Solve<T extends TType> |
Solves systems of linear equations.
|
Solve.Inputs<T extends TType> |
|
Solve.Options |
Optional attributes for Solve
|
SpaceToBatch<T extends TType> |
SpaceToBatch for 4-D tensors of type T.
|
SpaceToBatch.Inputs<T extends TType> |
|
SpaceToBatchNd<T extends TType> |
SpaceToBatch for N-D tensors of type T.
|
SpaceToBatchNd.Inputs<T extends TType> |
|
SpaceToDepth<T extends TType> |
SpaceToDepth for tensors of type T.
|
SpaceToDepth.Inputs<T extends TType> |
|
SpaceToDepth.Options |
|
SparseAccumulatorApplyGradient |
Applies a sparse gradient to a given accumulator.
|
SparseAccumulatorApplyGradient.Inputs |
|
SparseAccumulatorTakeGradient<T extends TType> |
Extracts the average sparse gradient in a SparseConditionalAccumulator.
|
SparseAccumulatorTakeGradient.Inputs |
|
SparseAdd<T extends TType> |
Adds two SparseTensor objects to produce another SparseTensor .
|
SparseAdd.Inputs<T extends TType> |
|
SparseAddGrad<T extends TType> |
The gradient operator for the SparseAdd op.
|
SparseAddGrad.Inputs<T extends TType> |
|
SparseApplyAdadelta<T extends TType> |
var: Should be from a Variable().
|
SparseApplyAdadelta.Inputs<T extends TType> |
|
SparseApplyAdadelta.Options |
|
SparseApplyAdagrad<T extends TType> |
Update relevant entries in '*var' and '*accum' according to the adagrad scheme.
|
SparseApplyAdagrad.Inputs<T extends TType> |
|
SparseApplyAdagrad.Options |
|
SparseApplyAdagradDa<T extends TType> |
Update entries in '*var' and '*accum' according to the proximal adagrad scheme.
|
SparseApplyAdagradDa.Inputs<T extends TType> |
|
SparseApplyAdagradDa.Options |
|
SparseApplyCenteredRmsProp<T extends TType> |
Update '*var' according to the centered RMSProp algorithm.
|
SparseApplyCenteredRmsProp.Inputs<T extends TType> |
|
SparseApplyCenteredRmsProp.Options |
|
SparseApplyFtrl<T extends TType> |
Update relevant entries in '*var' according to the Ftrl-proximal scheme.
|
SparseApplyFtrl.Inputs<T extends TType> |
|
SparseApplyFtrl.Options |
|
SparseApplyMomentum<T extends TType> |
Update relevant entries in '*var' and '*accum' according to the momentum scheme.
|
SparseApplyMomentum.Inputs<T extends TType> |
|
SparseApplyMomentum.Options |
|
SparseApplyProximalAdagrad<T extends TType> |
Sparse update entries in '*var' and '*accum' according to FOBOS algorithm.
|
SparseApplyProximalAdagrad.Inputs<T extends TType> |
|
SparseApplyProximalAdagrad.Options |
|
SparseApplyProximalGradientDescent<T extends TType> |
Sparse update '*var' as FOBOS algorithm with fixed learning rate.
|
SparseApplyProximalGradientDescent.Inputs<T extends TType> |
|
SparseApplyProximalGradientDescent.Options |
|
SparseApplyRmsProp<T extends TType> |
Update '*var' according to the RMSProp algorithm.
|
SparseApplyRmsProp.Inputs<T extends TType> |
|
SparseApplyRmsProp.Options |
|
SparseBincount<U extends TNumber> |
Counts the number of occurrences of each value in an integer array.
|
SparseBincount.Inputs<T extends TNumber,U extends TNumber> |
|
SparseBincount.Options |
|
SparseConcat<T extends TType> |
Concatenates a list of SparseTensor along the specified dimension.
|
SparseConcat.Inputs<T extends TType> |
|
SparseConditionalAccumulator |
A conditional accumulator for aggregating sparse gradients.
|
SparseConditionalAccumulator.Inputs |
|
SparseConditionalAccumulator.Options |
|
SparseCountSparseOutput<U extends TNumber> |
Performs sparse-output bin counting for a sparse tensor input.
|
SparseCountSparseOutput.Inputs<U extends TNumber> |
|
SparseCountSparseOutput.Options |
|
SparseCross |
Generates sparse cross from a list of sparse and dense tensors.
|
SparseCross.Inputs |
|
SparseCrossHashed |
Generates sparse cross from a list of sparse and dense tensors.
|
SparseCrossHashed.Inputs |
|
SparseDenseCwiseAdd<T extends TType> |
Adds up a SparseTensor and a dense Tensor, using these special rules:
(1) Broadcasts the dense side to have the same shape as the sparse side, if
eligible;
(2) Then, only the dense values pointed to by the indices of the SparseTensor
participate in the cwise addition.
|
SparseDenseCwiseAdd.Inputs<T extends TType> |
|
SparseDenseCwiseDiv<T extends TType> |
Component-wise divides a SparseTensor by a dense Tensor.
|
SparseDenseCwiseDiv.Inputs<T extends TType> |
|
SparseDenseCwiseMul<T extends TType> |
Component-wise multiplies a SparseTensor by a dense Tensor.
|
SparseDenseCwiseMul.Inputs<T extends TType> |
|
SparseFillEmptyRows<T extends TType> |
Fills empty rows in the input 2-D SparseTensor with a default value.
|
SparseFillEmptyRows.Inputs<T extends TType> |
|
SparseFillEmptyRowsGrad<T extends TType> |
The gradient of SparseFillEmptyRows.
|
SparseFillEmptyRowsGrad.Inputs<T extends TType> |
|
SparseMatMul |
Multiply matrix "a" by matrix "b".
|
SparseMatMul.Inputs |
|
SparseMatMul.Options |
|
SparseMatrixAdd |
Sparse addition of two CSR matrices, C = alpha * A + beta * B.
|
SparseMatrixAdd.Inputs<T extends TType> |
|
SparseMatrixMatMul<T extends TType> |
Matrix-multiplies a sparse matrix with a dense matrix.
|
SparseMatrixMatMul.Inputs<T extends TType> |
|
SparseMatrixMatMul.Options |
|
SparseMatrixMul |
Element-wise multiplication of a sparse matrix with a dense tensor.
|
SparseMatrixMul.Inputs |
|
SparseMatrixNNZ |
Returns the number of nonzeroes of sparse_matrix .
|
SparseMatrixNNZ.Inputs |
|
SparseMatrixOrderingAMD |
Computes the Approximate Minimum Degree (AMD) ordering of input .
|
SparseMatrixOrderingAMD.Inputs |
|
SparseMatrixSoftmax |
Calculates the softmax of a CSRSparseMatrix.
|
SparseMatrixSoftmax.Inputs |
|
SparseMatrixSoftmaxGrad |
Calculates the gradient of the SparseMatrixSoftmax op.
|
SparseMatrixSoftmaxGrad.Inputs |
|
SparseMatrixSparseCholesky |
Computes the sparse Cholesky decomposition of input .
|
SparseMatrixSparseCholesky.Inputs |
|
SparseMatrixSparseMatMul |
Sparse-matrix-multiplies two CSR matrices a and b .
|
SparseMatrixSparseMatMul.Inputs |
|
SparseMatrixSparseMatMul.Options |
|
SparseMatrixTranspose |
Transposes the inner (matrix) dimensions of a CSRSparseMatrix.
|
SparseMatrixTranspose.Inputs |
|
SparseMatrixTranspose.Options |
|
SparseMatrixZeros |
Creates an all-zeros CSRSparseMatrix with shape dense_shape .
|
SparseMatrixZeros.Inputs |
|
SparseOps |
An API for building sparse operations as Op s
|
SparseReduceMax<T extends TNumber> |
Computes the max of elements across dimensions of a SparseTensor.
|
SparseReduceMax.Inputs<T extends TNumber> |
|
SparseReduceMax.Options |
|
SparseReduceMaxSparse<T extends TNumber> |
Computes the max of elements across dimensions of a SparseTensor.
|
SparseReduceMaxSparse.Inputs<T extends TNumber> |
|
SparseReduceMaxSparse.Options |
|
SparseReduceSum<T extends TType> |
Computes the sum of elements across dimensions of a SparseTensor.
|
SparseReduceSum.Inputs<T extends TType> |
|
SparseReduceSum.Options |
|
SparseReduceSumSparse<T extends TType> |
Computes the sum of elements across dimensions of a SparseTensor.
|
SparseReduceSumSparse.Inputs<T extends TType> |
|
SparseReduceSumSparse.Options |
|
SparseReorder<T extends TType> |
Reorders a SparseTensor into the canonical, row-major ordering.
|
SparseReorder.Inputs<T extends TType> |
|
SparseReshape |
Reshapes a SparseTensor to represent values in a new dense shape.
|
SparseReshape.Inputs |
|
SparseSegmentMean<T extends TNumber> |
Computes the mean along sparse segments of a tensor.
|
SparseSegmentMean.Inputs<T extends TNumber> |
|
SparseSegmentMean.Options |
|
SparseSegmentMeanGrad<T extends TNumber,U extends TNumber> |
Computes gradients for SparseSegmentMean.
|
SparseSegmentMeanGrad.Inputs<T extends TNumber,U extends TNumber> |
|
SparseSegmentMeanWithNumSegments<T extends TNumber> |
Computes the mean along sparse segments of a tensor.
|
SparseSegmentMeanWithNumSegments.Inputs<T extends TNumber> |
|
SparseSegmentMeanWithNumSegments.Options |
|
SparseSegmentSqrtN<T extends TNumber> |
Computes the sum along sparse segments of a tensor divided by the sqrt of N.
|
SparseSegmentSqrtN.Inputs<T extends TNumber> |
|
SparseSegmentSqrtN.Options |
|
SparseSegmentSqrtNGrad<T extends TNumber,U extends TNumber> |
Computes gradients for SparseSegmentSqrtN.
|
SparseSegmentSqrtNGrad.Inputs<T extends TNumber,U extends TNumber> |
|
SparseSegmentSqrtNWithNumSegments<T extends TNumber> |
Computes the sum along sparse segments of a tensor divided by the sqrt of N.
|
SparseSegmentSqrtNWithNumSegments.Inputs<T extends TNumber> |
|
SparseSegmentSqrtNWithNumSegments.Options |
|
SparseSegmentSum<T extends TNumber> |
Computes the sum along sparse segments of a tensor.
|
SparseSegmentSum.Inputs<T extends TNumber> |
|
SparseSegmentSum.Options |
|
SparseSegmentSumGrad<T extends TNumber,U extends TNumber> |
Computes gradients for SparseSegmentSum.
|
SparseSegmentSumGrad.Inputs<T extends TNumber,U extends TNumber> |
|
SparseSegmentSumWithNumSegments<T extends TNumber> |
Computes the sum along sparse segments of a tensor.
|
SparseSegmentSumWithNumSegments.Inputs<T extends TNumber> |
|
SparseSegmentSumWithNumSegments.Options |
|
SparseSlice<T extends TType> |
Slice a SparseTensor based on the start and size .
|
SparseSlice.Inputs<T extends TType> |
|
SparseSliceGrad<T extends TType> |
The gradient operator for the SparseSlice op.
|
SparseSliceGrad.Inputs<T extends TType> |
|
SparseSoftmax<T extends TNumber> |
Applies softmax to a batched N-D SparseTensor .
|
SparseSoftmax.Inputs<T extends TNumber> |
|
SparseSoftmaxCrossEntropyWithLogits<T extends TNumber> |
Computes softmax cross entropy cost and gradients to backpropagate.
|
SparseSoftmaxCrossEntropyWithLogits.Inputs<T extends TNumber> |
|
SparseSparseMaximum<T extends TNumber> |
Returns the element-wise max of two SparseTensors.
|
SparseSparseMaximum.Inputs<T extends TNumber> |
|
SparseSparseMinimum<T extends TType> |
Returns the element-wise min of two SparseTensors.
|
SparseSparseMinimum.Inputs<T extends TType> |
|
SparseSplit<T extends TType> |
Split a SparseTensor into num_split tensors along one dimension.
|
SparseSplit.Inputs<T extends TType> |
|
SparseTensor<T extends TType> |
A virtual type of Tensor composed of three dense tensors (indices, values and dimensions)
used to represent the sparse data into a multi-dimensional dense space.
|
SparseTensorDenseAdd<U extends TType> |
Adds up a SparseTensor and a dense Tensor , producing a dense Tensor .
|
SparseTensorDenseAdd.Inputs<T extends TNumber,U extends TType> |
|
SparseTensorDenseMatMul<U extends TType> |
Multiply SparseTensor (of rank 2) "A" by dense matrix "B".
|
SparseTensorDenseMatMul.Inputs<U extends TType> |
|
SparseTensorDenseMatMul.Options |
|
SparseTensorSliceDataset |
Creates a dataset that splits a SparseTensor into elements row-wise.
|
SparseTensorSliceDataset.Inputs |
|
SparseTensorToCSRSparseMatrix |
Converts a SparseTensor to a (possibly batched) CSRSparseMatrix.
|
SparseTensorToCSRSparseMatrix.Inputs |
|
SparseToDense<U extends TType> |
Converts a sparse representation into a dense tensor.
|
SparseToDense.Inputs<T extends TNumber,U extends TType> |
|
SparseToDense.Options |
|
SparseToSparseSetOperation<T extends TType> |
Applies set operation along last dimension of 2 SparseTensor inputs.
|
SparseToSparseSetOperation.Inputs<T extends TType> |
|
SparseToSparseSetOperation.Options |
|
Spence<T extends TNumber> |
The Spence operation
|
Spence.Inputs<T extends TNumber> |
|
Split<T extends TType> |
Splits a tensor into num_split tensors along one dimension.
|
Split.Inputs<T extends TType> |
|
SplitDedupData<T extends TNumber,U extends TNumber> |
An op splits input deduplication data XLA tuple into integer and floating point
tensors.
|
SplitDedupData.Inputs |
|
SplitDedupData.Options |
|
SplitND<T extends TType> |
Splits input tensor across all dimensions.
|
SplitND.Inputs<T extends TType> |
|
SplitND.Options |
|
SplitV<T extends TType> |
Splits a tensor into num_split tensors along one dimension.
|
SplitV.Inputs<T extends TType> |
|
SqlDataset |
Creates a dataset that executes a SQL query and emits rows of the result set.
|
SqlDataset |
Creates a dataset that executes a SQL query and emits rows of the result set.
|
SqlDataset.Inputs |
|
SqlDataset.Inputs |
|
Sqrt<T extends TType> |
Computes square root of x element-wise.
|
Sqrt.Inputs<T extends TType> |
|
SqrtGrad<T extends TType> |
Computes the gradient for the sqrt of x wrt its input.
|
SqrtGrad.Inputs<T extends TType> |
|
Sqrtm<T extends TType> |
Computes the matrix square root of one or more square matrices:
matmul(sqrtm(A), sqrtm(A)) = A
|
Sqrtm.Inputs<T extends TType> |
|
Square<T extends TType> |
Computes square of x element-wise.
|
Square.Inputs<T extends TType> |
|
SquaredDifference<T extends TType> |
Returns conj(x - y)(x - y) element-wise.
|
SquaredDifference.Inputs<T extends TType> |
|
Squeeze<T extends TType> |
Removes dimensions of size 1 from the shape of a tensor.
|
Squeeze.Inputs<T extends TType> |
|
Squeeze.Options |
|
Stack<T extends TType> |
Packs a list of N rank-R tensors into one rank-(R+1) tensor.
|
Stack.Inputs<T extends TType> |
|
Stack.Options |
Optional attributes for Stack
|
StackClose |
Delete the stack from its resource container.
|
StackClose.Inputs |
|
StackCreate |
A stack that produces elements in first-in last-out order.
|
StackCreate.Inputs |
|
StackCreate.Options |
|
StackPop<T extends TType> |
Pop the element at the top of the stack.
|
StackPop.Inputs |
|
StackPush<T extends TType> |
Push an element onto the stack.
|
StackPush.Inputs<T extends TType> |
|
StackPush.Options |
|
Stage |
Stage values similar to a lightweight Enqueue.
|
Stage.Inputs |
|
Stage.Options |
Optional attributes for Stage
|
StageClear |
Op removes all elements in the underlying container.
|
StageClear.Inputs |
|
StageClear.Options |
|
StagePeek |
Op peeks at the values at the specified index.
|
StagePeek.Inputs |
|
StagePeek.Options |
|
StageSize |
Op returns the number of elements in the underlying container.
|
StageSize.Inputs |
|
StageSize.Options |
|
StatefulCase |
An n-way switch statement which calls a single branch function.
|
StatefulCase.Inputs |
|
StatefulIf |
output = cond ? then_branch(input) : else_branch(input)
|
StatefulIf.Inputs |
|
StatefulPartitionedCall |
returns f(inputs) , where f 's body is placed and partitioned.
|
StatefulPartitionedCall.Inputs |
|
StatefulPartitionedCall.Options |
|
StatefulRandomBinomial<V extends TNumber> |
The StatefulRandomBinomial operation
|
StatefulRandomBinomial.Inputs<U extends TNumber> |
|
StatefulStandardNormal<U extends TType> |
Outputs random values from a normal distribution.
|
StatefulStandardNormal.Inputs |
|
StatefulTruncatedNormal<U extends TType> |
Outputs random values from a truncated normal distribution.
|
StatefulTruncatedNormal.Inputs |
|
StatefulUniform<U extends TType> |
Outputs random values from a uniform distribution.
|
StatefulUniform.Inputs |
|
StatefulUniformFullInt<U extends TType> |
Outputs random integers from a uniform distribution.
|
StatefulUniformFullInt.Inputs |
|
StatefulUniformInt<U extends TType> |
Outputs random integers from a uniform distribution.
|
StatefulUniformInt.Inputs<U extends TType> |
|
StatefulWhile |
output = input; While (Cond(output)) { output = Body(output) }
|
StatefulWhile.Inputs |
|
StatelessCase |
An n-way switch statement which calls a single branch function.
|
StatelessCase.Inputs |
|
StatelessIf |
output = cond ? then_branch(input) : else_branch(input)
|
StatelessIf.Inputs |
|
StatelessMultinomial<V extends TNumber> |
Draws samples from a multinomial distribution.
|
StatelessMultinomial.Inputs |
|
StatelessParameterizedTruncatedNormal<V extends TNumber> |
The StatelessParameterizedTruncatedNormal operation
|
StatelessParameterizedTruncatedNormal.Inputs<V extends TNumber> |
|
StatelessRandomBinomial<W extends TNumber> |
Outputs deterministic pseudorandom random numbers from a binomial distribution.
|
StatelessRandomBinomial.Inputs<V extends TNumber> |
|
StatelessRandomGamma<U extends TNumber> |
Outputs deterministic pseudorandom random numbers from a gamma distribution.
|
StatelessRandomGamma.Inputs<U extends TNumber> |
|
StatelessRandomGetAlg |
Picks the best counter-based RNG algorithm based on device.
|
StatelessRandomGetAlg.Inputs |
|
StatelessRandomGetKeyCounter |
Scrambles seed into key and counter, using the best algorithm based on device.
|
StatelessRandomGetKeyCounter.Inputs |
|
StatelessRandomGetKeyCounterAlg |
Picks the best algorithm based on device, and scrambles seed into key and counter.
|
StatelessRandomGetKeyCounterAlg.Inputs |
|
StatelessRandomNormal<V extends TNumber> |
Outputs deterministic pseudorandom values from a normal distribution.
|
StatelessRandomNormal.Inputs |
|
StatelessRandomNormalV2<U extends TNumber> |
Outputs deterministic pseudorandom values from a normal distribution.
|
StatelessRandomNormalV2.Inputs |
|
StatelessRandomPoisson<W extends TNumber> |
Outputs deterministic pseudorandom random numbers from a Poisson distribution.
|
StatelessRandomPoisson.Inputs |
|
StatelessRandomUniform<V extends TNumber> |
Outputs deterministic pseudorandom random values from a uniform distribution.
|
StatelessRandomUniform.Inputs |
|
StatelessRandomUniformFullInt<V extends TNumber> |
Outputs deterministic pseudorandom random integers from a uniform distribution.
|
StatelessRandomUniformFullInt.Inputs |
|
StatelessRandomUniformFullIntV2<U extends TNumber> |
Outputs deterministic pseudorandom random integers from a uniform distribution.
|
StatelessRandomUniformFullIntV2.Inputs |
|
StatelessRandomUniformInt<V extends TNumber> |
Outputs deterministic pseudorandom random integers from a uniform distribution.
|
StatelessRandomUniformInt.Inputs<V extends TNumber> |
|
StatelessRandomUniformIntV2<U extends TNumber> |
Outputs deterministic pseudorandom random integers from a uniform distribution.
|
StatelessRandomUniformIntV2.Inputs<U extends TNumber> |
|
StatelessRandomUniformV2<U extends TNumber> |
Outputs deterministic pseudorandom random values from a uniform distribution.
|
StatelessRandomUniformV2.Inputs |
|
StatelessSampleDistortedBoundingBox<T extends TNumber> |
Generate a randomly distorted bounding box for an image deterministically.
|
StatelessSampleDistortedBoundingBox.Inputs<T extends TNumber> |
|
StatelessSampleDistortedBoundingBox.Options |
|
StatelessShuffle<T extends TType> |
Randomly and deterministically shuffles a tensor along its first dimension.
|
StatelessShuffle.Inputs<T extends TType> |
|
StatelessTruncatedNormal<V extends TNumber> |
Outputs deterministic pseudorandom values from a truncated normal distribution.
|
StatelessTruncatedNormal.Inputs |
|
StatelessTruncatedNormalV2<U extends TNumber> |
Outputs deterministic pseudorandom values from a truncated normal distribution.
|
StatelessTruncatedNormalV2.Inputs |
|
StatelessWhile |
output = input; While (Cond(output)) { output = Body(output) }
|
StatelessWhile.Inputs |
|
StaticRegexFullMatch |
Check if the input matches the regex pattern.
|
StaticRegexFullMatch.Inputs |
|
StaticRegexReplace |
Replaces the match of pattern in input with rewrite.
|
StaticRegexReplace.Inputs |
|
StaticRegexReplace.Options |
|
StatsAggregatorHandle |
Creates a statistics manager resource.
|
StatsAggregatorHandle |
The StatsAggregatorHandleV2 operation
|
StatsAggregatorHandle.Inputs |
|
StatsAggregatorHandle.Inputs |
|
StatsAggregatorHandle.Options |
|
StatsAggregatorHandle.Options |
|
StatsAggregatorSetSummaryWriter |
Set a summary_writer_interface to record statistics using given stats_aggregator.
|
StatsAggregatorSetSummaryWriter.Inputs |
|
StatsAggregatorSummary |
Produces a summary of any statistics recorded by the given statistics manager.
|
StatsAggregatorSummary |
Produces a summary of any statistics recorded by the given statistics manager.
|
StatsAggregatorSummary.Inputs |
|
StatsAggregatorSummary.Inputs |
|
StochasticCastToInt<U extends TNumber> |
Stochastically cast a given tensor from floats to ints.
|
StochasticCastToInt.Inputs |
|
StopGradient<T extends TType> |
Stops gradient computation.
|
StopGradient.Inputs<T extends TType> |
|
StoreMinibatchStatisticsInFdo |
The StoreMinibatchStatisticsInFdo operation
|
StoreMinibatchStatisticsInFdo.Inputs |
|
StridedSlice<T extends TType> |
Return a strided slice from input .
|
StridedSlice.Inputs<T extends TType,U extends TNumber> |
|
StridedSlice.Options |
|
StridedSliceAssign<T extends TType> |
Assign value to the sliced l-value reference of ref .
|
StridedSliceAssign.Inputs<T extends TType,U extends TNumber> |
|
StridedSliceAssign.Options |
|
StridedSliceGrad<U extends TType> |
Returns the gradient of StridedSlice .
|
StridedSliceGrad.Inputs<T extends TNumber,U extends TType> |
|
StridedSliceGrad.Options |
|
StridedSliceHelper |
Helper endpoint methods for Python like indexing.
|
StringFormat |
Formats a string template using a list of tensors.
|
StringFormat.Inputs |
|
StringFormat.Options |
|
StringLength |
String lengths of input .
|
StringLength.Inputs |
|
StringLength.Options |
|
StringNGrams<T extends TNumber> |
Creates ngrams from ragged string data.
|
StringNGrams.Inputs<T extends TNumber> |
|
StringsOps |
An API for building strings operations as Op s
|
StringSplit |
Split elements of source based on sep into a SparseTensor .
|
StringSplit.Inputs |
|
StringSplit.Options |
|
Strip |
Strip leading and trailing whitespaces from the Tensor.
|
Strip.Inputs |
|
Sub<T extends TType> |
Returns x - y element-wise.
|
Sub.Inputs<T extends TType> |
|
Substr |
Return substrings from Tensor of strings.
|
Substr.Inputs<T extends TNumber> |
|
Substr.Options |
Optional attributes for Substr
|
Sum<T extends TType> |
Computes the sum of elements across dimensions of a tensor.
|
Sum.Inputs<T extends TType> |
|
Sum.Options |
Optional attributes for Sum
|
SummaryOps |
An API for building summary operations as Op s
|
SummaryWriter |
The SummaryWriter operation
|
SummaryWriter.Inputs |
|
SummaryWriter.Options |
|
Svd<T extends TType> |
Computes the singular value decompositions of one or more matrices.
|
Svd.Inputs<T extends TType> |
|
Svd.Options |
Optional attributes for Svd
|
SwitchCond<T extends TType> |
Forwards data to the output port determined by pred .
|
SwitchCond.Inputs<T extends TType> |
|
SymbolicGradient |
Computes the gradient function for function f via backpropagation.
|
SymbolicGradient.Inputs |
|
SyncDevice |
Synchronizes the device this op is run on.
|
SyncDevice.Inputs |
|
TakeDataset |
Creates a dataset that contains count elements from the input_dataset .
|
TakeDataset.Inputs |
|
TakeDataset.Options |
|
TakeManySparseFromTensorsMap<T extends TType> |
Read SparseTensors from a SparseTensorsMap and concatenate them.
|
TakeManySparseFromTensorsMap.Inputs |
|
TakeManySparseFromTensorsMap.Options |
|
TakeWhileDataset |
Creates a dataset that stops iteration when predicate` is false.
|
TakeWhileDataset |
Creates a dataset that stops iteration when predicate` is false.
|
TakeWhileDataset.Inputs |
|
TakeWhileDataset.Inputs |
|
TakeWhileDataset.Options |
|
Tan<T extends TType> |
Computes tan of x element-wise.
|
Tan.Inputs<T extends TType> |
|
Tanh<T extends TType> |
Computes hyperbolic tangent of x element-wise.
|
Tanh.Inputs<T extends TType> |
|
TanhGrad<T extends TType> |
Computes the gradient for the tanh of x wrt its input.
|
TanhGrad.Inputs<T extends TType> |
|
TBfloat16 |
Brain 16-bit float tensor type.
|
TBool |
Boolean tensor type.
|
TemporaryVariable<T extends TType> |
Returns a tensor that may be mutated, but only persists within a single step.
|
TemporaryVariable.Inputs |
|
TemporaryVariable.Options |
|
Tensor |
A statically typed multi-dimensional array.
|
TensorArray |
An array of Tensors of given size.
|
TensorArray.Inputs |
|
TensorArray.Options |
|
TensorArrayClose |
Delete the TensorArray from its resource container.
|
TensorArrayClose.Inputs |
|
TensorArrayConcat<T extends TType> |
Concat the elements from the TensorArray into value value .
|
TensorArrayConcat.Inputs |
|
TensorArrayConcat.Options |
|
TensorArrayGather<T extends TType> |
Gather specific elements from the TensorArray into output value .
|
TensorArrayGather.Inputs |
|
TensorArrayGather.Options |
|
TensorArrayGrad |
Creates a TensorArray for storing the gradients of values in the given handle.
|
TensorArrayGrad.Inputs |
|
TensorArrayGradWithShape |
Creates a TensorArray for storing multiple gradients of values in the given handle.
|
TensorArrayGradWithShape.Inputs |
|
TensorArrayPack<T extends TType> |
The TensorArrayPack operation
|
TensorArrayPack.Inputs |
|
TensorArrayPack.Options |
|
TensorArrayRead<T extends TType> |
Read an element from the TensorArray into output value .
|
TensorArrayRead.Inputs |
|
TensorArrayScatter |
Scatter the data from the input value into specific TensorArray elements.
|
TensorArrayScatter.Inputs |
|
TensorArraySize |
Get the current size of the TensorArray.
|
TensorArraySize.Inputs |
|
TensorArraySplit |
Split the data from the input value into TensorArray elements.
|
TensorArraySplit.Inputs |
|
TensorArrayUnpack |
The TensorArrayUnpack operation
|
TensorArrayUnpack.Inputs |
|
TensorArrayWrite |
Push an element onto the tensor_array.
|
TensorArrayWrite.Inputs |
|
TensorDataset |
Creates a dataset that emits components as a tuple of tensors once.
|
TensorDataset.Inputs |
|
TensorDataset.Options |
|
TensorDiag<T extends TType> |
Returns a diagonal tensor with a given diagonal values.
|
TensorDiag.Inputs<T extends TType> |
|
TensorDiagPart<T extends TType> |
Returns the diagonal part of the tensor.
|
TensorDiagPart.Inputs<T extends TType> |
|
TensorFlow |
Static utility methods describing the TensorFlow runtime.
|
TensorFunction |
A function that can be called with tensors.
|
TensorListConcat<U extends TType> |
Concats all tensors in the list along the 0th dimension.
|
TensorListConcat.Inputs |
|
TensorListConcatLists |
The TensorListConcatLists operation
|
TensorListConcatLists.Inputs |
|
TensorListElementShape<T extends TNumber> |
The shape of the elements of the given list, as a tensor.
|
TensorListElementShape.Inputs |
|
TensorListFromTensor |
Creates a TensorList which, when stacked, has the value of tensor .
|
TensorListFromTensor.Inputs |
|
TensorListGather<T extends TType> |
Creates a Tensor by indexing into the TensorList.
|
TensorListGather.Inputs |
|
TensorListGetItem<T extends TType> |
Returns the item in the list with the given index.
|
TensorListGetItem.Inputs |
|
TensorListLength |
Returns the number of tensors in the input tensor list.
|
TensorListLength.Inputs |
|
TensorListPopBack<T extends TType> |
Returns the last element of the input list as well as a list with all but that element.
|
TensorListPopBack.Inputs |
|
TensorListPushBack |
Returns a list which has the passed-in Tensor as last element and the other elements of the given list in input_handle .
|
TensorListPushBack.Inputs |
|
TensorListPushBackBatch |
The TensorListPushBackBatch operation
|
TensorListPushBackBatch.Inputs |
|
TensorListReserve |
List of the given size with empty elements.
|
TensorListReserve.Inputs |
|
TensorListResize |
Resizes the list.
|
TensorListResize.Inputs |
|
TensorListScatter |
Creates a TensorList by indexing into a Tensor.
|
TensorListScatter.Inputs |
|
TensorListScatterIntoExistingList |
Scatters tensor at indices in an input list.
|
TensorListScatterIntoExistingList.Inputs |
|
TensorListSetItem |
Sets the index-th position of the list to contain the given tensor.
|
TensorListSetItem.Inputs |
|
TensorListSetItem.Options |
|
TensorListSplit |
Splits a tensor into a list.
|
TensorListSplit.Inputs |
|
TensorListStack<T extends TType> |
Stacks all tensors in the list.
|
TensorListStack.Inputs |
|
TensorListStack.Options |
|
TensorMapErase |
Returns a tensor map with item from given key erased.
|
TensorMapErase.Inputs |
|
TensorMapHasKey |
Returns whether the given key exists in the map.
|
TensorMapHasKey.Inputs |
|
TensorMapInsert |
Returns a map that is the 'input_handle' with the given key-value pair inserted.
|
TensorMapInsert.Inputs |
|
TensorMapLookup<U extends TType> |
Returns the value from a given key in a tensor map.
|
TensorMapLookup.Inputs |
|
TensorMapper<T extends TType> |
Maps the native memory of a RawTensor to a n-dimensional typed data space accessible from
the JVM.
|
TensorMapSize |
Returns the number of tensors in the input tensor map.
|
TensorMapSize.Inputs |
|
TensorMapStackKeys<T extends TType> |
Returns a Tensor stack of all keys in a tensor map.
|
TensorMapStackKeys.Inputs |
|
TensorScatterNdAdd<T extends TType> |
Adds sparse updates to an existing tensor according to indices .
|
TensorScatterNdAdd.Inputs<T extends TType> |
|
TensorScatterNdMax<T extends TType> |
Apply a sparse update to a tensor taking the element-wise maximum.
|
TensorScatterNdMax.Inputs<T extends TType> |
|
TensorScatterNdMin<T extends TType> |
The TensorScatterMin operation
|
TensorScatterNdMin.Inputs<T extends TType> |
|
TensorScatterNdSub<T extends TType> |
Subtracts sparse updates from an existing tensor according to indices .
|
TensorScatterNdSub.Inputs<T extends TType> |
|
TensorScatterNdUpdate<T extends TType> |
Scatter updates into an existing tensor according to indices .
|
TensorScatterNdUpdate.Inputs<T extends TType> |
|
TensorSliceDataset |
Creates a dataset that emits each dim-0 slice of components once.
|
TensorSliceDataset.Inputs |
|
TensorSliceDataset.Options |
|
TensorStridedSliceUpdate<T extends TType> |
Assign value to the sliced l-value reference of input .
|
TensorStridedSliceUpdate.Inputs<T extends TType,U extends TNumber> |
|
TensorStridedSliceUpdate.Options |
|
TensorSummary |
Outputs a Summary protocol buffer with a tensor and per-plugin data.
|
TensorSummary.Inputs |
|
TensorType |
Annotation for all tensor types.
|
TextLineDataset |
Creates a dataset that emits the lines of one or more text files.
|
TextLineDataset.Inputs |
|
TextLineDataset.Options |
|
TextLineReader |
A Reader that outputs the lines of a file delimited by '\n'.
|
TextLineReader.Inputs |
|
TextLineReader.Options |
|
TFloat16 |
IEEE-754 half-precision 16-bit float tensor type.
|
TFloat32 |
IEEE-754 single-precision 32-bit float tensor type.
|
TFloat64 |
IEEE-754 double-precision 64-bit float tensor type.
|
TFloating |
Common interface for all floating point tensors.
|
TfRecordDataset |
Creates a dataset that emits the records from one or more TFRecord files.
|
TfRecordDataset.Inputs |
|
TfRecordDataset.Options |
|
TfRecordReader |
A Reader that outputs the records from a TensorFlow Records file.
|
TfRecordReader.Inputs |
|
TfRecordReader.Options |
|
ThreadPoolDataset |
Creates a dataset that uses a custom thread pool to compute input_dataset .
|
ThreadPoolDataset |
Creates a dataset that uses a custom thread pool to compute input_dataset .
|
ThreadPoolDataset.Inputs |
|
ThreadPoolDataset.Inputs |
|
ThreadPoolHandle |
Creates a dataset that uses a custom thread pool to compute input_dataset .
|
ThreadPoolHandle |
Creates a dataset that uses a custom thread pool to compute input_dataset .
|
ThreadPoolHandle.Inputs |
|
ThreadPoolHandle.Inputs |
|
ThreadPoolHandle.Options |
|
ThreadPoolHandle.Options |
|
ThreadUnsafeUnigramCandidateSampler |
Generates labels for candidate sampling with a learned unigram distribution.
|
ThreadUnsafeUnigramCandidateSampler.Inputs |
|
ThreadUnsafeUnigramCandidateSampler.Options |
|
Tile<T extends TType> |
Constructs a tensor by tiling a given tensor.
|
Tile.Inputs<T extends TType> |
|
TileGrad<T extends TType> |
Returns the gradient of Tile .
|
TileGrad.Inputs<T extends TType> |
|
Timestamp |
Provides the time since epoch in seconds.
|
Timestamp.Inputs |
|
TInt32 |
32-bit signed integer tensor type.
|
TInt64 |
64-bit signed integer tensor type.
|
TIntegral |
Common interface for all integral numeric tensors.
|
TNumber |
Common interface for all numeric tensors.
|
ToBool |
Converts a tensor to a scalar predicate.
|
ToBool.Inputs |
|
ToHashBucket |
Converts each string in the input Tensor to its hash mod by a number of buckets.
|
ToHashBucket.Inputs |
|
ToHashBucketFast |
Converts each string in the input Tensor to its hash mod by a number of buckets.
|
ToHashBucketFast.Inputs |
|
ToHashBucketStrong |
Converts each string in the input Tensor to its hash mod by a number of buckets.
|
ToHashBucketStrong.Inputs |
|
ToNumber<T extends TNumber> |
Converts each string in the input Tensor to the specified numeric type.
|
ToNumber.Inputs |
|
TopK<T extends TNumber,V extends TNumber> |
Finds values and indices of the k largest elements for the last dimension.
|
TopK.Inputs<T extends TNumber> |
|
TopK.Options |
Optional attributes for TopK
|
TopKUnique |
Returns the TopK unique values in the array in sorted order.
|
TopKUnique.Inputs |
|
TopKWithUnique |
Returns the TopK values in the array in sorted order.
|
TopKWithUnique.Inputs |
|
TPUAnnotateTensorsWithDynamicShape |
The TPUAnnotateTensorsWithDynamicShape operation
|
TPUAnnotateTensorsWithDynamicShape.Inputs |
|
TPUCompilationResult |
Deprecated.
|
TPUCompilationResult.Inputs |
|
TPUCopyWithDynamicShape |
Op that copies host tensor to device with dynamic shape support.
|
TPUCopyWithDynamicShape.Inputs |
|
TPUEmbeddingActivations |
Deprecated.
|
TPUEmbeddingActivations.Inputs |
|
TpuHandleToProtoKey |
Converts XRT's uid handles to TensorFlow-friendly input format.
|
TpuHandleToProtoKey.Inputs |
|
TpuOps |
An API for building tpu operations as Op s
|
TPUReplicatedInput<T extends TType> |
Deprecated.
|
TPUReplicatedInput.Inputs<T extends TType> |
|
TPUReplicatedInput.Options |
|
TPUReplicatedOutput<T extends TType> |
Deprecated.
|
TPUReplicatedOutput.Inputs<T extends TType> |
|
TPUReplicateMetadata |
Deprecated.
|
TPUReplicateMetadata.Inputs |
|
TPUReplicateMetadata.Options |
|
TPUReshardVariables |
Op that reshards on-device TPU variables to specified state.
|
TPUReshardVariables.Inputs |
|
TPURoundRobin |
Round-robin load balancing on TPU cores.
|
TPURoundRobin.Inputs |
|
TrainOps |
An API for building train operations as Op s
|
Transpose<T extends TType> |
Shuffle dimensions of x according to a permutation.
|
Transpose.Inputs<T extends TType> |
|
TriangularSolve<T extends TType> |
Solves systems of linear equations with upper or lower triangular matrices by backsubstitution.
|
TriangularSolve.Inputs<T extends TType> |
|
TriangularSolve.Options |
|
TridiagonalMatMul<T extends TType> |
Calculate product with tridiagonal matrix.
|
TridiagonalMatMul.Inputs<T extends TType> |
|
TridiagonalSolve<T extends TType> |
Solves tridiagonal systems of equations.
|
TridiagonalSolve.Inputs<T extends TType> |
|
TridiagonalSolve.Options |
|
TruncateDiv<T extends TType> |
Returns x / y element-wise, rounded towards zero.
|
TruncateDiv.Inputs<T extends TType> |
|
TruncatedNormal<U extends TNumber> |
Outputs random values from a truncated normal distribution.
|
TruncatedNormal.Inputs |
|
TruncatedNormal.Options |
|
TruncateMod<T extends TNumber> |
Returns element-wise remainder of division.
|
TruncateMod.Inputs<T extends TNumber> |
|
TString |
String type.
|
TType |
Common interface for all typed tensors.
|
TUint16 |
16-bit unsigned integer tensor type.
|
TUint8 |
8-bit unsigned integer tensor type.
|
Unbatch<T extends TType> |
Reverses the operation of Batch for a single output Tensor.
|
Unbatch.Inputs<T extends TType> |
|
Unbatch.Options |
|
UnbatchDataset |
A dataset that splits the elements of its input into multiple elements.
|
UnbatchDataset |
A dataset that splits the elements of its input into multiple elements.
|
UnbatchDataset.Inputs |
|
UnbatchDataset.Inputs |
|
UnbatchDataset.Options |
|
UnbatchGrad<T extends TType> |
Gradient of Unbatch.
|
UnbatchGrad.Inputs<T extends TType> |
|
UnbatchGrad.Options |
|
UncompressElement |
Uncompresses a compressed dataset element.
|
UncompressElement.Inputs |
|
UnicodeDecode<T extends TNumber> |
Decodes each string in input into a sequence of Unicode code points.
|
UnicodeDecode.Inputs |
|
UnicodeDecode.Options |
|
UnicodeDecodeWithOffsets<T extends TNumber> |
Decodes each string in input into a sequence of Unicode code points.
|
UnicodeDecodeWithOffsets.Inputs |
|
UnicodeDecodeWithOffsets.Options |
|
UnicodeEncode |
Encode a tensor of ints into unicode strings.
|
UnicodeEncode.Inputs |
|
UnicodeEncode.Options |
|
UnicodeScript |
Determine the script codes of a given tensor of Unicode integer code points.
|
UnicodeScript.Inputs |
|
UnicodeTranscode |
Transcode the input text from a source encoding to a destination encoding.
|
UnicodeTranscode.Inputs |
|
UnicodeTranscode.Options |
|
UniformCandidateSampler |
Generates labels for candidate sampling with a uniform distribution.
|
UniformCandidateSampler.Inputs |
|
UniformCandidateSampler.Options |
|
UniformDequantize<U extends TNumber> |
Perform dequantization on the quantized Tensor input .
|
UniformDequantize.Inputs |
|
UniformDequantize.Options |
|
UniformQuantize<U extends TNumber> |
Perform quantization on Tensor input .
|
UniformQuantize.Inputs |
|
UniformQuantize.Options |
|
UniformQuantizedAdd<T extends TNumber> |
Perform quantized add of quantized Tensor lhs and quantized Tensor rhs to make quantized output .
|
UniformQuantizedAdd.Inputs<T extends TNumber> |
|
UniformQuantizedAdd.Options |
|
UniformQuantizedClipByValue<T extends TNumber> |
Perform clip by value on the quantized Tensor operand .
|
UniformQuantizedClipByValue.Inputs<T extends TNumber> |
|
UniformQuantizedClipByValue.Options |
|
UniformQuantizedConvolution<U extends TNumber> |
Perform quantized convolution of quantized Tensor lhs and quantized Tensor rhs .
|
UniformQuantizedConvolution.Inputs<T extends TNumber> |
|
UniformQuantizedConvolution.Options |
|
UniformQuantizedConvolutionHybrid<V extends TNumber> |
Perform hybrid quantized convolution of float Tensor lhs and quantized Tensor rhs .
|
UniformQuantizedConvolutionHybrid.Inputs |
|
UniformQuantizedConvolutionHybrid.Options |
|
UniformQuantizedDot<U extends TNumber> |
Perform quantized dot of quantized Tensor lhs and quantized Tensor rhs to make quantized output .
|
UniformQuantizedDot.Inputs<T extends TNumber> |
|
UniformQuantizedDot.Options |
|
UniformQuantizedDotHybrid<V extends TNumber> |
Perform hybrid quantized dot of float Tensor lhs and quantized Tensor rhs .
|
UniformQuantizedDotHybrid.Inputs |
|
UniformQuantizedDotHybrid.Options |
|
UniformRequantize<U extends TNumber> |
Given quantized tensor input , requantize it with new quantization parameters.
|
UniformRequantize.Inputs |
|
UniformRequantize.Options |
|
Unique<T extends TType,V extends TNumber> |
Finds unique elements along an axis of a tensor.
|
Unique.Inputs<T extends TType> |
|
UniqueDataset |
Creates a dataset that contains the unique elements of input_dataset .
|
UniqueDataset |
Creates a dataset that contains the unique elements of input_dataset .
|
UniqueDataset.Inputs |
|
UniqueDataset.Inputs |
|
UniqueDataset.Options |
|
UniqueWithCounts<T extends TType,V extends TNumber> |
Finds unique elements along an axis of a tensor.
|
UniqueWithCounts.Inputs<T extends TType> |
|
UnravelIndex<T extends TNumber> |
Converts an array of flat indices into a tuple of coordinate arrays.
|
UnravelIndex.Inputs<T extends TNumber> |
|
UnsortedSegmentJoin |
The UnsortedSegmentJoin operation
|
UnsortedSegmentJoin.Inputs |
|
UnsortedSegmentJoin.Options |
|
UnsortedSegmentMax<T extends TNumber> |
Computes the maximum along segments of a tensor.
|
UnsortedSegmentMax.Inputs<T extends TNumber> |
|
UnsortedSegmentMin<T extends TNumber> |
Computes the minimum along segments of a tensor.
|
UnsortedSegmentMin.Inputs<T extends TNumber> |
|
UnsortedSegmentProd<T extends TType> |
Computes the product along segments of a tensor.
|
UnsortedSegmentProd.Inputs<T extends TType> |
|
UnsortedSegmentSum<T extends TType> |
Computes the sum along segments of a tensor.
|
UnsortedSegmentSum.Inputs<T extends TType> |
|
Unstack<T extends TType> |
Unpacks a given dimension of a rank-R tensor into num rank-(R-1) tensors.
|
Unstack.Inputs<T extends TType> |
|
Unstack.Options |
|
Unstage |
Op is similar to a lightweight Dequeue.
|
Unstage.Inputs |
|
Unstage.Options |
|
UnwrapDatasetVariant |
The UnwrapDatasetVariant operation
|
UnwrapDatasetVariant.Inputs |
|
Upper |
Converts all lowercase characters into their respective uppercase replacements.
|
Upper.Inputs |
|
Upper.Options |
Optional attributes for Upper
|
UpperBound<U extends TNumber> |
Applies upper_bound(sorted_search_values, values) along each row.
|
UpperBound.Inputs<T extends TType> |
|
VarHandleOp |
Creates a handle to a Variable resource.
|
VarHandleOp.Inputs |
|
VarHandleOp.Options |
|
Variable<T extends TType> |
Holds state in the form of a tensor that persists across steps.
|
Variable.Inputs |
|
Variable.Options |
|
VariableShape<T extends TNumber> |
Returns the shape of the variable pointed to by resource .
|
VariableShape.Inputs |
|
VarIsInitializedOp |
Checks whether a resource handle-based variable has been initialized.
|
VarIsInitializedOp.Inputs |
|
Where |
Returns locations of nonzero / true values in a tensor.
|
Where.Inputs |
|
While |
output = input; While (Cond(output)) { output = Body(output) }
|
While.Options |
Optional attributes for While
|
WholeFileReader |
A Reader that outputs the entire contents of a file as a value.
|
WholeFileReader.Inputs |
|
WholeFileReader.Options |
|
WindowDataset |
Combines (nests of) input elements into a dataset of (nests of) windows.
|
WindowDataset.Inputs |
|
WindowDataset.Options |
|
WindowOp |
The WindowOp operation
|
WindowOp.Inputs |
|
WorkerHeartbeat |
Worker heartbeat op.
|
WorkerHeartbeat.Inputs |
|
WrapDatasetVariant |
The WrapDatasetVariant operation
|
WrapDatasetVariant.Inputs |
|
WriteAudioSummary |
Writes an audio summary.
|
WriteAudioSummary.Inputs |
|
WriteAudioSummary.Options |
|
WriteFile |
Writes contents to the file at input filename .
|
WriteFile.Inputs |
|
WriteGraphSummary |
Writes a graph summary.
|
WriteGraphSummary.Inputs |
|
WriteHistogramSummary |
Writes a histogram summary.
|
WriteHistogramSummary.Inputs |
|
WriteImageSummary |
Writes an image summary.
|
WriteImageSummary.Inputs |
|
WriteImageSummary.Options |
|
WriteRawProtoSummary |
Writes a serialized proto summary.
|
WriteRawProtoSummary.Inputs |
|
WriteScalarSummary |
Writes a scalar summary.
|
WriteScalarSummary.Inputs |
|
WriteSummary |
Writes a tensor summary.
|
WriteSummary.Inputs |
|
Xdivy<T extends TType> |
Returns 0 if x == 0, and x / y otherwise, elementwise.
|
Xdivy.Inputs<T extends TType> |
|
XlaHostCompute |
A pseudo-op to represent host-side computation in an XLA program.
|
XlaHostCompute.Inputs |
|
XlaHostCompute.Options |
|
XlaOps |
An API for building xla operations as Op s
|
XlaRecvFromHost<T extends TType> |
An op to receive a tensor from the host.
|
XlaRecvFromHost.Inputs |
|
XlaRecvTPUEmbeddingActivations |
An op that receives embedding activations on the TPU.
|
XlaRecvTPUEmbeddingActivations.Inputs |
|
XlaRecvTPUEmbeddingDeduplicationData |
Receives deduplication data (indices and weights) from the embedding core.
|
XlaRecvTPUEmbeddingDeduplicationData.Inputs |
|
XlaSendToHost |
An op to send a tensor to the host.
|
XlaSendToHost.Inputs |
|
XlaSendTPUEmbeddingGradients |
An op that performs gradient updates of embedding tables.
|
XlaSendTPUEmbeddingGradients.Inputs |
|
XlaSendTPUEmbeddingGradients.Options |
|
XlaSparseCoreAdagrad |
The XlaSparseCoreAdagrad operation
|
XlaSparseCoreAdagrad.Inputs |
|
XlaSparseCoreAdagradMomentum |
The XlaSparseCoreAdagradMomentum operation
|
XlaSparseCoreAdagradMomentum.Inputs |
|
XlaSparseCoreAdam |
The XlaSparseCoreAdam operation
|
XlaSparseCoreAdam.Inputs |
|
XlaSparseCoreFtrl |
The XlaSparseCoreFtrl operation
|
XlaSparseCoreFtrl.Inputs |
|
XlaSparseCoreSgd |
The XlaSparseCoreSgd operation
|
XlaSparseCoreSgd.Inputs |
|
XlaSparseDenseMatmul |
The XlaSparseDenseMatmul operation
|
XlaSparseDenseMatmul.Inputs |
|
XlaSparseDenseMatmulGradWithAdagradAndCsrInput |
The XlaSparseDenseMatmulGradWithAdagradAndCsrInput operation
|
XlaSparseDenseMatmulGradWithAdagradAndCsrInput.Inputs |
|
XlaSparseDenseMatmulGradWithAdagradAndCsrInput.Options |
|
XlaSparseDenseMatmulGradWithAdagradMomentumAndCsrInput |
The XlaSparseDenseMatmulGradWithAdagradMomentumAndCsrInput operation
|
XlaSparseDenseMatmulGradWithAdagradMomentumAndCsrInput.Inputs |
|
XlaSparseDenseMatmulGradWithAdagradMomentumAndCsrInput.Options |
|
XlaSparseDenseMatmulGradWithAdamAndCsrInput |
The XlaSparseDenseMatmulGradWithAdamAndCsrInput operation
|
XlaSparseDenseMatmulGradWithAdamAndCsrInput.Inputs |
|
XlaSparseDenseMatmulGradWithAdamAndCsrInput.Options |
|
XlaSparseDenseMatmulGradWithFtrlAndCsrInput |
The XlaSparseDenseMatmulGradWithFtrlAndCsrInput operation
|
XlaSparseDenseMatmulGradWithFtrlAndCsrInput.Inputs |
|
XlaSparseDenseMatmulGradWithFtrlAndCsrInput.Options |
|
XlaSparseDenseMatmulGradWithSgdAndCsrInput |
The XlaSparseDenseMatmulGradWithSgdAndCsrInput operation
|
XlaSparseDenseMatmulGradWithSgdAndCsrInput.Inputs |
|
XlaSparseDenseMatmulGradWithSgdAndCsrInput.Options |
|
XlaSparseDenseMatmulWithCsrInput |
The XlaSparseDenseMatmulWithCsrInput operation
|
XlaSparseDenseMatmulWithCsrInput.Inputs |
|
Xlog1py<T extends TType> |
Returns 0 if x == 0, and x * log1p(y) otherwise, elementwise.
|
Xlog1py.Inputs<T extends TType> |
|
Xlogy<T extends TType> |
Returns 0 if x == 0, and x * log(y) otherwise, elementwise.
|
Xlogy.Inputs<T extends TType> |
|
Zeros<T extends TType> |
An operator creating a constant initialized with zeros of the shape given by `dims`.
|
ZerosLike<T extends TType> |
Returns a tensor of zeros with the same shape and type as x.
|
ZerosLike.Inputs<T extends TType> |
|
Zeta<T extends TNumber> |
Compute the Hurwitz zeta function \(\zeta(x, q)\).
|
Zeta.Inputs<T extends TNumber> |
|
ZipDataset |
Creates a dataset that zips together input_datasets .
|
ZipDataset.Inputs |
|
ZipDataset.Options |
|