All Classes and Interfaces
Class
Description
Raise a exception to abort the process when called.
Optional attributes for
Abort
Computes the absolute value of a tensor.
Helper base class for custom gradient adapters INTERNAL USE ONLY
Returns the element-wise sum of a list of tensors.
Applies a gradient to a given accumulator.
Returns the number of gradients aggregated in the given accumulators.
Updates the accumulator with a new value for global_step.
Extracts the average gradient in the given ConditionalAccumulator.
Computes acos of x element-wise.
Computes inverse hyperbolic cosine of x element-wise.
Returns x + y element-wise.
Add an
N
-minibatch SparseTensor
to a SparseTensorsMap
, return N
handles.Optional attributes for
AddManySparseToTensorsMap
Add all input tensors element wise.
Add a
SparseTensor
to a SparseTensorsMap
return its handle.Optional attributes for
AddSparseToTensorsMap
Adjust the contrast of one or more images.
Adjust the hue of one or more images.
Adjust the saturation of one or more images.
Computes the "logical and" of elements across dimensions of a tensor.
Optional attributes for
All
Generates labels for candidate sampling with a learned unigram distribution.
Optional attributes for
AllCandidateSampler
An Op to exchange data across TPU replicas.
Returns the argument of a complex number.
Creates a uninitialized anonymous hash table.
A container for an iterator resource.
The AnonymousMemoryCache operation
A container for a multi device iterator resource.
Creates an empty anonymous mutable hash table that uses tensors as the backing store.
Optional attributes for
AnonymousMutableDenseHashTable
Creates an empty anonymous mutable hash table.
Creates an empty anonymous mutable hash table of vector values.
Optional attributes for
AnonymousMutableHashTableOfTensors
The AnonymousRandomSeedGenerator operation
The AnonymousSeedGenerator operation
Computes the "logical or" of elements across dimensions of a tensor.
Optional attributes for
Any
Update '*var' according to the adadelta scheme.
Optional attributes for
ApplyAdadelta
Update '*var' according to the adagrad scheme.
Optional attributes for
ApplyAdagrad
Update '*var' according to the proximal adagrad scheme.
Optional attributes for
ApplyAdagradDa
Update '*var' according to the adagrad scheme.
Optional attributes for
ApplyAdagradV2
Update '*var' according to the Adam algorithm.
Optional attributes for
ApplyAdam
Update '*var' according to the AdaMax algorithm.
Optional attributes for
ApplyAdaMax
Update '*var' according to the AddSign update.
Optional attributes for
ApplyAddSign
Update '*var' according to the centered RMSProp algorithm.
Optional attributes for
ApplyCenteredRmsProp
Update '*var' according to the Ftrl-proximal scheme.
Optional attributes for
ApplyFtrl
Update '*var' by subtracting 'alpha' * 'delta' from it.
Optional attributes for
ApplyGradientDescent
Update '*var' according to the momentum scheme.
Optional attributes for
ApplyMomentum
Update '*var' according to the AddSign update.
Optional attributes for
ApplyPowerSign
Update '*var' and '*accum' according to FOBOS with Adagrad learning rate.
Optional attributes for
ApplyProximalAdagrad
Update '*var' as FOBOS algorithm with fixed learning rate.
Optional attributes for
ApplyProximalGradientDescent
Update '*var' according to the RMSProp algorithm.
Optional attributes for
ApplyRmsProp
Returns the truth value of abs(x-y) < tolerance element-wise.
Optional attributes for
ApproximateEqual
Returns min/max k values and their indices of the input operand in an approximate manner.
Optional attributes for
ApproxTopK
Returns the index with the largest value across dimensions of a tensor.
Returns the index with the smallest value across dimensions of a tensor.
Computes the trignometric inverse sine of x element-wise.
Computes inverse hyperbolic sine of x element-wise.
The AssertCardinalityDataset operation
A transformation that asserts which transformations happen next.
The ExperimentalAssertNextDataset operation
A transformation that asserts which transformations happened previously.
Asserts that the given condition is true.
Optional attributes for
AssertThat
Update 'ref' by assigning 'value' to it.
Optional attributes for
Assign
Update 'ref' by adding 'value' to it.
Optional attributes for
AssignAdd
Adds a value to the current value of a variable.
Update 'ref' by subtracting 'value' from it.
Optional attributes for
AssignSub
Subtracts a value from the current value of a variable.
Concats input tensor across all dimensions.
Optional attributes for
AssignVariableConcatND
Assigns a new value to a variable.
Optional attributes for
AssignVariableOp
Converts each entry in the given tensor to strings.
Optional attributes for
AsString
Computes the trignometric inverse tangent of x element-wise.
Computes arctangent of
y/x
element-wise, respecting signs of the arguments.Computes inverse hyperbolic tangent of x element-wise.
Metadata of an op's attribute.
An API for building
audio
operations as Op
sProduces a visualization of audio data over time.
Optional attributes for
AudioSpectrogram
Outputs a
Summary
protocol buffer with audio.Optional attributes for
AudioSummary
Creates a dataset that shards the input dataset.
Creates a dataset that shards the input dataset.
Optional attributes for
AutoShardDataset
Optional attributes for
AutoShardDataset
Performs average pooling on the input.
Optional attributes for
AvgPool
Performs 3D average pooling on the input.
Optional attributes for
AvgPool3d
Computes gradients of average pooling function.
Optional attributes for
AvgPool3dGrad
Computes gradients of the average pooling function.
Optional attributes for
AvgPoolGrad
The BandedTriangularSolve operation
Optional attributes for
BandedTriangularSolve
Copy a tensor setting everything outside a central band in each innermost matrix to zero.
Defines a barrier that persists across different graph executions.
Optional attributes for
Barrier
Closes the given barrier.
Optional attributes for
BarrierClose
Computes the number of incomplete elements in the given barrier.
For each key, assigns the respective value to the specified component.
Computes the number of complete elements in the given barrier.
Takes the given number of completed elements from a barrier.
Optional attributes for
BarrierTakeMany
Batches all input tensors nondeterministically.
Optional attributes for
Batch
The BatchCholesky operation
The BatchCholeskyGrad operation
Creates a dataset that batches
batch_size
elements from input_dataset
.Optional attributes for
BatchDataset
The BatchFFT operation
The BatchFFT2D operation
The BatchFFT3D operation
Batches all the inputs tensors to the computation done by the function.
Optional attributes for
BatchFunction
The BatchIFFT operation
The BatchIFFT2D operation
The BatchIFFT3D operation
Multiplies slices of two tensors in batches.
Optional attributes for
BatchMatMul
The BatchMatrixBandPart operation
The BatchMatrixDeterminant operation
The BatchMatrixDiag operation
The BatchMatrixDiagPart operation
The BatchMatrixInverse operation
Optional attributes for
BatchMatrixInverse
The BatchMatrixSetDiag operation
The BatchMatrixSolve operation
Optional attributes for
BatchMatrixSolve
The BatchMatrixSolveLs operation
Optional attributes for
BatchMatrixSolveLs
The BatchMatrixTriangularSolve operation
Optional attributes for
BatchMatrixTriangularSolve
Batch normalization.
Gradients for batch normalization.
The BatchSelfAdjointEigV2 operation
Optional attributes for
BatchSelfAdjointEig
The BatchSvd operation
Optional attributes for
BatchSvd
BatchToSpace for 4-D tensors of type T.
BatchToSpace for N-D tensors of type T.
The BesselI0 operation
The BesselI0e operation
The BesselI1 operation
The BesselI1e operation
The BesselJ0 operation
The BesselJ1 operation
The BesselK0 operation
The BesselK0e operation
The BesselK1 operation
The BesselK1e operation
The BesselY0 operation
The BesselY1 operation
Compute the regularized incomplete beta integral \(I_x(a, b)\).
Adds
bias
to value
.Optional attributes for
BiasAdd
The backward operation for "BiasAdd" on the "bias" tensor.
Optional attributes for
BiasAddGrad
Counts the number of occurrences of each value in an integer array.
Bitcasts a tensor from one type to another without copying data.
Elementwise computes the bitwise AND of
x
and y
.An API for building
bitwise
operations as Op
sElementwise computes the bitwise OR of
x
and y
.Elementwise computes the bitwise XOR of
x
and y
.Computes the LSTM cell forward propagation for all the time steps.
Optional attributes for
BlockLSTM
Computes the LSTM cell backward propagation for the entire time sequence.
Optional attributes for
BooleanMask
Optional attributes for
BooleanMaskUpdate
Return the shape of s0 op s1 with broadcast.
Return the reduction indices for computing gradients of s0 op s1 with broadcast.
Broadcast an array for a compatible shape.
Bucketizes 'input' based on 'boundaries'.
Records the bytes size of each element of
input_dataset
in a StatsAggregator.Records the bytes size of each element of
input_dataset
in a StatsAggregator.The CacheDatasetV2 operation
Optional attributes for
CacheDataset
An n-way switch statement which calls a single branch function.
Optional attributes for
Case
Cast x of type SrcT to y of DstT.
Optional attributes for
Cast
Returns element-wise smallest integer not less than x.
Checks a tensor for NaN, -Inf and +Inf values.
Computes the Cholesky decomposition of one or more square matrices.
Computes the reverse mode backpropagated gradient of the Cholesky algorithm.
The ChooseFastestBranchDataset operation
The ChooseFastestDataset operation
The ExperimentalChooseFastestDataset operation
Clips tensor values to a specified min and max.
The CloseSummaryWriter operation
An API for building
cluster
operations as Op
sAn op that merges the string-encoded memory config protos from all hosts.
Mutually exchanges multiple tensors of identical type and shape.
Optional attributes for
CollectiveAllToAll
Assign group keys based on group assignment.
Receives a tensor value broadcast from another device.
Optional attributes for
CollectiveBcastRecv
Broadcasts a tensor value to one or more other devices.
Optional attributes for
CollectiveBcastSend
Mutually accumulates multiple tensors of identical type and shape.
Optional attributes for
CollectiveGather
Initializes a group for collective operations.
Optional attributes for
CollectiveInitializeCommunicator
An API for building
collective
operations as Op
sAn Op to permute tensors across replicated TPU instances.
Mutually reduces multiple tensors of identical type and shape.
Optional attributes for
CollectiveReduce
Mutually reduces multiple tensors of identical type and shape and scatters the result.
Optional attributes for
CollectiveReduceScatter
Greedily selects a subset of bounding boxes in descending order of score,
This operation performs non_max_suppression on the inputs per batch, across
all classes.
Optional attributes for
CombinedNonMaxSuppression
Returns the result of a TPU compilation.
Compiles a computations for execution on one or more TPU devices.
Asserts that compilation succeeded.
Converts two real numbers to a complex number.
Computes the complex absolute value of a tensor.
Encodes an
ExtensionType
value into a variant
scalar Tensor.Decodes a
variant
scalar Tensor into an ExtensionType
value.Compresses a dataset element.
Computes the ids of the positions in sampled_candidates that match true_labels.
Optional attributes for
ComputeAccidentalHits
Computes the static batch size of a dataset sans partial batches.
An op computes the size of the deduplication data from embedding core and returns the updated config.
An op computes tuple mask of deduplication data from embedding core.
Concatenates tensors along one dimension.
Creates a dataset that concatenates
input_dataset
with another_dataset
.Optional attributes for
ConcatenateDataset
Concats input tensor across all dimensions.
Optional attributes for
ConcatND
Computes offsets of concat inputs within its output.
A graph that can be invoked as a single function, with an input and output signature.
A conditional accumulator for aggregating gradients.
Optional attributes for
ConditionalAccumulator
An op that sets up the centralized structures for a distributed TPU system.
Optional attributes for
ConfigureAndInitializeGlobalTPU
Sets up the centralized structures for a distributed TPU system.
Optional attributes for
ConfigureDistributedTPU
Sets up TPUEmbedding in a distributed TPU system.
An op that configures the TPUEmbedding software on a host.
An op that configures the TPUEmbedding software on a host.
Returns the complex conjugate of a complex number.
Shuffle dimensions of x according to a permutation and conjugate the result.
An op that sets up communication between TPUEmbedding host software instances
after ConfigureTPUEmbeddingHost has been called on each host.
An operator producing a constant value.
This op consumes a lock created by
MutexLock
.Does nothing.
Computes a N-D convolution given (N+1+batch_dims)-D
input
and (N+2)-D filter
tensors.Optional attributes for
Conv
Computes a 2-D convolution given 4-D
input
and filter
tensors.Optional attributes for
Conv2d
Computes the gradients of convolution with respect to the filter.
Optional attributes for
Conv2dBackpropFilter
Computes the gradients of convolution with respect to the filter.
Optional attributes for
Conv2dBackpropFilterV2
Computes the gradients of convolution with respect to the input.
Optional attributes for
Conv2dBackpropInput
Computes the gradients of convolution with respect to the input.
Optional attributes for
Conv2dBackpropInputV2
Computes a 3-D convolution given 5-D
input
and filter
tensors.Optional attributes for
Conv3d
Computes the gradients of 3-D convolution with respect to the filter.
Optional attributes for
Conv3dBackpropFilter
Computes the gradients of 3-D convolution with respect to the input.
Optional attributes for
Conv3dBackpropInput
The ConvertToCooTensor operation
Copy a tensor from CPU-to-CPU or GPU-to-GPU.
Optional attributes for
Copy
Copy a tensor to host.
Optional attributes for
CopyHost
The CopyToMesh operation
The CopyToMeshGrad operation
Computes cos of x element-wise.
Computes hyperbolic cosine of x element-wise.
Increments 'ref' until it reaches 'limit'.
The CreateSummaryDbWriter operation
The CreateSummaryFileWriter operation
Extracts crops from the input image tensor and resizes them.
Optional attributes for
CropAndResize
Computes the gradient of the crop_and_resize op wrt the input boxes tensor.
Optional attributes for
CropAndResizeGradBoxes
Computes the gradient of the crop_and_resize op wrt the input image tensor.
Optional attributes for
CropAndResizeGradImage
Compute the pairwise cross product.
An Op to sum inputs across replicated TPU instances.
Reads out the CSR components at batch
index
.Convert a (possibly batched) CSRSparseMatrix to dense.
Converts a (possibly batched) CSRSparesMatrix to a SparseTensor.
The CSVDatasetV2 operation
The ExperimentalCSVDataset operation
Performs beam search decoding on the logits given in input.
Optional attributes for
CtcBeamSearchDecoder
Performs greedy decoding on the logits given in inputs.
Optional attributes for
CtcGreedyDecoder
Calculates the CTC Loss (log probability) for each batch entry.
Optional attributes for
CtcLoss
Calculates the CTC Loss (log probability) for each batch entry.
Optional attributes for
CTCLossV2
A RNN backed by cuDNN.
Optional attributes for
CudnnRNN
Backprop step of CudnnRNNV3.
Optional attributes for
CudnnRNNBackprop
Converts CudnnRNN params from canonical form to usable form.
Optional attributes for
CudnnRNNCanonicalToParams
Computes size of weights that can be used by a Cudnn RNN model.
Optional attributes for
CudnnRnnParamsSize
Retrieves CudnnRNN params in canonical form.
Optional attributes for
CudnnRNNParamsToCanonical
Compute the cumulative product of the tensor
x
along axis
.Optional attributes for
Cumprod
Compute the cumulative sum of the tensor
x
along axis
.Optional attributes for
Cumsum
Compute the cumulative product of the tensor
x
along axis
.Optional attributes for
CumulativeLogsumexp
A custom gradient for ops of type
CustomGradient
.An API for building
data.experimental
operations as Op
sReturns the dimension index in the destination data format given the one in
the source data format.
Optional attributes for
DataFormatDimMap
Permute input tensor from
src_format
to dst_format
.Optional attributes for
DataFormatVecPermute
An API for building
data
operations as Op
sCreates a dataset that reads data from the tf.data service.
Optional attributes for
DataServiceDataset
Returns the cardinality of
input_dataset
.Returns the cardinality of
input_dataset
.Optional attributes for
DatasetCardinality
Returns the fingerprint of
input_dataset
.Creates a dataset from the given
graph_def
.Returns a serialized GraphDef representing
input_dataset
.Optional attributes for
DatasetToGraph
Outputs the single element from the given dataset.
Optional attributes for
DatasetToSingleElement
Writes the given dataset to the given file using the TFRecord format.
Writes the given dataset to the given file using the TFRecord format.
The Dawsn operation
An API for building
debugging
operations as Op
sIdentity op for gradient debugging.
Identity op for gradient debugging.
Provides an identity mapping of the non-Ref type input tensor for debugging.
Optional attributes for
DebugIdentity
Debug NaN Value Counter Op.
Optional attributes for
DebugNanCount
Debug Numeric Summary V2 Op.
Optional attributes for
DebugNumericsSummary
Decode and Crop a JPEG-encoded image to a uint8 tensor.
Optional attributes for
DecodeAndCropJpeg
Decode web-safe base64-encoded strings.
Decode the first frame of a BMP-encoded image to a uint8 tensor.
Optional attributes for
DecodeBmp
Decompress strings.
Optional attributes for
DecodeCompressed
Convert CSV records to tensors.
Optional attributes for
DecodeCsv
Decode the frame(s) of a GIF-encoded image to a uint8 tensor.
Function for decode_bmp, decode_gif, decode_jpeg, and decode_png.
Optional attributes for
DecodeImage
Decode a JPEG-encoded image to a uint8 tensor.
Optional attributes for
DecodeJpeg
Convert JSON-encoded Example records to binary protocol buffer strings.
Reinterpret the bytes of a string as a vector of numbers.
Optional attributes for
DecodePaddedRaw
Decode a PNG-encoded image to a uint8 or uint16 tensor.
Optional attributes for
DecodePng
The op extracts fields from a serialized protocol buffers message into tensors.
Optional attributes for
DecodeProto
Reinterpret the bytes of a string as a vector of numbers.
Optional attributes for
DecodeRaw
Decode a 16-bit PCM WAV file to a float tensor.
Optional attributes for
DecodeWav
Makes a copy of
x
.A container for an iterator resource.
The DeleteMemoryCache operation
A container for an iterator resource.
The DeleteRandomSeedGenerator operation
The DeleteSeedGenerator operation
Delete the tensor specified by its handle in the session.
Counts the number of occurrences of each value in an integer array.
Optional attributes for
DenseBincount
Performs sparse-output bin counting for a tf.tensor input.
Optional attributes for
DenseCountSparseOutput
Converts a dense tensor to a (possibly batched) CSRSparseMatrix.
Applies set operation along last dimension of 2
Tensor
inputs.Optional attributes for
DenseToDenseSetOperation
Creates a dataset that batches input elements into a SparseTensor.
Creates a dataset that batches input elements into a SparseTensor.
Applies set operation along last dimension of
Tensor
and SparseTensor
.Optional attributes for
DenseToSparseSetOperation
DepthToSpace for tensors of type T.
Optional attributes for
DepthToSpace
Computes a 2-D depthwise convolution given 4-D
input
and filter
tensors.Optional attributes for
DepthwiseConv2dNative
Computes the gradients of depthwise convolution with respect to the filter.
Optional attributes for
DepthwiseConv2dNativeBackpropFilter
Computes the gradients of depthwise convolution with respect to the input.
Optional attributes for
DepthwiseConv2dNativeBackpropInput
Dequantize the 'input' tensor into a float or bfloat16 Tensor.
Optional attributes for
Dequantize
Converts the given variant tensor to an iterator and stores it in the given resource.
Deserialize and concatenate
SparseTensors
from a serialized minibatch.Deserialize
SparseTensor
objects.Deletes the resource specified by the handle.
Optional attributes for
DestroyResourceOp
Destroys the temporary variable and returns its final value.
Computes the determinant of one or more square matrices.
Return the index of device the op runs.
Represents a (possibly partial) specification for a TensorFlow device.
A Builder class for building
DeviceSpec
class.Computes Psi, the derivative of Lgamma (the log of the absolute value of
Gamma(x)
), element-wise.Computes the grayscale dilation of 4-D
input
and 3-D filter
tensors.Computes the gradient of morphological 2-D dilation with respect to the filter.
Computes the gradient of morphological 2-D dilation with respect to the input.
A substitute for
InterleaveDataset
on a fixed list of N
datasets.A substitute for
InterleaveDataset
on a fixed list of N
datasets.Optional attributes for
DirectedInterleaveDataset
Turns off the copy-on-read mode.
The DistributedSave operation
Optional attributes for
DistributedSave
An API for building
distribute
operations as Op
sReturns x / y element-wise.
Returns 0 if the denominator is zero.
Draw bounding boxes on a batch of images.
The DTensorRestoreV2 operation
An API for building
dtypes
operations as Op
sThe DummyIterationCounter operation
The DummyMemoryCache operation
The DummySeedGenerator operation
Eases the porting of code that uses tf.nn.embedding_lookup_sparse().
Optional attributes for
DynamicEnqueueTPUEmbeddingArbitraryTensorBatch
The DynamicEnqueueTPUEmbeddingRaggedTensorBatch operation
Optional attributes for
DynamicEnqueueTPUEmbeddingRaggedTensorBatch
Partitions
data
into num_partitions
tensors using indices from partitions
.Interleave the values from the
data
tensors into a single tensor.An environment for executing TensorFlow operations eagerly.
Controls how to act when we try to run an operation on a given device but some input tensors
are not on that device.
Computes the (possibly normalized) Levenshtein Edit Distance.
Optional attributes for
EditDistance
Computes the eigen decomposition of one or more square matrices.
Optional attributes for
Eig
Tensor contraction according to Einstein summation convention.
Computes the exponential linear function.
Computes gradients for the exponential linear (Elu) operation.
An op enabling differentiation of TPU Embeddings.
Creates a tensor with the given shape.
Optional attributes for
Empty
Creates and returns an empty tensor list.
Creates and returns an empty tensor map.
Encode strings into web-safe base64 format.
Optional attributes for
EncodeBase64
JPEG-encode an image.
Optional attributes for
EncodeJpeg
JPEG encode input image with provided compression quality.
PNG-encode an image.
Optional attributes for
EncodePng
The op serializes protobuf messages provided in the input tensors.
Optional attributes for
EncodeProto
Encode audio data using the WAV file format.
Eases the porting of code that uses tf.nn.embedding_lookup_sparse().
Optional attributes for
EnqueueTPUEmbeddingArbitraryTensorBatch
An op that enqueues a list of input batch tensors to TPUEmbedding.
Optional attributes for
EnqueueTPUEmbeddingBatch
An op that enqueues a list of input batch tensors to TPUEmbedding.
Optional attributes for
EnqueueTPUEmbeddingIntegerBatch
Eases the porting of code that uses tf.nn.embedding_lookup().
Optional attributes for
EnqueueTPUEmbeddingRaggedTensorBatch
An op that enqueues TPUEmbedding input indices from a SparseTensor.
Optional attributes for
EnqueueTPUEmbeddingSparseBatch
Eases the porting of code that uses tf.nn.embedding_lookup_sparse().
Optional attributes for
EnqueueTPUEmbeddingSparseTensorBatch
Ensures that the tensor's shape matches the expected shape.
Creates or finds a child frame, and makes
data
available to the child frame.Optional attributes for
Enter
Returns the truth value of (x == y) element-wise.
Optional attributes for
Equal
Computes the Gauss error function of
x
element-wise.Computes the complementary error function of
x
element-wise.The Erfinv operation
Computes the euclidean norm of elements across dimensions of a tensor.
Optional attributes for
EuclideanNorm
Op that loads and executes a TPU program on a TPU device.
Op that executes a program with optional in-place variable updates.
An op that executes the TPUEmbedding partitioner on the central configuration
device and computes the HBM size (in bytes) required for TPUEmbedding operation.
Defines an environment for creating and executing TensorFlow
Operation
s.Exits the current frame to its parent frame.
Computes exponential of x element-wise.
Inserts a dimension of 1 into a tensor's shape.
The Expint operation
Computes
exp(x) - 1
element-wise.Extracts a glimpse from the input tensor.
Optional attributes for
ExtractGlimpse
Extract
patches
from images
and put them in the "depth" output dimension.Extract the shape information of a JPEG-encoded image.
Extract
patches
from input
and put them in the "depth"
output dimension.Output a fact about factorials.
This op is used as a placeholder in If branch functions.
Fake-quantize the 'inputs' tensor, type float to 'outputs' tensor of same shape and type.
Optional attributes for
FakeQuantWithMinMaxArgs
Compute gradients for a FakeQuantWithMinMaxArgs operation.
Optional attributes for
FakeQuantWithMinMaxArgsGradient
Fake-quantize the 'inputs' tensor of type float via global float scalars
Fake-quantize the
inputs
tensor of type float via global float scalars
min
and max
to outputs
tensor of same shape as inputs
.Optional attributes for
FakeQuantWithMinMaxVars
Compute gradients for a FakeQuantWithMinMaxVars operation.
Optional attributes for
FakeQuantWithMinMaxVarsGradient
Fake-quantize the 'inputs' tensor of type float via per-channel floats
Fake-quantize the
inputs
tensor of type float per-channel and one of the
shapes: [d]
, [b, d]
[b, h, w, d]
via per-channel floats min
and max
of shape [d]
to outputs
tensor of same shape as inputs
.Optional attributes for
FakeQuantWithMinMaxVarsPerChannel
Compute gradients for a FakeQuantWithMinMaxVarsPerChannel operation.
Optional attributes for
FakeQuantWithMinMaxVarsPerChannelGradient
Deprecated.
Fast Fourier transform.
2D fast Fourier transform.
3D fast Fourier transform.
ND fast Fourier transform.
A queue that produces elements in first-in first-out order.
Optional attributes for
FifoQueue
Set configuration of the file system.
Creates a tensor filled with a scalar value.
Creates a dataset containing elements of first component of
input_dataset
having true in the last component.Creates a dataset containing elements of
input_dataset
matching predicate
.Optional attributes for
FilterDataset
Creates a dataset by applying
tf.data.Options
to input_dataset
.Optional attributes for
FinalizeDataset
An op that finalizes the TPUEmbedding configuration.
Generates fingerprint values.
The FixedLengthRecordDatasetV2 operation
Optional attributes for
FixedLengthRecordDataset
A Reader that outputs fixed-length records from a file.
Optional attributes for
FixedLengthRecordReader
Generates labels for candidate sampling with a learned unigram distribution.
Optional attributes for
FixedUnigramCandidateSampler
Creates a dataset that applies
f
to the outputs of input_dataset
.Optional attributes for
FlatMapDataset
Returns element-wise largest integer not greater than x.
Returns x // y element-wise.
Returns element-wise remainder of division.
The FlushSummaryWriter operation
Applies a for loop.
Performs fractional average pooling on the input.
Optional attributes for
FractionalAvgPool
Computes gradient of the FractionalAvgPool function.
Optional attributes for
FractionalAvgPoolGrad
Performs fractional max pooling on the input.
Optional attributes for
FractionalMaxPool
Computes gradient of the FractionalMaxPool function.
Optional attributes for
FractionalMaxPoolGrad
The FresnelCos operation
The FresnelSin operation
Ops for calling
ConcreteFunction
.Batch normalization.
Optional attributes for
FusedBatchNorm
Gradient for batch normalization.
Optional attributes for
FusedBatchNormGrad
Performs a padding as a preprocess during a convolution.
Performs a resize and padding as a preprocess during a convolution.
Optional attributes for
FusedResizeAndPadConv2d
Gather slices from
params
axis axis
according to indices
.Optional attributes for
Gather
Gather slices from
params
into a Tensor with shape specified by indices
.This op produces Region of Interests from given bounding boxes(bbox_deltas) encoded wrt anchors according to eq.2 in arXiv:1506.01497
Optional attributes for
GenerateBoundingBoxProposals
Given a path to new and old vocabulary files, returns a remapping Tensor of
length
num_new_vocab
, where remapping[i]
contains the row number in the old
vocabulary that corresponds to row i
in the new vocabulary (starting at line
new_vocab_offset
and up to num_new_vocab
entities), or -1
if entry i
in the new vocabulary is not in the old vocabulary.Optional attributes for
GenerateVocabRemapping
Creates a dataset that invokes a function to generate elements.
Optional attributes for
GeneratorDataset
Gets the element at the specified index in a dataset.
The GetMinibatchesInCsrWithPhysicalReplica operation
The GetMinibatchSplitsWithPhysicalReplica operation
Returns the
tf.data.Options
attached to input_dataset
.Store the input tensor in the state of the current session.
Get the value of the tensor specified by its handle.
The GlobalIterId operation
Adds operations to compute the partial derivatives of sum of
y
s w.r.t x
s, i.e.,
d(y_1 + y_2 + ...)/dx_1, d(y_1 + y_2 + ...)/dx_2...
Optional attributes for
Gradients
A data flow graph representing a TensorFlow computation.
Used to instantiate an abstract class which overrides the buildSubgraph method to build a
conditional or body subgraph for a while loop.
Returns the truth value of (x > y) element-wise.
Returns the truth value of (x >= y) element-wise.
Creates a dataset that computes a group-by on
input_dataset
.Creates a dataset that computes a group-by on
input_dataset
.Creates a dataset that computes a windowed group-by on
input_dataset
.Creates a dataset that computes a windowed group-by on
input_dataset
.Optional attributes for
GroupByWindowDataset
Computes the GRU cell forward propagation for 1 time step.
Computes the GRU cell back-propagation for 1 time step.
Gives a guarantee to the TF runtime that the input tensor is a constant.
Creates a non-initialized hash table.
Optional attributes for
HashTable
Container class for core methods which add or perform several operations and return one of them.
Return histogram of values.
Outputs a
Summary
protocol buffer with a histogram.Returns a constant tensor on the host.
Convert one or more images from HSV to RGB.
Return a tensor with the same shape and contents as the input tensor or value.
Returns a list of tensors with the same shapes and contents as the input
tensors.
A Reader that outputs the queued work as both the key and value.
Optional attributes for
IdentityReader
output = cond ? then_branch(input) : else_branch(input)
Optional attributes for
If
Inverse fast Fourier transform.
Inverse 2D fast Fourier transform.
Inverse 3D fast Fourier transform.
ND inverse fast Fourier transform.
Compute the lower regularized incomplete Gamma function
P(a, x)
.Compute the upper regularized incomplete Gamma function
Q(a, x)
.Computes the gradient of
igamma(a, x)
wrt a
.Creates a dataset that contains the elements of
input_dataset
ignoring errors.Creates a dataset that contains the elements of
input_dataset
ignoring errors.Optional attributes for
IgnoreErrorsDataset
Optional attributes for
IgnoreErrorsDataset
Returns the imaginary part of a complex number.
An API for building
image
operations as Op
sApplies the given transform to each of the images.
Optional attributes for
ImageProjectiveTransformV2
Applies the given transform to each of the images.
Optional attributes for
ImageProjectiveTransformV3
Outputs a
Summary
protocol buffer with images.Optional attributes for
ImageSummary
Returns immutable tensor from memory region.
The ImportEvent operation
A placeholder op for a value that will be fed into the computation.
Fetches multiple values from infeed as an XLA tuple.
An op which feeds a single Tensor value into the computation.
Optional attributes for
InfeedEnqueue
An op which enqueues prelinearized buffer into TPU infeed.
Optional attributes for
InfeedEnqueuePrelinearizedBuffer
Feeds multiple Tensor values into the computation as an XLA tuple.
Optional attributes for
InfeedEnqueueTuple
Table initializer that takes two tensors for keys and values respectively.
The InitializeTableFromDataset operation
Initializes a table from a text file.
Optional attributes for
InitializeTableFromTextFile
Adds v into specified rows of x.
Subtracts `v` into specified rows of `x`.
Updates specified rows 'i' with values 'v'.
Creates a dataset that applies
f
to the outputs of input_dataset
.Optional attributes for
InterleaveDataset
Says whether the targets are in the top
K
predictions.Computes the inverse of one or more square invertible matrices or their adjoints (conjugate transposes).
Optional attributes for
Inv
Invert (flip) each bit of supported types; for example, type
uint8
value 01010101 becomes 10101010.Computes the inverse permutation of a tensor.
Computes the gradient for the inverse of
x
wrt its input.An API for building
io
operations as Op
sInverse real-valued fast Fourier transform.
Inverse 2D real-valued fast Fourier transform.
Inverse 3D real-valued fast Fourier transform.
ND inverse real fast Fourier transform.
Returns which elements of x are finite.
Returns which elements of x are Inf.
Returns which elements of x are NaN.
Solves a batch of isotonic regression problems.
Whether TPU Embedding is initialized in a distributed TPU system.
Optional attributes for
IsTPUEmbeddingInitialized
Checks whether a tensor has been initialized.
The IteratorV2 operation
The IteratorFromStringHandleV2 operation
Optional attributes for
IteratorFromStringHandle
Returns the name of the device on which
resource
has been placed.Returns the name of the device on which
resource
has been placed.Gets the next output from the given iterator .
Gets the next output from the given iterator as an Optional variant.
Gets the next output from the given iterator.
Converts the given
resource_handle
representing an iterator to a string.Joins the strings in the given list of string tensors into one tensor;
with the given separator (default is an empty separator).
Optional attributes for
Join
Returns the index of a data point that should be added to the seed set.
Selects num_to_sample rows of input using the KMeans++ criterion.
Computes the Kth order statistic of a data set.
L2 Loss.
Records the latency of producing
input_dataset
elements in a StatsAggregator.Records the latency of producing
input_dataset
elements in a StatsAggregator.Computes rectified linear:
max(features, features * alpha)
.Optional attributes for
LeakyRelu
Computes rectified linear gradients for a LeakyRelu operation.
Optional attributes for
LeakyReluGrad
Generates labels for candidate sampling with a learned unigram distribution.
Optional attributes for
LearnedUnigramCandidateSampler
Elementwise computes the bitwise left-shift of
x
and y
.Creates a dataset that applies
f
to the outputs of input_dataset
.Optional attributes for
LegacyParallelInterleaveDataset
Returns the truth value of (x < y) element-wise.
Returns the truth value of (x <= y) element-wise.
Computes the log of the absolute value of
Gamma(x)
element-wise.An API for building
linalg
operations as Op
sAn API for building
linalg.sparse
operations as Op
sGenerates values in an interval.
Creates a dataset that emits each of
tensors
once.Optional attributes for
ListDataset
The ListSnapshotChunksDataset operation
The ExperimentalLMDBDataset operation
Creates a dataset that emits the key-value pairs in one or more LMDB files.
A Reader that outputs the records from a LMDB file.
Optional attributes for
LmdbReader
An op that loads optimization parameters into embedding memory.
Loads a 2-D (matrix)
Tensor
with name old_tensor_name
from the checkpoint
at ckpt_path
and potentially reorders its rows and columns using the
specified remappings.Optional attributes for
LoadAndRemapMatrix
The LoadDataset operation
Optional attributes for
LoadDataset
Load Adadelta embedding parameters.
Optional attributes for
LoadTPUEmbeddingAdadeltaParameters
Load Adagrad Momentum embedding parameters.
Optional attributes for
LoadTPUEmbeddingAdagradMomentumParameters
Load Adagrad embedding parameters.
Optional attributes for
LoadTPUEmbeddingAdagradParameters
Load ADAM embedding parameters.
Optional attributes for
LoadTPUEmbeddingADAMParameters
Load centered RMSProp embedding parameters.
Optional attributes for
LoadTPUEmbeddingCenteredRMSPropParameters
Load frequency estimator embedding parameters.
Optional attributes for
LoadTPUEmbeddingFrequencyEstimatorParameters
Load FTRL embedding parameters.
Optional attributes for
LoadTPUEmbeddingFTRLParameters
Load MDL Adagrad Light embedding parameters.
Optional attributes for
LoadTPUEmbeddingMDLAdagradLightParameters
Load Momentum embedding parameters.
Optional attributes for
LoadTPUEmbeddingMomentumParameters
Load proximal Adagrad embedding parameters.
Optional attributes for
LoadTPUEmbeddingProximalAdagradParameters
The LoadTPUEmbeddingProximalYogiParameters operation
Optional attributes for
LoadTPUEmbeddingProximalYogiParameters
Load RMSProp embedding parameters.
Optional attributes for
LoadTPUEmbeddingRMSPropParameters
Load SGD embedding parameters.
Optional attributes for
LoadTPUEmbeddingStochasticGradientDescentParameters
Local Response Normalization.
Optional attributes for
LocalResponseNormalization
Gradients for Local Response Normalization.
Optional attributes for
LocalResponseNormalizationGrad
Computes natural logarithm of x element-wise.
Computes natural logarithm of (1 + x) element-wise.
Returns the truth value of x AND y element-wise.
Returns the truth value of
NOT x
element-wise.Returns the truth value of x OR y element-wise.
Computes the sign and the log of the absolute value of the determinant of
one or more square matrices.
Computes log softmax activations.
Generates labels for candidate sampling with a log-uniform distribution.
Optional attributes for
LogUniformCandidateSampler
Outputs all keys and values in the table.
Looks up keys in a table, outputs the corresponding values.
Replaces the contents of the table with the specified keys and values.
Updates the table to associates keys with values.
Removes keys and its associated values from a table.
Computes the number of elements in the given table.
Forwards the input to the output.
Converts all uppercase characters into their respective lowercase replacements.
Optional attributes for
Lower
Applies lower_bound(sorted_search_values, values) along each row.
Computes the LSTM cell forward propagation for 1 time step.
Optional attributes for
LSTMBlockCell
Computes the LSTM cell backward propagation for 1 timestep.
Computes the LU decomposition of one or more square matrices.
Makes a new iterator from the given
dataset
and stores it in iterator
.Make all elements in the non-Batch dimension unique, but "close" to
their initial value.
Creates a dataset that fuses mapping with batching.
Creates a dataset that fuses mapping with batching.
Optional attributes for
MapAndBatchDataset
Optional attributes for
MapAndBatchDataset
Op removes all elements in the underlying container.
Optional attributes for
MapClear
Creates a dataset that applies
f
to the outputs of input_dataset
.Creates a dataset that applies
f
to the outputs of input_dataset
.Optional attributes for
MapDataset
Optional attributes for
MapDataset
Maps a function on the list of tensors unpacked from arguments on dimension 0.
Optional attributes for
MapDefun
Op returns the number of incomplete elements in the underlying container.
Optional attributes for
MapIncompleteSize
Op peeks at the values at the specified key.
Optional attributes for
MapPeek
Op returns the number of elements in the underlying container.
Optional attributes for
MapSize
Stage (key, values) in the underlying container which behaves like a hashtable.
Optional attributes for
MapStage
Op removes and returns the values associated with the key
from the underlying container.
Optional attributes for
MapUnstage
Op removes and returns a random (key, value)
from the underlying container.
Optional attributes for
MapUnstageNoKey
Returns the set of files matching one or more glob patterns.
The ExperimentalMatchingFilesDataset operation
The MatchingFilesDataset operation
An API for building
math
operations as Op
sAn API for building
math.special
operations as Op
sMultiply the matrix "a" by the matrix "b".
Optional attributes for
MatMul
Returns a batched diagonal tensor with given batched diagonal values.
Returns the batched diagonal part of a batched tensor.
Returns the batched diagonal part of a batched tensor.
Optional attributes for
MatrixDiagPartV3
Returns a batched diagonal tensor with given batched diagonal values.
Optional attributes for
MatrixDiagV3
Deprecated, use python implementation tf.linalg.matrix_exponential.
Computes the matrix logarithm of one or more square matrices:
\(log(exp(A)) = A\)
Returns a batched matrix tensor with new batched diagonal values.
Optional attributes for
MatrixSetDiag
Solves one or more linear least-squares problems.
Optional attributes for
MatrixSolveLs
Computes the maximum of elements across dimensions of a tensor.
Optional attributes for
Max
Returns the max of x and y (i.e.
Creates a dataset that overrides the maximum intra-op parallelism.
Creates a dataset that overrides the maximum intra-op parallelism.
Performs max pooling on the input.
Optional attributes for
MaxPool
Performs 3D max pooling on the input.
Optional attributes for
MaxPool3d
Computes gradients of 3D max pooling function.
Optional attributes for
MaxPool3dGrad
Computes second-order gradients of the maxpooling function.
Optional attributes for
MaxPool3dGradGrad
Computes gradients of the maxpooling function.
Optional attributes for
MaxPoolGrad
Computes second-order gradients of the maxpooling function.
Optional attributes for
MaxPoolGradGrad
Computes second-order gradients of the maxpooling function.
Optional attributes for
MaxPoolGradGradWithArgmax
Computes gradients of the maxpooling function.
Optional attributes for
MaxPoolGradWithArgmax
Performs max pooling on the input and outputs both max values and indices.
Optional attributes for
MaxPoolWithArgmax
Computes the mean of elements across dimensions of a tensor.
Optional attributes for
Mean
Forwards the value of an available tensor from
inputs
to output
.An op merges elements of integer and float tensors into deduplication data as
XLA tuple.
Optional attributes for
MergeDedupData
Merges summaries.
V2 format specific: merges the metadata files of sharded checkpoints.
Optional attributes for
MergeV2Checkpoints
Transforms a spectrogram into a form that's useful for speech recognition.
Optional attributes for
Mfcc
Computes the minimum of elements across dimensions of a tensor.
Optional attributes for
Min
Returns the min of x and y (i.e.
Pads a tensor with mirrored values.
Gradient op for
MirrorPad
op.Wraps an arbitrary MLIR computation expressed as a module with a main() function.
Returns element-wise remainder of division.
Identity transformation that models performance.
Optional attributes for
ModelDataset
Returns x * y element-wise.
Returns x * y element-wise.
Creates a MultiDeviceIterator resource.
Generates a MultiDeviceIterator resource from its provided string handle.
Optional attributes for
MultiDeviceIteratorFromStringHandle
Gets next element for the provided shard number.
Initializes the multi device iterator with the given dataset.
Produces a string handle for the given MultiDeviceIterator.
Draws samples from a multinomial distribution.
Optional attributes for
Multinomial
Creates an empty hash table that uses tensors as the backing store.
Optional attributes for
MutableDenseHashTable
Creates an empty hash table.
Optional attributes for
MutableHashTable
Creates an empty hash table.
Optional attributes for
MutableHashTableOfTensors
Creates a Mutex resource that can be locked by
MutexLock
.Optional attributes for
Mutex
Locks a mutex resource.
A
Scope
implementation backed by a native scope.Deprecated.
Outputs a tensor containing the reduction across all input tensors.
Deprecated.
use
NcclBroadcast
insteadSends
input
to all devices that are connected to the output.Deprecated.
use
NcclReduce
insteadReduces
input
from num_devices
using reduction
to a single device.The Ndtri operation
Selects the k nearest centers for each point.
Computes numerical negative value element-wise.
Training via negative sampling.
Returns the next representable value of
x1
in the direction of x2
, element-wise.Makes its input available to the next iteration.
An API for building
nn
operations as Op
sNon-deterministically generates some integers.
Greedily selects a subset of bounding boxes in descending order of score,
pruning away boxes that have high intersection-over-union (IOU) overlap
with previously selected boxes.
Optional attributes for
NonMaxSuppression
Greedily selects a subset of bounding boxes in descending order of score,
pruning away boxes that have high overlaps
with previously selected boxes.
The ExperimentalNonSerializableDataset operation
The NonSerializableDataset operation
Does nothing.
Returns the truth value of (x != y) element-wise.
Optional attributes for
NotEqual
Finds values of the
n
-th order statistic for the last dimension.Optional attributes for
NthElement
Returns a one-hot tensor.
Optional attributes for
OneHot
An operator creating a constant initialized with ones of the shape given by `dims`.
Makes a "one-shot" iterator that can be iterated only once.
Optional attributes for
OneShotIterator
Returns a tensor of ones with the same shape and type as x.
A logical unit of computation.
Interface implemented by operands of a TensorFlow operation.
Utilities for manipulating operand related types and lists.
Performs computation on Tensors.
Helper type for attribute getters, so we don't clutter the operation classes too much.
A builder for
Operation
s.Annotation used by classes to make TensorFlow operations conveniently accessible via
org.tensorflow.op.Ops
or one of its groups.An annotation to provide metadata about an op inputs accessor class.
An annotation to provide metadata about an op.
An API for building operations as
Op
sA Java implementation of
Scope
.Creates a dataset by applying related optimizations to
input_dataset
.Optional attributes for
OptimizeDataset
Constructs an Optional variant from a tuple of tensors.
Returns the value stored in an Optional variant or raises an error if none exists.
Returns true if and only if the given Optional variant has a value.
Creates an Optional variant with no value.
Creates a dataset by attaching tf.data.Options to
input_dataset
.Optional attributes for
OptionsDataset
Op removes all elements in the underlying container.
Optional attributes for
OrderedMapClear
Op returns the number of incomplete elements in the underlying container.
Optional attributes for
OrderedMapIncompleteSize
Op peeks at the values at the specified key.
Optional attributes for
OrderedMapPeek
Op returns the number of elements in the underlying container.
Optional attributes for
OrderedMapSize
Stage (key, values) in the underlying container which behaves like a ordered
associative container.
Optional attributes for
OrderedMapStage
Op removes and returns the values associated with the key
from the underlying container.
Optional attributes for
OrderedMapUnstage
Op removes and returns the (key, value) element with the smallest
key from the underlying container.
Optional attributes for
OrderedMapUnstageNoKey
A TPU core selector Op.
Retrieves a single tensor from the computation outfeed.
Optional attributes for
OutfeedDequeue
Retrieve multiple values from the computation outfeed.
Optional attributes for
OutfeedDequeueTuple
Retrieve multiple values from the computation outfeed.
Retrieves a single tensor from the computation outfeed.
Enqueue a Tensor on the computation outfeed.
Enqueue multiple Tensor values on the computation outfeed.
A symbolic handle to a tensor produced by an
Operation
.Pads a tensor.
Creates a dataset that batches and pads
batch_size
elements from the input.Optional attributes for
PaddedBatchDataset
A queue that produces elements in first-in first-out order.
Optional attributes for
PaddingFifoQueue
The ParallelBatchDataset operation
Optional attributes for
ParallelBatchDataset
Concatenates a list of
N
tensors along the first dimension.Interleave the values from the
data
tensors into a single tensor.Creates a dataset containing elements of
input_dataset
matching predicate
.Optional attributes for
ParallelFilterDataset
Creates a dataset that applies
f
to the outputs of input_dataset
.Creates a dataset that applies
f
to the outputs of input_dataset
.Optional attributes for
ParallelInterleaveDataset
Creates a dataset that applies
f
to the outputs of input_dataset
.Optional attributes for
ParallelMapDataset
Outputs random values from a normal distribution.
Optional attributes for
ParameterizedTruncatedNormal
Transforms a vector of tf.Example protos (as strings) into typed tensors.
Transforms
input_dataset
containing Example
protos as vectors of DT_STRING into a dataset of Tensor
or SparseTensor
objects representing the parsed features.Transforms
input_dataset
containing Example
protos as vectors of DT_STRING into a dataset of Tensor
or SparseTensor
objects representing the parsed features.Optional attributes for
ParseExampleDataset
Optional attributes for
ParseExampleDataset
Transforms a vector of tf.io.SequenceExample protos (as strings) into
typed tensors.
Optional attributes for
ParseSequenceExample
Transforms a tf.Example proto (as a string) into typed tensors.
Transforms a scalar brain.SequenceExample proto (as strings) into typed tensors.
Optional attributes for
ParseSingleSequenceExample
Transforms a serialized tensorflow.TensorProto proto into a Tensor.
returns
f(inputs)
, where f
's body is placed and partitioned.Calls a function placed on a specified TPU device.
Optional attributes for
PartitionedCall
Optional attributes for
PartitionedCall
An op that groups a list of partitioned inputs together.
Optional attributes for
PartitionedInput
An op that demultiplexes a tensor to be sharded by XLA to a list of partitioned
outputs outside the XLA computation.
A placeholder op for a value that will be fed into the computation.
Optional attributes for
Placeholder
A placeholder op that passes through
input
when its output is not fed.Compute the polygamma function \(\psi^{(n)}(x)\).
Computes element-wise population count (a.k.a.
Computes the power of one value to another.
Creates a dataset that asynchronously prefetches elements from
input_dataset
.Optional attributes for
PrefetchDataset
An op which linearizes one Tensor value to an opaque variant tensor.
Optional attributes for
Prelinearize
An op which linearizes multiple Tensor values to an opaque variant tensor.
Optional attributes for
PrelinearizeTuple
An identity op that triggers an error if a gradient is requested.
Optional attributes for
PreventGradient
Prints a string scalar.
Optional attributes for
Print
A queue that produces elements sorted by the first component value.
Optional attributes for
PriorityQueue
Creates a dataset that uses a custom thread pool to compute
input_dataset
.Creates a dataset that uses a custom thread pool to compute
input_dataset
.Computes the product of elements across dimensions of a tensor.
Optional attributes for
Prod
Computes the QR decompositions of one or more matrices.
Optional attributes for
Qr
An API for building
quantization
operations as Op
sQuantize the 'input' tensor of type float to 'output' tensor of type 'T'.
Optional attributes for
Quantize
Quantizes then dequantizes a tensor.
Optional attributes for
QuantizeAndDequantize
Quantizes then dequantizes a tensor.
Optional attributes for
QuantizeAndDequantizeV3
Quantizes then dequantizes a tensor.
Optional attributes for
QuantizeAndDequantizeV4
Returns the gradient of
QuantizeAndDequantizeV4
.Optional attributes for
QuantizeAndDequantizeV4Grad
Returns x + y element-wise, working on quantized buffers.
Produces the average pool of the input tensor for quantized types.
Quantized Batch normalization.
Adds Tensor 'bias' to Tensor 'input' for Quantized types.
Concatenates quantized tensors along one dimension.
Computes a 2D convolution given quantized 4D input and filter tensors.
Optional attributes for
QuantizedConv2d
The QuantizedConv2DAndRelu operation
Optional attributes for
QuantizedConv2DAndRelu
The QuantizedConv2DAndReluAndRequantize operation
Optional attributes for
QuantizedConv2DAndReluAndRequantize
The QuantizedConv2DAndRequantize operation
Optional attributes for
QuantizedConv2DAndRequantize
Computes QuantizedConv2D per channel.
Optional attributes for
QuantizedConv2DPerChannel
The QuantizedConv2DWithBias operation
Optional attributes for
QuantizedConv2DWithBias
The QuantizedConv2DWithBiasAndRelu operation
Optional attributes for
QuantizedConv2DWithBiasAndRelu
The QuantizedConv2DWithBiasAndReluAndRequantize operation
Optional attributes for
QuantizedConv2DWithBiasAndReluAndRequantize
The QuantizedConv2DWithBiasAndRequantize operation
Optional attributes for
QuantizedConv2DWithBiasAndRequantize
The QuantizedConv2DWithBiasSignedSumAndReluAndRequantize operation
Optional attributes for
QuantizedConv2DWithBiasSignedSumAndReluAndRequantize
The QuantizedConv2DWithBiasSumAndRelu operation
Optional attributes for
QuantizedConv2DWithBiasSumAndRelu
The QuantizedConv2DWithBiasSumAndReluAndRequantize operation
Optional attributes for
QuantizedConv2DWithBiasSumAndReluAndRequantize
Computes quantized depthwise Conv2D.
Optional attributes for
QuantizedDepthwiseConv2D
Computes quantized depthwise Conv2D with Bias.
Optional attributes for
QuantizedDepthwiseConv2DWithBias
Computes quantized depthwise Conv2D with Bias and Relu.
Optional attributes for
QuantizedDepthwiseConv2DWithBiasAndRelu
Computes quantized depthwise Conv2D with Bias, Relu and Requantize.
Optional attributes for
QuantizedDepthwiseConv2DWithBiasAndReluAndRequantize
Quantized Instance normalization.
Optional attributes for
QuantizedInstanceNorm
Perform a quantized matrix multiplication of
a
by the matrix b
.Optional attributes for
QuantizedMatMul
Performs a quantized matrix multiplication of
a
by the matrix b
with bias
add.Optional attributes for
QuantizedMatMulWithBias
The QuantizedMatMulWithBiasAndDequantize operation
Optional attributes for
QuantizedMatMulWithBiasAndDequantize
Perform a quantized matrix multiplication of
a
by the matrix b
with bias
add and relu fusion.Optional attributes for
QuantizedMatMulWithBiasAndRelu
Perform a quantized matrix multiplication of
a
by the matrix b
with bias
add and relu and requantize fusion.Optional attributes for
QuantizedMatMulWithBiasAndReluAndRequantize
The QuantizedMatMulWithBiasAndRequantize operation
Optional attributes for
QuantizedMatMulWithBiasAndRequantize
Produces the max pool of the input tensor for quantized types.
Returns x * y element-wise, working on quantized buffers.
Convert the quantized 'input' tensor into a lower-precision 'output', using the
actual distribution of the values to maximize the usage of the lower bit depth
and adjusting the output min and max ranges accordingly.
Computes Quantized Rectified Linear:
max(features, 0)
Computes Quantized Rectified Linear 6:
min(max(features, 0), 6)
Computes Quantized Rectified Linear X:
min(max(features, 0), max_value)
Reshapes a quantized tensor as per the Reshape op.
Resize quantized
images
to size
using quantized bilinear interpolation.Optional attributes for
QuantizedResizeBilinear
Closes the given queue.
Optional attributes for
QueueClose
Dequeues a tuple of one or more tensors from the given queue.
Optional attributes for
QueueDequeue
Dequeues
n
tuples of one or more tensors from the given queue.Optional attributes for
QueueDequeueMany
Dequeues
n
tuples of one or more tensors from the given queue.Optional attributes for
QueueDequeueUpTo
Enqueues a tuple of one or more tensors in the given queue.
Optional attributes for
QueueEnqueue
Enqueues zero or more tuples of one or more tensors in the given queue.
Optional attributes for
QueueEnqueueMany
Returns true if queue is closed.
Computes the number of elements in the given queue.
Counts the number of occurrences of each value in an integer array.
Optional attributes for
RaggedBincount
Performs sparse-output bin counting for a ragged tensor input.
Optional attributes for
RaggedCountSparseOutput
Generates a feature cross from a list of tensors, and returns it as a
RaggedTensor.
The RaggedFillEmptyRows operation
The RaggedFillEmptyRowsGrad operation
Gather ragged slices from
params
axis 0
according to indices
.An API for building
ragged
operations as Op
sReturns a
RaggedTensor
containing the specified sequences of numbers.Decodes a
variant
Tensor into a RaggedTensor
.Converts a
RaggedTensor
into a SparseTensor
with the same values.Create a dense tensor from a ragged tensor, possibly altering its shape.
Encodes a
RaggedTensor
into a variant
Tensor.Helper used to compute the gradient for
RaggedTensorToVariant
.Randomly crop
image
.Optional attributes for
RandomCrop
Creates a Dataset that returns pseudorandom numbers.
Creates a Dataset that returns pseudorandom numbers.
Optional attributes for
RandomDataset
An API for building
random.experimental
operations as Op
sOutputs random values from the Gamma distribution(s) described by alpha.
Optional attributes for
RandomGamma
Computes the derivative of a Gamma random sample w.r.t.
Outputs the position of
value
in a permutation of [0, ..., max_index].Optional attributes for
RandomIndexShuffle
An API for building
random
operations as Op
sOutputs random values from the Poisson distribution(s) described by rate.
Optional attributes for
RandomPoisson
Randomly shuffles a tensor along its first dimension.
Optional attributes for
RandomShuffle
A queue that randomizes the order of elements.
Optional attributes for
RandomShuffleQueue
Outputs random values from a normal distribution.
Optional attributes for
RandomStandardNormal
Outputs random values from a uniform distribution.
Optional attributes for
RandomUniform
Outputs random integers from a uniform distribution.
Optional attributes for
RandomUniformInt
Creates a sequence of numbers.
Creates a dataset with a range of values.
Optional attributes for
RangeDataset
Returns the rank of a tensor.
A custom gradient for an op of unspecified type.
A base class for operation input accessors.
A tensor which memory has not been mapped to a data space directly accessible from the JVM.
Returns the number of records this Reader has produced.
Returns the number of work units this Reader has finished processing.
Returns the next record (key, value pair) produced by a Reader.
Returns up to
num_records
(key, value) pairs produced by a Reader.Restore a Reader to its initial clean state.
Restore a reader to a previously saved state.
Produce a string tensor that encodes the state of a Reader.
Reads and outputs the entire contents of the input filename.
Reads the value of a variable.
Splits resource variable input tensor across all dimensions.
Optional attributes for
ReadVariableSplitND
Returns the real part of a complex number.
Returns x / y element-wise for real types.
Creates a dataset that changes the batch size.
Optional attributes for
RebatchDataset
Creates a dataset that changes the batch size.
Computes the reciprocal of x element-wise.
Computes the gradient for the inverse of
x
wrt its input.Emits randomized records.
Optional attributes for
RecordInput
Receives the named tensor from send_device on recv_device.
Optional attributes for
Recv
An op that receives embedding activations on the TPU.
Computes the "logical and" of elements across dimensions of a tensor.
Optional attributes for
ReduceAll
Computes the "logical or" of elements across dimensions of a tensor.
Optional attributes for
ReduceAny
Reduces the input dataset to a singleton using a reduce function.
Optional attributes for
ReduceDataset
Joins a string Tensor across the given dimensions.
Optional attributes for
ReduceJoin
Computes the maximum of elements across dimensions of a tensor.
Optional attributes for
ReduceMax
Computes the minimum of elements across dimensions of a tensor.
Optional attributes for
ReduceMin
Computes the product of elements across dimensions of a tensor.
Optional attributes for
ReduceProd
Computes the sum of elements across dimensions of a tensor.
Optional attributes for
ReduceSum
Creates or finds a child frame, and makes
data
available to the child frame.Optional attributes for
RefEnter
Exits the current frame to its parent frame.
Return the same ref tensor as the input ref tensor.
Forwards the value of an available tensor from
inputs
to output
.Makes its input available to the next iteration.
Forwards the
index
th element of inputs
to output
.Forwards the ref tensor
data
to the output port determined by pred
.Check if the input matches the regex pattern.
Replaces matches of the
pattern
regular expression in input
with the
replacement string provided in rewrite
.Optional attributes for
RegexReplace
Registers a dataset with the tf.data service.
Optional attributes for
RegisterDataset
The Relayout operation
The RelayoutLike operation
Computes rectified linear:
max(features, 0)
.Computes rectified linear 6:
min(max(features, 0), 6)
.Computes rectified linear 6 gradients for a Relu6 operation.
Computes rectified linear gradients for a Relu operation.
Runs function
f
on a remote device indicated by target
.Creates a dataset that emits the outputs of
input_dataset
count
times.Optional attributes for
RepeatDataset
Connects N inputs to an N-way replicated TPU computation.
Optional attributes for
ReplicatedInput
Connects N outputs from an N-way replicated TPU computation.
Metadata indicating how the TPU computation should be replicated.
Optional attributes for
ReplicateMetadata
Computes a range that covers the actual values present in a quantized tensor.
Computes requantization range per channel.
Converts the quantized
input
tensor into a lower-precision output
.Requantizes input with min and max values known per channel.
Reshapes a tensor.
Resize
images
to size
using area interpolation.Optional attributes for
ResizeArea
Resize
images
to size
using bicubic interpolation.Optional attributes for
ResizeBicubic
Computes the gradient of bicubic interpolation.
Optional attributes for
ResizeBicubicGrad
Resize
images
to size
using bilinear interpolation.Optional attributes for
ResizeBilinear
Computes the gradient of bilinear interpolation.
Optional attributes for
ResizeBilinearGrad
Resize
images
to size
using nearest neighbor interpolation.Optional attributes for
ResizeNearestNeighbor
Computes the gradient of nearest neighbor interpolation.
Optional attributes for
ResizeNearestNeighborGrad
Applies a gradient to a given accumulator.
Returns the number of gradients aggregated in the given accumulators.
Updates the accumulator with a new value for global_step.
Extracts the average gradient in the given ConditionalAccumulator.
Update '*var' according to the adadelta scheme.
Optional attributes for
ResourceApplyAdadelta
Update '*var' according to the adagrad scheme.
Optional attributes for
ResourceApplyAdagrad
Update '*var' according to the proximal adagrad scheme.
Optional attributes for
ResourceApplyAdagradDa
Update '*var' according to the Adam algorithm.
Optional attributes for
ResourceApplyAdam
Update '*var' according to the AdaMax algorithm.
Optional attributes for
ResourceApplyAdaMax
Update '*var' according to the Adam algorithm.
Optional attributes for
ResourceApplyAdamWithAmsgrad
Update '*var' according to the AddSign update.
Optional attributes for
ResourceApplyAddSign
Update '*var' according to the centered RMSProp algorithm.
Optional attributes for
ResourceApplyCenteredRmsProp
Update '*var' according to the Ftrl-proximal scheme.
Optional attributes for
ResourceApplyFtrl
Update '*var' by subtracting 'alpha' * 'delta' from it.
Optional attributes for
ResourceApplyGradientDescent
Update '*var' according to the momentum scheme.
Optional attributes for
ResourceApplyKerasMomentum
Update '*var' according to the momentum scheme.
Optional attributes for
ResourceApplyMomentum
Update '*var' according to the AddSign update.
Optional attributes for
ResourceApplyPowerSign
Update '*var' and '*accum' according to FOBOS with Adagrad learning rate.
Optional attributes for
ResourceApplyProximalAdagrad
Update '*var' as FOBOS algorithm with fixed learning rate.
Optional attributes for
ResourceApplyProximalGradientDescent
Update '*var' according to the RMSProp algorithm.
Optional attributes for
ResourceApplyRmsProp
A conditional accumulator for aggregating gradients.
Optional attributes for
ResourceConditionalAccumulator
Increments variable pointed to by 'resource' until it reaches 'limit'.
Gather slices from the variable pointed to by
resource
according to indices
.Optional attributes for
ResourceGather
The ResourceGatherNd operation
Adds sparse updates to the variable referenced by
resource
.Divides sparse updates into the variable referenced by
resource
.Reduces sparse updates into the variable referenced by
resource
using the max
operation.Reduces sparse updates into the variable referenced by
resource
using the min
operation.Multiplies sparse updates into the variable referenced by
resource
.Applies sparse addition to individual values or slices in a Variable.
Optional attributes for
ResourceScatterNdAdd
The ResourceScatterNdMax operation
Optional attributes for
ResourceScatterNdMax
The ResourceScatterNdMin operation
Optional attributes for
ResourceScatterNdMin
Applies sparse subtraction to individual values or slices in a Variable.
Optional attributes for
ResourceScatterNdSub
Applies sparse
updates
to individual values or slices within a given
variable according to indices
.Optional attributes for
ResourceScatterNdUpdate
Subtracts sparse updates from the variable referenced by
resource
.Assigns sparse updates to the variable referenced by
resource
.var: Should be from a Variable().
Optional attributes for
ResourceSparseApplyAdadelta
Update relevant entries in '*var' and '*accum' according to the adagrad scheme.
Optional attributes for
ResourceSparseApplyAdagrad
Update entries in '*var' and '*accum' according to the proximal adagrad scheme.
Optional attributes for
ResourceSparseApplyAdagradDa
Update relevant entries in '*var' and '*accum' according to the adagrad scheme.
Optional attributes for
ResourceSparseApplyAdagradV2
Update '*var' according to the centered RMSProp algorithm.
Optional attributes for
ResourceSparseApplyCenteredRmsProp
Update relevant entries in '*var' according to the Ftrl-proximal scheme.
Optional attributes for
ResourceSparseApplyFtrl
Update relevant entries in '*var' and '*accum' according to the momentum scheme.
Optional attributes for
ResourceSparseApplyKerasMomentum
Update relevant entries in '*var' and '*accum' according to the momentum scheme.
Optional attributes for
ResourceSparseApplyMomentum
Sparse update entries in '*var' and '*accum' according to FOBOS algorithm.
Optional attributes for
ResourceSparseApplyProximalAdagrad
Sparse update '*var' as FOBOS algorithm with fixed learning rate.
Optional attributes for
ResourceSparseApplyProximalGradientDescent
Update '*var' according to the RMSProp algorithm.
Optional attributes for
ResourceSparseApplyRmsProp
Assign
value
to the sliced l-value reference of ref
.Optional attributes for
ResourceStridedSliceAssign
Restores tensors from a V2 checkpoint.
Restores a tensor from checkpoint files.
Optional attributes for
RestoreSlice
An op that retrieves optimization parameters from embedding to host memory.
Retrieve Adadelta embedding parameters.
Optional attributes for
RetrieveTPUEmbeddingAdadeltaParameters
Retrieve Adagrad Momentum embedding parameters.
Optional attributes for
RetrieveTPUEmbeddingAdagradMomentumParameters
Retrieve Adagrad embedding parameters.
Optional attributes for
RetrieveTPUEmbeddingAdagradParameters
Retrieve ADAM embedding parameters.
Optional attributes for
RetrieveTPUEmbeddingADAMParameters
Retrieve centered RMSProp embedding parameters.
Optional attributes for
RetrieveTPUEmbeddingCenteredRMSPropParameters
Retrieve frequency estimator embedding parameters.
Optional attributes for
RetrieveTPUEmbeddingFrequencyEstimatorParameters
Retrieve FTRL embedding parameters.
Optional attributes for
RetrieveTPUEmbeddingFTRLParameters
Retrieve MDL Adagrad Light embedding parameters.
Optional attributes for
RetrieveTPUEmbeddingMDLAdagradLightParameters
Retrieve Momentum embedding parameters.
Optional attributes for
RetrieveTPUEmbeddingMomentumParameters
Retrieve proximal Adagrad embedding parameters.
Optional attributes for
RetrieveTPUEmbeddingProximalAdagradParameters
The RetrieveTPUEmbeddingProximalYogiParameters operation
Optional attributes for
RetrieveTPUEmbeddingProximalYogiParameters
Retrieve RMSProp embedding parameters.
Optional attributes for
RetrieveTPUEmbeddingRMSPropParameters
Retrieve SGD embedding parameters.
Optional attributes for
RetrieveTPUEmbeddingStochasticGradientDescentParameters
Reverses specific dimensions of a tensor.
Reverses variable length slices.
Optional attributes for
ReverseSequence
The RewriteDataset operation
Real-valued fast Fourier transform.
2D real-valued fast Fourier transform.
3D real-valued fast Fourier transform.
ND fast real Fourier transform.
Converts one or more images from RGB to HSV.
Elementwise computes the bitwise right-shift of
x
and y
.Returns element-wise integer closest to x.
Advance the counter of a counter-based RNG.
Advance the counter of a counter-based RNG.
Rolls the elements of a tensor along an axis.
Rounds the values of a tensor to the nearest integer, element-wise.
Computes reciprocal of square root of x element-wise.
Computes the gradient for the rsqrt of
x
wrt its input.Generate a single randomly distorted bounding box for an image.
Optional attributes for
SampleDistortedBoundingBox
Creates a dataset that takes a Bernoulli sample of the contents of another dataset.
Saves tensors in V2 checkpoint format.
The SaveDatasetV2 operation
Optional attributes for
SaveDataset
SavedModelBundle represents a model loaded from storage.
Options for exporting a SavedModel.
Options for loading a SavedModel.
Saves input tensors slices to disk.
Outputs a
Summary
protocol buffer with scalar values.The ScaleAndTranslate operation
Optional attributes for
ScaleAndTranslate
The ScaleAndTranslateGrad operation
Optional attributes for
ScaleAndTranslateGrad
Creates a dataset successively reduces
f
over the elements of input_dataset
.Creates a dataset successively reduces
f
over the elements of input_dataset
.Optional attributes for
ScanDataset
Optional attributes for
ScanDataset
Adds sparse updates to a variable reference.
Optional attributes for
ScatterAdd
Divides a variable reference by sparse updates.
Optional attributes for
ScatterDiv
Reduces sparse updates into a variable reference using the
max
operation.Optional attributes for
ScatterMax
Reduces sparse updates into a variable reference using the
min
operation.Optional attributes for
ScatterMin
Multiplies sparse updates into a variable reference.
Optional attributes for
ScatterMul
Scatters
updates
into a tensor of shape shape
according to indices
.Applies sparse addition to individual values or slices in a Variable.
Optional attributes for
ScatterNdAdd
Computes element-wise maximum.
Optional attributes for
ScatterNdMax
Computes element-wise minimum.
Optional attributes for
ScatterNdMin
Applies sparse addition to
input
using individual values or slices
from updates
according to indices indices
.Applies sparse subtraction to individual values or slices in a Variable.
Optional attributes for
ScatterNdSub
Applies sparse
updates
to individual values or slices within a given
variable according to indices
.Optional attributes for
ScatterNdUpdate
Subtracts sparse updates to a variable reference.
Optional attributes for
ScatterSub
Applies sparse updates to a variable reference.
Optional attributes for
ScatterUpdate
Manages groups of related properties when creating Tensorflow Operations, such as a common name
prefix.
Computes fingerprints of the input strings.
Distributed version of Stochastic Dual Coordinate Ascent (SDCA) optimizer for
linear models with L1 + L2 regularization.
Optional attributes for
SdcaOptimizer
Applies L1 regularization shrink step on the parameters.
Computes the maximum along segments of a tensor.
Computes the mean along segments of a tensor.
Computes the minimum along segments of a tensor.
Computes the product along segments of a tensor.
Computes the sum along segments of a tensor.
The SelectV2 operation
Computes the eigen decomposition of one or more square self-adjoint matrices.
Optional attributes for
SelfAdjointEig
Computes scaled exponential linear:
scale * alpha * (exp(features) - 1)
if < 0, scale * features
otherwise.Computes gradients for the scaled exponential linear (Selu) operation.
Sends the named tensor from send_device to recv_device.
Optional attributes for
Send
Performs gradient updates of embedding tables.
Optional attributes for
SendTPUEmbeddingGradients
Converts the given
resource_handle
representing an iterator to a variant tensor.Optional attributes for
SerializeIterator
Serialize an
N
-minibatch SparseTensor
into an [N, 3]
Tensor
object.Serialize a
SparseTensor
into a [3]
Tensor
object.Transforms a Tensor into a serialized TensorProto proto.
An in-process TensorFlow server, for use in distributed training.
Driver for
Graph
execution.A callable function backed by a session.
Computes the difference between two lists of numbers or strings.
Number of unique elements along last dimension of input
set
.Optional attributes for
SetSize
The ExperimentalSetStatsAggregatorDataset operation
The SetStatsAggregatorDataset operation
Returns the shape of a tensor.
Returns shape of tensors.
An API for building
shape
operations as Op
sAn operator providing methods on org.tensorflow.op.core.Shape tensors and 1d operands that
represent the dimensions of a shape.
Creates a
Dataset
that includes only 1/num_shards
of this dataset.Optional attributes for
ShardDataset
Generate a sharded filename.
Generate a glob pattern matching all sharded file names.
The ShuffleAndRepeatDatasetV2 operation
Optional attributes for
ShuffleAndRepeatDataset
The ShuffleDatasetV3 operation
Optional attributes for
ShuffleDataset
Shuts down a running distributed TPU system.
An op that shuts down the TPU system.
Computes sigmoid of
x
element-wise.Computes the gradient of the sigmoid of
x
wrt its input.Returns an element-wise indication of the sign of a number.
An API for building
signal
operations as Op
sDescribe the inputs and outputs of an executable entity, such as a
ConcreteFunction
,
among other useful metadata.Builds a new function signature.
Computes sine of x element-wise.
Computes hyperbolic sine of x element-wise.
Returns the size of a tensor.
Creates a dataset that skips
count
elements from the input_dataset
.Optional attributes for
SkipDataset
Parses a text file and creates a batch of examples.
Optional attributes for
Skipgram
The ExperimentalSleepDataset operation
The SleepDataset operation
Return a slice from 'input'.
Creates a dataset that passes a sliding window over
input_dataset
.Creates a dataset that passes a sliding window over
input_dataset
.Optional attributes for
SlidingWindowDataset
Returns a copy of the input tensor.
The SnapshotChunkDataset operation
Optional attributes for
SnapshotChunkDataset
Creates a dataset that will write to / read from a snapshot.
Optional attributes for
SnapshotDataset
The SnapshotDatasetReader operation
Optional attributes for
SnapshotDatasetReader
The SnapshotNestedDatasetReader operation
Generates points from the Sobol sequence.
Computes softmax activations.
Computes softmax cross entropy cost and gradients to backpropagate.
The Softplus operation
Computes softplus gradients for a softplus operation.
Computes softsign:
features / (abs(features) + 1)
.Computes softsign gradients for a softsign operation.
Solves systems of linear equations.
Optional attributes for
Solve
SpaceToBatch for 4-D tensors of type T.
SpaceToBatch for N-D tensors of type T.
SpaceToDepth for tensors of type T.
Optional attributes for
SpaceToDepth
Applies a sparse gradient to a given accumulator.
Extracts the average sparse gradient in a SparseConditionalAccumulator.
Adds two
SparseTensor
objects to produce another SparseTensor
.The gradient operator for the SparseAdd op.
var: Should be from a Variable().
Optional attributes for
SparseApplyAdadelta
Update relevant entries in '*var' and '*accum' according to the adagrad scheme.
Optional attributes for
SparseApplyAdagrad
Update entries in '*var' and '*accum' according to the proximal adagrad scheme.
Optional attributes for
SparseApplyAdagradDa
Update '*var' according to the centered RMSProp algorithm.
Optional attributes for
SparseApplyCenteredRmsProp
Update relevant entries in '*var' according to the Ftrl-proximal scheme.
Optional attributes for
SparseApplyFtrl
Update relevant entries in '*var' and '*accum' according to the momentum scheme.
Optional attributes for
SparseApplyMomentum
Sparse update entries in '*var' and '*accum' according to FOBOS algorithm.
Optional attributes for
SparseApplyProximalAdagrad
Sparse update '*var' as FOBOS algorithm with fixed learning rate.
Optional attributes for
SparseApplyProximalGradientDescent
Update '*var' according to the RMSProp algorithm.
Optional attributes for
SparseApplyRmsProp
Counts the number of occurrences of each value in an integer array.
Optional attributes for
SparseBincount
Concatenates a list of
SparseTensor
along the specified dimension.A conditional accumulator for aggregating sparse gradients.
Optional attributes for
SparseConditionalAccumulator
Performs sparse-output bin counting for a sparse tensor input.
Optional attributes for
SparseCountSparseOutput
Generates sparse cross from a list of sparse and dense tensors.
Generates sparse cross from a list of sparse and dense tensors.
Adds up a SparseTensor and a dense Tensor, using these special rules:
(1) Broadcasts the dense side to have the same shape as the sparse side, if
eligible;
(2) Then, only the dense values pointed to by the indices of the SparseTensor
participate in the cwise addition.
Component-wise divides a SparseTensor by a dense Tensor.
Component-wise multiplies a SparseTensor by a dense Tensor.
Fills empty rows in the input 2-D
SparseTensor
with a default value.The gradient of SparseFillEmptyRows.
Multiply matrix "a" by matrix "b".
Optional attributes for
SparseMatMul
Sparse addition of two CSR matrices, C = alpha * A + beta * B.
Matrix-multiplies a sparse matrix with a dense matrix.
Optional attributes for
SparseMatrixMatMul
Element-wise multiplication of a sparse matrix with a dense tensor.
Returns the number of nonzeroes of
sparse_matrix
.Computes the Approximate Minimum Degree (AMD) ordering of
input
.Calculates the softmax of a CSRSparseMatrix.
Calculates the gradient of the SparseMatrixSoftmax op.
Computes the sparse Cholesky decomposition of
input
.Sparse-matrix-multiplies two CSR matrices
a
and b
.Optional attributes for
SparseMatrixSparseMatMul
Transposes the inner (matrix) dimensions of a CSRSparseMatrix.
Optional attributes for
SparseMatrixTranspose
Creates an all-zeros CSRSparseMatrix with shape
dense_shape
.An API for building
sparse
operations as Op
sComputes the max of elements across dimensions of a SparseTensor.
Optional attributes for
SparseReduceMax
Computes the max of elements across dimensions of a SparseTensor.
Optional attributes for
SparseReduceMaxSparse
Computes the sum of elements across dimensions of a SparseTensor.
Optional attributes for
SparseReduceSum
Computes the sum of elements across dimensions of a SparseTensor.
Optional attributes for
SparseReduceSumSparse
Reorders a SparseTensor into the canonical, row-major ordering.
Reshapes a SparseTensor to represent values in a new dense shape.
Computes the mean along sparse segments of a tensor.
Optional attributes for
SparseSegmentMean
Computes gradients for SparseSegmentMean.
Computes the mean along sparse segments of a tensor.
Optional attributes for
SparseSegmentMeanWithNumSegments
Computes the sum along sparse segments of a tensor divided by the sqrt of N.
Optional attributes for
SparseSegmentSqrtN
Computes gradients for SparseSegmentSqrtN.
Computes the sum along sparse segments of a tensor divided by the sqrt of N.
Optional attributes for
SparseSegmentSqrtNWithNumSegments
Computes the sum along sparse segments of a tensor.
Optional attributes for
SparseSegmentSum
Computes gradients for SparseSegmentSum.
Computes the sum along sparse segments of a tensor.
Optional attributes for
SparseSegmentSumWithNumSegments
Slice a
SparseTensor
based on the start
and size
.The gradient operator for the SparseSlice op.
Applies softmax to a batched N-D
SparseTensor
.Computes softmax cross entropy cost and gradients to backpropagate.
Returns the element-wise max of two SparseTensors.
Returns the element-wise min of two SparseTensors.
Split a
SparseTensor
into num_split
tensors along one dimension.A virtual type of
Tensor
composed of three dense tensors (indices, values and dimensions)
used to represent the sparse data into a multi-dimensional dense space.Adds up a
SparseTensor
and a dense Tensor
, producing a dense Tensor
.Multiply SparseTensor (of rank 2) "A" by dense matrix "B".
Optional attributes for
SparseTensorDenseMatMul
Creates a dataset that splits a SparseTensor into elements row-wise.
Converts a SparseTensor to a (possibly batched) CSRSparseMatrix.
Converts a sparse representation into a dense tensor.
Optional attributes for
SparseToDense
Applies set operation along last dimension of 2
SparseTensor
inputs.Optional attributes for
SparseToSparseSetOperation
The Spence operation
Splits a tensor into
num_split
tensors along one dimension.An op splits input deduplication data XLA tuple into integer and floating point
tensors.
Optional attributes for
SplitDedupData
Splits input tensor across all dimensions.
Optional attributes for
SplitND
Splits a tensor into
num_split
tensors along one dimension.Creates a dataset that executes a SQL query and emits rows of the result set.
Creates a dataset that executes a SQL query and emits rows of the result set.
Computes square root of x element-wise.
Computes the gradient for the sqrt of
x
wrt its input.Computes the matrix square root of one or more square matrices:
matmul(sqrtm(A), sqrtm(A)) = A
Computes square of x element-wise.
Returns conj(x - y)(x - y) element-wise.
Removes dimensions of size 1 from the shape of a tensor.
Optional attributes for
Squeeze
Packs a list of
N
rank-R
tensors into one rank-(R+1)
tensor.Optional attributes for
Stack
Delete the stack from its resource container.
A stack that produces elements in first-in last-out order.
Optional attributes for
StackCreate
Pop the element at the top of the stack.
Push an element onto the stack.
Optional attributes for
StackPush
Stage values similar to a lightweight Enqueue.
Optional attributes for
Stage
Op removes all elements in the underlying container.
Optional attributes for
StageClear
Op peeks at the values at the specified index.
Optional attributes for
StagePeek
Op returns the number of elements in the underlying container.
Optional attributes for
StageSize
An n-way switch statement which calls a single branch function.
output = cond ? then_branch(input) : else_branch(input)
returns
f(inputs)
, where f
's body is placed and partitioned.Optional attributes for
StatefulPartitionedCall
The StatefulRandomBinomial operation
Outputs random values from a normal distribution.
Outputs random values from a truncated normal distribution.
Outputs random values from a uniform distribution.
Outputs random integers from a uniform distribution.
Outputs random integers from a uniform distribution.
output = input; While (Cond(output)) { output = Body(output) }
An n-way switch statement which calls a single branch function.
output = cond ? then_branch(input) : else_branch(input)
Draws samples from a multinomial distribution.
The StatelessParameterizedTruncatedNormal operation
Outputs deterministic pseudorandom random numbers from a binomial distribution.
Outputs deterministic pseudorandom random numbers from a gamma distribution.
Picks the best counter-based RNG algorithm based on device.
Scrambles seed into key and counter, using the best algorithm based on device.
Picks the best algorithm based on device, and scrambles seed into key and counter.
Outputs deterministic pseudorandom values from a normal distribution.
Outputs deterministic pseudorandom values from a normal distribution.
Outputs deterministic pseudorandom random numbers from a Poisson distribution.
Outputs deterministic pseudorandom random values from a uniform distribution.
Outputs deterministic pseudorandom random integers from a uniform distribution.
Outputs deterministic pseudorandom random integers from a uniform distribution.
Outputs deterministic pseudorandom random integers from a uniform distribution.
Outputs deterministic pseudorandom random integers from a uniform distribution.
Outputs deterministic pseudorandom random values from a uniform distribution.
Generate a randomly distorted bounding box for an image deterministically.
Optional attributes for
StatelessSampleDistortedBoundingBox
Randomly and deterministically shuffles a tensor along its first dimension.
Outputs deterministic pseudorandom values from a truncated normal distribution.
Outputs deterministic pseudorandom values from a truncated normal distribution.
output = input; While (Cond(output)) { output = Body(output) }
Check if the input matches the regex pattern.
Replaces the match of pattern in input with rewrite.
Optional attributes for
StaticRegexReplace
Creates a statistics manager resource.
The StatsAggregatorHandleV2 operation
Optional attributes for
StatsAggregatorHandle
Optional attributes for
StatsAggregatorHandle
Set a summary_writer_interface to record statistics using given stats_aggregator.
Produces a summary of any statistics recorded by the given statistics manager.
Produces a summary of any statistics recorded by the given statistics manager.
Stochastically cast a given tensor from floats to ints.
Stops gradient computation.
The StoreMinibatchStatisticsInFdo operation
Return a strided slice from
input
.Optional attributes for
StridedSlice
Assign
value
to the sliced l-value reference of ref
.Optional attributes for
StridedSliceAssign
Returns the gradient of
StridedSlice
.Optional attributes for
StridedSliceGrad
Helper endpoint methods for Python like indexing.
Formats a string template using a list of tensors.
Optional attributes for
StringFormat
String lengths of
input
.Optional attributes for
StringLength
Creates ngrams from ragged string data.
An API for building
strings
operations as Op
sSplit elements of
source
based on sep
into a SparseTensor
.Optional attributes for
StringSplit
Strip leading and trailing whitespaces from the Tensor.
Returns x - y element-wise.
Return substrings from
Tensor
of strings.Optional attributes for
Substr
Computes the sum of elements across dimensions of a tensor.
Optional attributes for
Sum
An API for building
summary
operations as Op
sThe SummaryWriter operation
Optional attributes for
SummaryWriter
Computes the singular value decompositions of one or more matrices.
Optional attributes for
Svd
Forwards
data
to the output port determined by pred
.Computes the gradient function for function f via backpropagation.
Synchronizes the device this op is run on.
Creates a dataset that contains
count
elements from the input_dataset
.Optional attributes for
TakeDataset
Read
SparseTensors
from a SparseTensorsMap
and concatenate them.Optional attributes for
TakeManySparseFromTensorsMap
Creates a dataset that stops iteration when predicate` is false.
Creates a dataset that stops iteration when predicate` is false.
Optional attributes for
TakeWhileDataset
Computes tan of x element-wise.
Computes hyperbolic tangent of
x
element-wise.Computes the gradient for the tanh of
x
wrt its input.Brain 16-bit float tensor type.
Boolean tensor type.
Returns a tensor that may be mutated, but only persists within a single step.
Optional attributes for
TemporaryVariable
A statically typed multi-dimensional array.
An array of Tensors of given size.
Optional attributes for
TensorArray
Delete the TensorArray from its resource container.
Concat the elements from the TensorArray into value
value
.Optional attributes for
TensorArrayConcat
Gather specific elements from the TensorArray into output
value
.Optional attributes for
TensorArrayGather
Creates a TensorArray for storing the gradients of values in the given handle.
Creates a TensorArray for storing multiple gradients of values in the given handle.
The TensorArrayPack operation
Optional attributes for
TensorArrayPack
Read an element from the TensorArray into output
value
.Scatter the data from the input value into specific TensorArray elements.
Get the current size of the TensorArray.
Split the data from the input value into TensorArray elements.
The TensorArrayUnpack operation
Push an element onto the tensor_array.
Creates a dataset that emits
components
as a tuple of tensors once.Optional attributes for
TensorDataset
Returns a diagonal tensor with a given diagonal values.
Returns the diagonal part of the tensor.
Static utility methods describing the TensorFlow runtime.
A function that can be called with tensors.
Concats all tensors in the list along the 0th dimension.
The TensorListConcatLists operation
The shape of the elements of the given list, as a tensor.
Creates a TensorList which, when stacked, has the value of
tensor
.Creates a Tensor by indexing into the TensorList.
Returns the item in the list with the given index.
Returns the number of tensors in the input tensor list.
Returns the last element of the input list as well as a list with all but that element.
Returns a list which has the passed-in
Tensor
as last element and the other elements of the given list in input_handle
.The TensorListPushBackBatch operation
List of the given size with empty elements.
Resizes the list.
Creates a TensorList by indexing into a Tensor.
Scatters tensor at indices in an input list.
Sets the index-th position of the list to contain the given tensor.
Optional attributes for
TensorListSetItem
Splits a tensor into a list.
Stacks all tensors in the list.
Optional attributes for
TensorListStack
Returns a tensor map with item from given key erased.
Returns whether the given key exists in the map.
Returns a map that is the 'input_handle' with the given key-value pair inserted.
Returns the value from a given key in a tensor map.
Maps the native memory of a
RawTensor
to a n-dimensional typed data space accessible from
the JVM.Returns the number of tensors in the input tensor map.
Returns a Tensor stack of all keys in a tensor map.
Adds sparse
updates
to an existing tensor according to indices
.Apply a sparse update to a tensor taking the element-wise maximum.
The TensorScatterMin operation
Subtracts sparse
updates
from an existing tensor according to indices
.Scatter
updates
into an existing tensor according to indices
.Creates a dataset that emits each dim-0 slice of
components
once.Optional attributes for
TensorSliceDataset
Assign
value
to the sliced l-value reference of input
.Optional attributes for
TensorStridedSliceUpdate
Outputs a
Summary
protocol buffer with a tensor and per-plugin data.Annotation for all tensor types.
Creates a dataset that emits the lines of one or more text files.
Optional attributes for
TextLineDataset
A Reader that outputs the lines of a file delimited by '\n'.
Optional attributes for
TextLineReader
IEEE-754 half-precision 16-bit float tensor type.
IEEE-754 single-precision 32-bit float tensor type.
IEEE-754 double-precision 64-bit float tensor type.
Common interface for all floating point tensors.
Creates a dataset that emits the records from one or more TFRecord files.
Optional attributes for
TfRecordDataset
A Reader that outputs the records from a TensorFlow Records file.
Optional attributes for
TfRecordReader
Creates a dataset that uses a custom thread pool to compute
input_dataset
.Creates a dataset that uses a custom thread pool to compute
input_dataset
.Creates a dataset that uses a custom thread pool to compute
input_dataset
.Creates a dataset that uses a custom thread pool to compute
input_dataset
.Optional attributes for
ThreadPoolHandle
Optional attributes for
ThreadPoolHandle
Generates labels for candidate sampling with a learned unigram distribution.
Optional attributes for
ThreadUnsafeUnigramCandidateSampler
Constructs a tensor by tiling a given tensor.
Returns the gradient of
Tile
.Provides the time since epoch in seconds.
32-bit signed integer tensor type.
64-bit signed integer tensor type.
Common interface for all integral numeric tensors.
Common interface for all numeric tensors.
Converts a tensor to a scalar predicate.
Converts each string in the input Tensor to its hash mod by a number of buckets.
Converts each string in the input Tensor to its hash mod by a number of buckets.
Converts each string in the input Tensor to its hash mod by a number of buckets.
Converts each string in the input Tensor to the specified numeric type.
Finds values and indices of the
k
largest elements for the last dimension.Optional attributes for
TopK
Returns the TopK unique values in the array in sorted order.
Returns the TopK values in the array in sorted order.
The TPUAnnotateTensorsWithDynamicShape operation
Deprecated.
use
CompilationResult
insteadOp that copies host tensor to device with dynamic shape support.
Deprecated.
use
EmbeddingActivations
insteadConverts XRT's uid handles to TensorFlow-friendly input format.
An API for building
tpu
operations as Op
sDeprecated.
use
ReplicatedInput
insteadOptional attributes for
TPUReplicatedInput
Deprecated.
use
ReplicatedOutput
insteadDeprecated.
use
ReplicateMetadata
insteadOptional attributes for
TPUReplicateMetadata
Op that reshards on-device TPU variables to specified state.
Round-robin load balancing on TPU cores.
An API for building
train
operations as Op
sShuffle dimensions of x according to a permutation.
Solves systems of linear equations with upper or lower triangular matrices by backsubstitution.
Optional attributes for
TriangularSolve
Calculate product with tridiagonal matrix.
Solves tridiagonal systems of equations.
Optional attributes for
TridiagonalSolve
Returns x / y element-wise, rounded towards zero.
Outputs random values from a truncated normal distribution.
Optional attributes for
TruncatedNormal
Returns element-wise remainder of division.
String type.
Common interface for all typed tensors.
16-bit unsigned integer tensor type.
8-bit unsigned integer tensor type.
Reverses the operation of Batch for a single output Tensor.
Optional attributes for
Unbatch
A dataset that splits the elements of its input into multiple elements.
A dataset that splits the elements of its input into multiple elements.
Optional attributes for
UnbatchDataset
Gradient of Unbatch.
Optional attributes for
UnbatchGrad
Uncompresses a compressed dataset element.
Decodes each string in
input
into a sequence of Unicode code points.Optional attributes for
UnicodeDecode
Decodes each string in
input
into a sequence of Unicode code points.Optional attributes for
UnicodeDecodeWithOffsets
Encode a tensor of ints into unicode strings.
Optional attributes for
UnicodeEncode
Determine the script codes of a given tensor of Unicode integer code points.
Transcode the input text from a source encoding to a destination encoding.
Optional attributes for
UnicodeTranscode
Generates labels for candidate sampling with a uniform distribution.
Optional attributes for
UniformCandidateSampler
Perform dequantization on the quantized Tensor
input
.Optional attributes for
UniformDequantize
Perform quantization on Tensor
input
.Optional attributes for
UniformQuantize
Perform quantized add of quantized Tensor
lhs
and quantized Tensor rhs
to make quantized output
.Optional attributes for
UniformQuantizedAdd
Perform clip by value on the quantized Tensor
operand
.Optional attributes for
UniformQuantizedClipByValue
Perform quantized convolution of quantized Tensor
lhs
and quantized Tensor rhs
.Optional attributes for
UniformQuantizedConvolution
Perform hybrid quantized convolution of float Tensor
lhs
and quantized Tensor rhs
.Optional attributes for
UniformQuantizedConvolutionHybrid
Perform quantized dot of quantized Tensor
lhs
and quantized Tensor rhs
to make quantized output
.Optional attributes for
UniformQuantizedDot
Perform hybrid quantized dot of float Tensor
lhs
and quantized Tensor rhs
.Optional attributes for
UniformQuantizedDotHybrid
Given quantized tensor
input
, requantize it with new quantization parameters.Optional attributes for
UniformRequantize
Finds unique elements along an axis of a tensor.
Creates a dataset that contains the unique elements of
input_dataset
.Creates a dataset that contains the unique elements of
input_dataset
.Optional attributes for
UniqueDataset
Finds unique elements along an axis of a tensor.
Converts an array of flat indices into a tuple of coordinate arrays.
The UnsortedSegmentJoin operation
Optional attributes for
UnsortedSegmentJoin
Computes the maximum along segments of a tensor.
Computes the minimum along segments of a tensor.
Computes the product along segments of a tensor.
Computes the sum along segments of a tensor.
Unpacks a given dimension of a rank-
R
tensor into num
rank-(R-1)
tensors.Optional attributes for
Unstack
Op is similar to a lightweight Dequeue.
Optional attributes for
Unstage
The UnwrapDatasetVariant operation
Converts all lowercase characters into their respective uppercase replacements.
Optional attributes for
Upper
Applies upper_bound(sorted_search_values, values) along each row.
Creates a handle to a Variable resource.
Optional attributes for
VarHandleOp
Holds state in the form of a tensor that persists across steps.
Optional attributes for
Variable
Returns the shape of the variable pointed to by
resource
.Checks whether a resource handle-based variable has been initialized.
Returns locations of nonzero / true values in a tensor.
output = input; While (Cond(output)) { output = Body(output) }
Optional attributes for
While
A Reader that outputs the entire contents of a file as a value.
Optional attributes for
WholeFileReader
Combines (nests of) input elements into a dataset of (nests of) windows.
Optional attributes for
WindowDataset
The WindowOp operation
Worker heartbeat op.
The WrapDatasetVariant operation
Writes an audio summary.
Optional attributes for
WriteAudioSummary
Writes
contents
to the file at input filename
.Writes a graph summary.
Writes a histogram summary.
Writes an image summary.
Optional attributes for
WriteImageSummary
Writes a serialized proto summary.
Writes a scalar summary.
Writes a tensor summary.
Returns 0 if x == 0, and x / y otherwise, elementwise.
A pseudo-op to represent host-side computation in an XLA program.
Optional attributes for
XlaHostCompute
An API for building
xla
operations as Op
sAn op to receive a tensor from the host.
An op that receives embedding activations on the TPU.
Receives deduplication data (indices and weights) from the embedding core.
An op to send a tensor to the host.
An op that performs gradient updates of embedding tables.
Optional attributes for
XlaSendTPUEmbeddingGradients
The XlaSparseCoreAdagrad operation
The XlaSparseCoreAdagradMomentum operation
The XlaSparseCoreAdam operation
The XlaSparseCoreFtrl operation
The XlaSparseCoreSgd operation
The XlaSparseDenseMatmul operation
The XlaSparseDenseMatmulGradWithAdagradAndCsrInput operation
Optional attributes for
XlaSparseDenseMatmulGradWithAdagradAndCsrInput
The XlaSparseDenseMatmulGradWithAdagradMomentumAndCsrInput operation
Optional attributes for
XlaSparseDenseMatmulGradWithAdagradMomentumAndCsrInput
The XlaSparseDenseMatmulGradWithAdamAndCsrInput operation
Optional attributes for
XlaSparseDenseMatmulGradWithAdamAndCsrInput
The XlaSparseDenseMatmulGradWithFtrlAndCsrInput operation
Optional attributes for
XlaSparseDenseMatmulGradWithFtrlAndCsrInput
The XlaSparseDenseMatmulGradWithSgdAndCsrInput operation
Optional attributes for
XlaSparseDenseMatmulGradWithSgdAndCsrInput
The XlaSparseDenseMatmulWithCsrInput operation
Returns 0 if x == 0, and x * log1p(y) otherwise, elementwise.
Returns 0 if x == 0, and x * log(y) otherwise, elementwise.
An operator creating a constant initialized with zeros of the shape given by `dims`.
Returns a tensor of zeros with the same shape and type as x.
Compute the Hurwitz zeta function \(\zeta(x, q)\).
Creates a dataset that zips together
input_datasets
.Optional attributes for
ZipDataset
NcclAllReduce
instead