All Classes and Interfaces

Class
Description
Raise a exception to abort the process when called.
 
Optional attributes for Abort
Abs<T extends TNumber>
Computes the absolute value of a tensor.
 
Helper base class for custom gradient adapters INTERNAL USE ONLY
Returns the element-wise sum of a list of tensors.
 
Applies a gradient to a given accumulator.
 
Returns the number of gradients aggregated in the given accumulators.
 
Updates the accumulator with a new value for global_step.
 
Extracts the average gradient in the given ConditionalAccumulator.
 
Acos<T extends TType>
Computes acos of x element-wise.
 
Acosh<T extends TType>
Computes inverse hyperbolic cosine of x element-wise.
 
Add<T extends TType>
Returns x + y element-wise.
Add.Inputs<T extends TType>
 
Add an N-minibatch SparseTensor to a SparseTensorsMap, return N handles.
 
Optional attributes for AddManySparseToTensorsMap
AddN<T extends TType>
Add all input tensors element wise.
 
Add a SparseTensor to a SparseTensorsMap return its handle.
 
Optional attributes for AddSparseToTensorsMap
Adjust the contrast of one or more images.
 
Adjust the hue of one or more images.
 
Adjust the saturation of one or more images.
 
Computes the "logical and" of elements across dimensions of a tensor.
 
Optional attributes for All
Generates labels for candidate sampling with a learned unigram distribution.
 
Optional attributes for AllCandidateSampler
AllToAll<T extends TType>
An Op to exchange data across TPU replicas.
 
Angle<U extends TNumber>
Returns the argument of a complex number.
 
Creates a uninitialized anonymous hash table.
 
A container for an iterator resource.
 
The AnonymousMemoryCache operation
 
A container for a multi device iterator resource.
 
Creates an empty anonymous mutable hash table that uses tensors as the backing store.
 
Optional attributes for AnonymousMutableDenseHashTable
Creates an empty anonymous mutable hash table.
 
Creates an empty anonymous mutable hash table of vector values.
 
Optional attributes for AnonymousMutableHashTableOfTensors
The AnonymousRandomSeedGenerator operation
 
The AnonymousSeedGenerator operation
 
Computes the "logical or" of elements across dimensions of a tensor.
 
Optional attributes for Any
Update '*var' according to the adadelta scheme.
 
Optional attributes for ApplyAdadelta
Update '*var' according to the adagrad scheme.
 
Optional attributes for ApplyAdagrad
Update '*var' according to the proximal adagrad scheme.
 
Optional attributes for ApplyAdagradDa
Update '*var' according to the adagrad scheme.
 
Optional attributes for ApplyAdagradV2
ApplyAdam<T extends TType>
Update '*var' according to the Adam algorithm.
 
Optional attributes for ApplyAdam
Update '*var' according to the AdaMax algorithm.
 
Optional attributes for ApplyAdaMax
Update '*var' according to the AddSign update.
 
Optional attributes for ApplyAddSign
Update '*var' according to the centered RMSProp algorithm.
 
Optional attributes for ApplyCenteredRmsProp
ApplyFtrl<T extends TType>
Update '*var' according to the Ftrl-proximal scheme.
 
Optional attributes for ApplyFtrl
Update '*var' by subtracting 'alpha' * 'delta' from it.
 
Optional attributes for ApplyGradientDescent
Update '*var' according to the momentum scheme.
 
Optional attributes for ApplyMomentum
Update '*var' according to the AddSign update.
 
Optional attributes for ApplyPowerSign
Update '*var' and '*accum' according to FOBOS with Adagrad learning rate.
 
Optional attributes for ApplyProximalAdagrad
Update '*var' as FOBOS algorithm with fixed learning rate.
 
Optional attributes for ApplyProximalGradientDescent
Update '*var' according to the RMSProp algorithm.
 
Optional attributes for ApplyRmsProp
Returns the truth value of abs(x-y) < tolerance element-wise.
 
Optional attributes for ApproximateEqual
Returns min/max k values and their indices of the input operand in an approximate manner.
 
Optional attributes for ApproxTopK
ArgMax<V extends TNumber>
Returns the index with the largest value across dimensions of a tensor.
 
ArgMin<V extends TNumber>
Returns the index with the smallest value across dimensions of a tensor.
 
Asin<T extends TType>
Computes the trignometric inverse sine of x element-wise.
 
Asinh<T extends TType>
Computes inverse hyperbolic sine of x element-wise.
 
The AssertCardinalityDataset operation
 
A transformation that asserts which transformations happen next.
The ExperimentalAssertNextDataset operation
 
 
A transformation that asserts which transformations happened previously.
 
Asserts that the given condition is true.
 
Optional attributes for AssertThat
Assign<T extends TType>
Update 'ref' by assigning 'value' to it.
 
Optional attributes for Assign
AssignAdd<T extends TType>
Update 'ref' by adding 'value' to it.
 
Optional attributes for AssignAdd
Adds a value to the current value of a variable.
 
AssignSub<T extends TType>
Update 'ref' by subtracting 'value' from it.
 
Optional attributes for AssignSub
Subtracts a value from the current value of a variable.
 
Concats input tensor across all dimensions.
 
Optional attributes for AssignVariableConcatND
Assigns a new value to a variable.
 
Optional attributes for AssignVariableOp
Converts each entry in the given tensor to strings.
 
Optional attributes for AsString
Atan<T extends TType>
Computes the trignometric inverse tangent of x element-wise.
 
Atan2<T extends TNumber>
Computes arctangent of y/x element-wise, respecting signs of the arguments.
 
Atanh<T extends TType>
Computes inverse hyperbolic tangent of x element-wise.
 
Metadata of an op's attribute.
An API for building audio operations as Ops
Produces a visualization of audio data over time.
 
Optional attributes for AudioSpectrogram
Outputs a Summary protocol buffer with audio.
 
Optional attributes for AudioSummary
Creates a dataset that shards the input dataset.
Creates a dataset that shards the input dataset.
 
 
Optional attributes for AutoShardDataset
Optional attributes for AutoShardDataset
AvgPool<T extends TNumber>
Performs average pooling on the input.
 
Optional attributes for AvgPool
Performs 3D average pooling on the input.
 
Optional attributes for AvgPool3d
Computes gradients of average pooling function.
 
Optional attributes for AvgPool3dGrad
Computes gradients of the average pooling function.
 
Optional attributes for AvgPoolGrad
The BandedTriangularSolve operation
 
Optional attributes for BandedTriangularSolve
BandPart<T extends TType>
Copy a tensor setting everything outside a central band in each innermost matrix to zero.
BandPart.Inputs<T extends TType,U extends TNumber>
 
Defines a barrier that persists across different graph executions.
 
Optional attributes for Barrier
Closes the given barrier.
 
Optional attributes for BarrierClose
Computes the number of incomplete elements in the given barrier.
 
For each key, assigns the respective value to the specified component.
 
Computes the number of complete elements in the given barrier.
 
Takes the given number of completed elements from a barrier.
 
Optional attributes for BarrierTakeMany
Batches all input tensors nondeterministically.
 
Optional attributes for Batch
The BatchCholesky operation
 
The BatchCholeskyGrad operation
 
Creates a dataset that batches batch_size elements from input_dataset.
 
Optional attributes for BatchDataset
The BatchFFT operation
 
The BatchFFT2D operation
 
The BatchFFT3D operation
 
Batches all the inputs tensors to the computation done by the function.
 
Optional attributes for BatchFunction
The BatchIFFT operation
 
The BatchIFFT2D operation
 
The BatchIFFT3D operation
 
Multiplies slices of two tensors in batches.
 
Optional attributes for BatchMatMul
The BatchMatrixBandPart operation
 
The BatchMatrixDeterminant operation
 
The BatchMatrixDiag operation
 
The BatchMatrixDiagPart operation
 
The BatchMatrixInverse operation
 
Optional attributes for BatchMatrixInverse
The BatchMatrixSetDiag operation
 
The BatchMatrixSolve operation
 
Optional attributes for BatchMatrixSolve
The BatchMatrixSolveLs operation
 
Optional attributes for BatchMatrixSolveLs
The BatchMatrixTriangularSolve operation
 
Optional attributes for BatchMatrixTriangularSolve
Batch normalization.
 
Gradients for batch normalization.
 
The BatchSelfAdjointEigV2 operation
 
Optional attributes for BatchSelfAdjointEig
BatchSvd<T extends TType>
The BatchSvd operation
 
Optional attributes for BatchSvd
BatchToSpace for 4-D tensors of type T.
 
BatchToSpace for N-D tensors of type T.
 
BesselI0<T extends TNumber>
The BesselI0 operation
 
The BesselI0e operation
 
BesselI1<T extends TNumber>
The BesselI1 operation
 
The BesselI1e operation
 
BesselJ0<T extends TNumber>
The BesselJ0 operation
 
BesselJ1<T extends TNumber>
The BesselJ1 operation
 
BesselK0<T extends TNumber>
The BesselK0 operation
 
The BesselK0e operation
 
BesselK1<T extends TNumber>
The BesselK1 operation
 
The BesselK1e operation
 
BesselY0<T extends TNumber>
The BesselY0 operation
 
BesselY1<T extends TNumber>
The BesselY1 operation
 
Betainc<T extends TNumber>
Compute the regularized incomplete beta integral \(I_x(a, b)\).
 
BiasAdd<T extends TType>
Adds bias to value.
 
Optional attributes for BiasAdd
The backward operation for "BiasAdd" on the "bias" tensor.
 
Optional attributes for BiasAddGrad
Bincount<T extends TNumber>
Counts the number of occurrences of each value in an integer array.
 
Bitcast<U extends TType>
Bitcasts a tensor from one type to another without copying data.
 
Elementwise computes the bitwise AND of x and y.
 
An API for building bitwise operations as Ops
Elementwise computes the bitwise OR of x and y.
 
Elementwise computes the bitwise XOR of x and y.
 
Computes the LSTM cell forward propagation for all the time steps.
 
Optional attributes for BlockLSTM
Computes the LSTM cell backward propagation for the entire time sequence.
 
 
Optional attributes for BooleanMask
 
Optional attributes for BooleanMaskUpdate
Return the shape of s0 op s1 with broadcast.
 
Return the reduction indices for computing gradients of s0 op s1 with broadcast.
 
Broadcast an array for a compatible shape.
 
Bucketizes 'input' based on 'boundaries'.
 
Records the bytes size of each element of input_dataset in a StatsAggregator.
Records the bytes size of each element of input_dataset in a StatsAggregator.
 
 
The CacheDatasetV2 operation
 
Optional attributes for CacheDataset
An n-way switch statement which calls a single branch function.
Optional attributes for Case
Cast<U extends TType>
Cast x of type SrcT to y of DstT.
 
Optional attributes for Cast
Ceil<T extends TNumber>
Returns element-wise smallest integer not less than x.
 
Checks a tensor for NaN, -Inf and +Inf values.
 
Cholesky<T extends TType>
Computes the Cholesky decomposition of one or more square matrices.
 
Computes the reverse mode backpropagated gradient of the Cholesky algorithm.
 
The ChooseFastestBranchDataset operation
 
The ChooseFastestDataset operation
The ExperimentalChooseFastestDataset operation
 
 
Clips tensor values to a specified min and max.
 
The CloseSummaryWriter operation
 
An API for building cluster operations as Ops
An op that merges the string-encoded memory config protos from all hosts.
 
Mutually exchanges multiple tensors of identical type and shape.
 
Optional attributes for CollectiveAllToAll
Assign group keys based on group assignment.
 
Receives a tensor value broadcast from another device.
 
Optional attributes for CollectiveBcastRecv
Broadcasts a tensor value to one or more other devices.
 
Optional attributes for CollectiveBcastSend
Mutually accumulates multiple tensors of identical type and shape.
 
Optional attributes for CollectiveGather
Initializes a group for collective operations.
 
Optional attributes for CollectiveInitializeCommunicator
An API for building collective operations as Ops
An Op to permute tensors across replicated TPU instances.
 
Mutually reduces multiple tensors of identical type and shape.
 
Optional attributes for CollectiveReduce
Mutually reduces multiple tensors of identical type and shape and scatters the result.
 
Optional attributes for CollectiveReduceScatter
Greedily selects a subset of bounding boxes in descending order of score, This operation performs non_max_suppression on the inputs per batch, across all classes.
 
Optional attributes for CombinedNonMaxSuppression
Returns the result of a TPU compilation.
 
Compiles a computations for execution on one or more TPU devices.
 
Asserts that compilation succeeded.
 
Complex<U extends TType>
Converts two real numbers to a complex number.
 
Computes the complex absolute value of a tensor.
 
Encodes an ExtensionType value into a variant scalar Tensor.
 
Decodes a variant scalar Tensor into an ExtensionType value.
 
Compresses a dataset element.
 
Computes the ids of the positions in sampled_candidates that match true_labels.
 
Optional attributes for ComputeAccidentalHits
Computes the static batch size of a dataset sans partial batches.
 
An op computes the size of the deduplication data from embedding core and returns the updated config.
 
An op computes tuple mask of deduplication data from embedding core.
 
Concat<T extends TType>
Concatenates tensors along one dimension.
 
Creates a dataset that concatenates input_dataset with another_dataset.
 
Optional attributes for ConcatenateDataset
ConcatND<T extends TType>
Concats input tensor across all dimensions.
 
Optional attributes for ConcatND
Computes offsets of concat inputs within its output.
 
A graph that can be invoked as a single function, with an input and output signature.
A conditional accumulator for aggregating gradients.
 
Optional attributes for ConditionalAccumulator
An op that sets up the centralized structures for a distributed TPU system.
 
Optional attributes for ConfigureAndInitializeGlobalTPU
Sets up the centralized structures for a distributed TPU system.
 
Optional attributes for ConfigureDistributedTPU
Sets up TPUEmbedding in a distributed TPU system.
 
An op that configures the TPUEmbedding software on a host.
 
An op that configures the TPUEmbedding software on a host.
 
Conj<T extends TType>
Returns the complex conjugate of a complex number.
 
Shuffle dimensions of x according to a permutation and conjugate the result.
 
An op that sets up communication between TPUEmbedding host software instances after ConfigureTPUEmbeddingHost has been called on each host.
 
Constant<T extends TType>
An operator producing a constant value.
This op consumes a lock created by MutexLock.
 
Does nothing.
 
Conv<T extends TNumber>
Computes a N-D convolution given (N+1+batch_dims)-D input and (N+2)-D filter tensors.
 
Optional attributes for Conv
Conv2d<T extends TNumber>
Computes a 2-D convolution given 4-D input and filter tensors.
 
Optional attributes for Conv2d
Computes the gradients of convolution with respect to the filter.
 
Optional attributes for Conv2dBackpropFilter
Computes the gradients of convolution with respect to the filter.
 
Optional attributes for Conv2dBackpropFilterV2
Computes the gradients of convolution with respect to the input.
 
Optional attributes for Conv2dBackpropInput
Computes the gradients of convolution with respect to the input.
 
Optional attributes for Conv2dBackpropInputV2
Conv3d<T extends TNumber>
Computes a 3-D convolution given 5-D input and filter tensors.
 
Optional attributes for Conv3d
Computes the gradients of 3-D convolution with respect to the filter.
 
Optional attributes for Conv3dBackpropFilter
Computes the gradients of 3-D convolution with respect to the input.
 
Optional attributes for Conv3dBackpropInput
The ConvertToCooTensor operation
 
Copy<T extends TType>
Copy a tensor from CPU-to-CPU or GPU-to-GPU.
 
Optional attributes for Copy
CopyHost<T extends TType>
Copy a tensor to host.
 
Optional attributes for CopyHost
CopyToMesh<T extends TType>
The CopyToMesh operation
 
The CopyToMeshGrad operation
 
Cos<T extends TType>
Computes cos of x element-wise.
Cos.Inputs<T extends TType>
 
Cosh<T extends TType>
Computes hyperbolic cosine of x element-wise.
 
Increments 'ref' until it reaches 'limit'.
 
The CreateSummaryDbWriter operation
 
The CreateSummaryFileWriter operation
 
Extracts crops from the input image tensor and resizes them.
 
Optional attributes for CropAndResize
Computes the gradient of the crop_and_resize op wrt the input boxes tensor.
 
Optional attributes for CropAndResizeGradBoxes
Computes the gradient of the crop_and_resize op wrt the input image tensor.
 
Optional attributes for CropAndResizeGradImage
Cross<T extends TNumber>
Compute the pairwise cross product.
 
An Op to sum inputs across replicated TPU instances.
 
Reads out the CSR components at batch index.
 
Convert a (possibly batched) CSRSparseMatrix to dense.
 
Converts a (possibly batched) CSRSparesMatrix to a SparseTensor.
 
The CSVDatasetV2 operation
The ExperimentalCSVDataset operation
 
 
Performs beam search decoding on the logits given in input.
 
Optional attributes for CtcBeamSearchDecoder
Performs greedy decoding on the logits given in inputs.
 
Optional attributes for CtcGreedyDecoder
CtcLoss<T extends TNumber>
Calculates the CTC Loss (log probability) for each batch entry.
 
Optional attributes for CtcLoss
Calculates the CTC Loss (log probability) for each batch entry.
 
Optional attributes for CTCLossV2
CudnnRNN<T extends TNumber>
A RNN backed by cuDNN.
 
Optional attributes for CudnnRNN
Backprop step of CudnnRNNV3.
 
Optional attributes for CudnnRNNBackprop
Converts CudnnRNN params from canonical form to usable form.
 
Optional attributes for CudnnRNNCanonicalToParams
Computes size of weights that can be used by a Cudnn RNN model.
 
Optional attributes for CudnnRnnParamsSize
Retrieves CudnnRNN params in canonical form.
 
Optional attributes for CudnnRNNParamsToCanonical
Cumprod<T extends TType>
Compute the cumulative product of the tensor x along axis.
 
Optional attributes for Cumprod
Cumsum<T extends TType>
Compute the cumulative sum of the tensor x along axis.
 
Optional attributes for Cumsum
Compute the cumulative product of the tensor x along axis.
 
Optional attributes for CumulativeLogsumexp
A custom gradient for ops of type CustomGradient.
An API for building data.experimental operations as Ops
Returns the dimension index in the destination data format given the one in the source data format.
 
Optional attributes for DataFormatDimMap
Permute input tensor from src_format to dst_format.
 
Optional attributes for DataFormatVecPermute
An API for building data operations as Ops
Creates a dataset that reads data from the tf.data service.
 
Optional attributes for DataServiceDataset
Returns the cardinality of input_dataset.
Returns the cardinality of input_dataset.
 
 
Optional attributes for DatasetCardinality
Returns the fingerprint of input_dataset.
 
Creates a dataset from the given graph_def.
 
Returns a serialized GraphDef representing input_dataset.
 
Optional attributes for DatasetToGraph
Outputs the single element from the given dataset.
 
Optional attributes for DatasetToSingleElement
Writes the given dataset to the given file using the TFRecord format.
Writes the given dataset to the given file using the TFRecord format.
 
 
Dawsn<T extends TNumber>
The Dawsn operation
 
An API for building debugging operations as Ops
Identity op for gradient debugging.
 
Identity op for gradient debugging.
 
Provides an identity mapping of the non-Ref type input tensor for debugging.
 
Optional attributes for DebugIdentity
Debug NaN Value Counter Op.
 
Optional attributes for DebugNanCount
Debug Numeric Summary V2 Op.
 
Optional attributes for DebugNumericsSummary
Decode and Crop a JPEG-encoded image to a uint8 tensor.
 
Optional attributes for DecodeAndCropJpeg
Decode web-safe base64-encoded strings.
 
Decode the first frame of a BMP-encoded image to a uint8 tensor.
 
Optional attributes for DecodeBmp
Decompress strings.
 
Optional attributes for DecodeCompressed
Convert CSV records to tensors.
 
Optional attributes for DecodeCsv
Decode the frame(s) of a GIF-encoded image to a uint8 tensor.
 
Function for decode_bmp, decode_gif, decode_jpeg, and decode_png.
 
Optional attributes for DecodeImage
Decode a JPEG-encoded image to a uint8 tensor.
 
Optional attributes for DecodeJpeg
Convert JSON-encoded Example records to binary protocol buffer strings.
 
Reinterpret the bytes of a string as a vector of numbers.
 
Optional attributes for DecodePaddedRaw
Decode a PNG-encoded image to a uint8 or uint16 tensor.
 
Optional attributes for DecodePng
The op extracts fields from a serialized protocol buffers message into tensors.
 
Optional attributes for DecodeProto
DecodeRaw<T extends TType>
Reinterpret the bytes of a string as a vector of numbers.
 
Optional attributes for DecodeRaw
Decode a 16-bit PCM WAV file to a float tensor.
 
Optional attributes for DecodeWav
DeepCopy<T extends TType>
Makes a copy of x.
 
A container for an iterator resource.
 
The DeleteMemoryCache operation
 
A container for an iterator resource.
 
The DeleteRandomSeedGenerator operation
 
The DeleteSeedGenerator operation
 
Delete the tensor specified by its handle in the session.
 
Counts the number of occurrences of each value in an integer array.
 
Optional attributes for DenseBincount
Performs sparse-output bin counting for a tf.tensor input.
 
Optional attributes for DenseCountSparseOutput
Converts a dense tensor to a (possibly batched) CSRSparseMatrix.
 
Applies set operation along last dimension of 2 Tensor inputs.
 
Optional attributes for DenseToDenseSetOperation
Creates a dataset that batches input elements into a SparseTensor.
Creates a dataset that batches input elements into a SparseTensor.
 
 
Applies set operation along last dimension of Tensor and SparseTensor.
 
Optional attributes for DenseToSparseSetOperation
DepthToSpace for tensors of type T.
 
Optional attributes for DepthToSpace
Computes a 2-D depthwise convolution given 4-D input and filter tensors.
 
Optional attributes for DepthwiseConv2dNative
Computes the gradients of depthwise convolution with respect to the filter.
 
Optional attributes for DepthwiseConv2dNativeBackpropFilter
Computes the gradients of depthwise convolution with respect to the input.
 
Optional attributes for DepthwiseConv2dNativeBackpropInput
Dequantize the 'input' tensor into a float or bfloat16 Tensor.
 
Optional attributes for Dequantize
Converts the given variant tensor to an iterator and stores it in the given resource.
 
Deserialize and concatenate SparseTensors from a serialized minibatch.
 
Deserialize SparseTensor objects.
 
Deletes the resource specified by the handle.
 
Optional attributes for DestroyResourceOp
Destroys the temporary variable and returns its final value.
 
Det<T extends TType>
Computes the determinant of one or more square matrices.
Det.Inputs<T extends TType>
 
Return the index of device the op runs.
 
Represents a (possibly partial) specification for a TensorFlow device.
A Builder class for building DeviceSpec class.
 
Digamma<T extends TNumber>
Computes Psi, the derivative of Lgamma (the log of the absolute value of Gamma(x)), element-wise.
 
Computes the grayscale dilation of 4-D input and 3-D filter tensors.
 
Computes the gradient of morphological 2-D dilation with respect to the filter.
 
Computes the gradient of morphological 2-D dilation with respect to the input.
 
A substitute for InterleaveDataset on a fixed list of N datasets.
A substitute for InterleaveDataset on a fixed list of N datasets.
 
 
Optional attributes for DirectedInterleaveDataset
Turns off the copy-on-read mode.
 
The DistributedSave operation
 
Optional attributes for DistributedSave
An API for building distribute operations as Ops
Div<T extends TType>
Returns x / y element-wise.
Div.Inputs<T extends TType>
 
DivNoNan<T extends TType>
Returns 0 if the denominator is zero.
 
Draw bounding boxes on a batch of images.
 
The DTensorRestoreV2 operation
 
An API for building dtypes operations as Ops
The DummyIterationCounter operation
 
The DummyMemoryCache operation
 
The DummySeedGenerator operation
 
Eases the porting of code that uses tf.nn.embedding_lookup_sparse().
 
The DynamicEnqueueTPUEmbeddingRaggedTensorBatch operation
 
Partitions data into num_partitions tensors using indices from partitions.
 
Interleave the values from the data tensors into a single tensor.
 
An environment for executing TensorFlow operations eagerly.
Controls how to act when we try to run an operation on a given device but some input tensors are not on that device.
 
Computes the (possibly normalized) Levenshtein Edit Distance.
 
Optional attributes for EditDistance
Eig<U extends TType>
Computes the eigen decomposition of one or more square matrices.
 
Optional attributes for Eig
Einsum<T extends TType>
Tensor contraction according to Einstein summation convention.
 
Elu<T extends TNumber>
Computes the exponential linear function.
 
EluGrad<T extends TNumber>
Computes gradients for the exponential linear (Elu) operation.
 
An op enabling differentiation of TPU Embeddings.
 
Empty<T extends TType>
Creates a tensor with the given shape.
 
Optional attributes for Empty
Creates and returns an empty tensor list.
 
Creates and returns an empty tensor map.
 
Encode strings into web-safe base64 format.
 
Optional attributes for EncodeBase64
JPEG-encode an image.
 
Optional attributes for EncodeJpeg
JPEG encode input image with provided compression quality.
 
PNG-encode an image.
 
Optional attributes for EncodePng
The op serializes protobuf messages provided in the input tensors.
 
Optional attributes for EncodeProto
Encode audio data using the WAV file format.
 
Annotation used to mark a method of a class annotated with @Operator that should generate an endpoint into Ops or one of its groups.
Eases the porting of code that uses tf.nn.embedding_lookup_sparse().
 
An op that enqueues a list of input batch tensors to TPUEmbedding.
 
Optional attributes for EnqueueTPUEmbeddingBatch
An op that enqueues a list of input batch tensors to TPUEmbedding.
 
Optional attributes for EnqueueTPUEmbeddingIntegerBatch
Eases the porting of code that uses tf.nn.embedding_lookup().
 
Optional attributes for EnqueueTPUEmbeddingRaggedTensorBatch
An op that enqueues TPUEmbedding input indices from a SparseTensor.
 
Optional attributes for EnqueueTPUEmbeddingSparseBatch
Eases the porting of code that uses tf.nn.embedding_lookup_sparse().
 
Optional attributes for EnqueueTPUEmbeddingSparseTensorBatch
Ensures that the tensor's shape matches the expected shape.
 
Enter<T extends TType>
Creates or finds a child frame, and makes data available to the child frame.
 
Optional attributes for Enter
Returns the truth value of (x == y) element-wise.
 
Optional attributes for Equal
Erf<T extends TNumber>
Computes the Gauss error function of x element-wise.
 
Erfc<T extends TNumber>
Computes the complementary error function of x element-wise.
 
erfinv<T extends TNumber>
The Erfinv operation
 
Computes the euclidean norm of elements across dimensions of a tensor.
 
Optional attributes for EuclideanNorm
Op that loads and executes a TPU program on a TPU device.
 
Op that executes a program with optional in-place variable updates.
 
An op that executes the TPUEmbedding partitioner on the central configuration device and computes the HBM size (in bytes) required for TPUEmbedding operation.
 
Defines an environment for creating and executing TensorFlow Operations.
 
Exit<T extends TType>
Exits the current frame to its parent frame.
 
Exp<T extends TType>
Computes exponential of x element-wise.
Exp.Inputs<T extends TType>
 
ExpandDims<T extends TType>
Inserts a dimension of 1 into a tensor's shape.
 
Expint<T extends TNumber>
The Expint operation
 
Expm1<T extends TType>
Computes exp(x) - 1 element-wise.
 
Extracts a glimpse from the input tensor.
 
Optional attributes for ExtractGlimpse
Extract patches from images and put them in the "depth" output dimension.
 
Extract the shape information of a JPEG-encoded image.
 
Extract patches from input and put them in the "depth" output dimension.
 
Output a fact about factorials.
 
FakeParam<T extends TType>
This op is used as a placeholder in If branch functions.
 
Fake-quantize the 'inputs' tensor, type float to 'outputs' tensor of same shape and type.
 
Optional attributes for FakeQuantWithMinMaxArgs
Compute gradients for a FakeQuantWithMinMaxArgs operation.
 
Optional attributes for FakeQuantWithMinMaxArgsGradient
Fake-quantize the 'inputs' tensor of type float via global float scalars Fake-quantize the inputs tensor of type float via global float scalars min and max to outputs tensor of same shape as inputs.
 
Optional attributes for FakeQuantWithMinMaxVars
Compute gradients for a FakeQuantWithMinMaxVars operation.
 
Optional attributes for FakeQuantWithMinMaxVarsGradient
Fake-quantize the 'inputs' tensor of type float via per-channel floats Fake-quantize the inputs tensor of type float per-channel and one of the shapes: [d], [b, d] [b, h, w, d] via per-channel floats min and max of shape [d] to outputs tensor of same shape as inputs.
 
Optional attributes for FakeQuantWithMinMaxVarsPerChannel
Compute gradients for a FakeQuantWithMinMaxVarsPerChannel operation.
 
Deprecated.
 
Fft<T extends TType>
Fast Fourier transform.
Fft.Inputs<T extends TType>
 
Fft2d<T extends TType>
2D fast Fourier transform.
 
Fft3d<T extends TType>
3D fast Fourier transform.
 
FftNd<T extends TType>
ND fast Fourier transform.
 
A queue that produces elements in first-in first-out order.
 
Optional attributes for FifoQueue
Set configuration of the file system.
 
Fill<U extends TType>
Creates a tensor filled with a scalar value.
 
Creates a dataset containing elements of first component of input_dataset having true in the last component.
 
Creates a dataset containing elements of input_dataset matching predicate.
 
Optional attributes for FilterDataset
Creates a dataset by applying tf.data.Options to input_dataset.
 
Optional attributes for FinalizeDataset
An op that finalizes the TPUEmbedding configuration.
 
Generates fingerprint values.
 
The FixedLengthRecordDatasetV2 operation
 
Optional attributes for FixedLengthRecordDataset
A Reader that outputs fixed-length records from a file.
 
Optional attributes for FixedLengthRecordReader
Generates labels for candidate sampling with a learned unigram distribution.
 
Optional attributes for FixedUnigramCandidateSampler
Creates a dataset that applies f to the outputs of input_dataset.
 
Optional attributes for FlatMapDataset
Floor<T extends TNumber>
Returns element-wise largest integer not greater than x.
 
FloorDiv<T extends TType>
Returns x // y element-wise.
 
FloorMod<T extends TNumber>
Returns element-wise remainder of division.
 
The FlushSummaryWriter operation
 
Applies a for loop.
 
Performs fractional average pooling on the input.
 
Optional attributes for FractionalAvgPool
Computes gradient of the FractionalAvgPool function.
 
Optional attributes for FractionalAvgPoolGrad
Performs fractional max pooling on the input.
 
Optional attributes for FractionalMaxPool
Computes gradient of the FractionalMaxPool function.
 
Optional attributes for FractionalMaxPoolGrad
The FresnelCos operation
 
The FresnelSin operation
 
Ops for calling ConcreteFunction.
FusedBatchNorm<T extends TNumber,U extends TNumber>
Batch normalization.
 
Optional attributes for FusedBatchNorm
Gradient for batch normalization.
 
Optional attributes for FusedBatchNormGrad
Performs a padding as a preprocess during a convolution.
 
Performs a resize and padding as a preprocess during a convolution.
 
Optional attributes for FusedResizeAndPadConv2d
Gather<T extends TType>
Gather slices from params axis axis according to indices.
 
Optional attributes for Gather
GatherNd<T extends TType>
Gather slices from params into a Tensor with shape specified by indices.
 
This op produces Region of Interests from given bounding boxes(bbox_deltas) encoded wrt anchors according to eq.2 in arXiv:1506.01497
 
Optional attributes for GenerateBoundingBoxProposals
Given a path to new and old vocabulary files, returns a remapping Tensor of length num_new_vocab, where remapping[i] contains the row number in the old vocabulary that corresponds to row i in the new vocabulary (starting at line new_vocab_offset and up to num_new_vocab entities), or -1 if entry i in the new vocabulary is not in the old vocabulary.
 
Optional attributes for GenerateVocabRemapping
Creates a dataset that invokes a function to generate elements.
 
Optional attributes for GeneratorDataset
Gets the element at the specified index in a dataset.
 
The GetMinibatchesInCsrWithPhysicalReplica operation
 
The GetMinibatchSplitsWithPhysicalReplica operation
 
Returns the tf.data.Options attached to input_dataset.
 
Store the input tensor in the state of the current session.
 
Get the value of the tensor specified by its handle.
 
The GlobalIterId operation
 
Adds operations to compute the partial derivatives of sum of ys w.r.t xs, i.e., d(y_1 + y_2 + ...)/dx_1, d(y_1 + y_2 + ...)/dx_2...
Optional attributes for Gradients
A data flow graph representing a TensorFlow computation.
Used to instantiate an abstract class which overrides the buildSubgraph method to build a conditional or body subgraph for a while loop.
Implementation for an Operation added as a node to a Graph.
Returns the truth value of (x > y) element-wise.
 
Returns the truth value of (x >= y) element-wise.
 
Creates a dataset that computes a group-by on input_dataset.
Creates a dataset that computes a group-by on input_dataset.
 
 
Creates a dataset that computes a windowed group-by on input_dataset.
Creates a dataset that computes a windowed group-by on input_dataset.
 
 
Optional attributes for GroupByWindowDataset
Computes the GRU cell forward propagation for 1 time step.
 
Computes the GRU cell back-propagation for 1 time step.
 
Gives a guarantee to the TF runtime that the input tensor is a constant.
 
Creates a non-initialized hash table.
 
Optional attributes for HashTable
Container class for core methods which add or perform several operations and return one of them.
Return histogram of values.
 
Outputs a Summary protocol buffer with a histogram.
 
HostConst<T extends TType>
Returns a constant tensor on the host.
 
HsvToRgb<T extends TNumber>
Convert one or more images from HSV to RGB.
 
Identity<T extends TType>
Return a tensor with the same shape and contents as the input tensor or value.
 
Returns a list of tensors with the same shapes and contents as the input tensors.
 
A Reader that outputs the queued work as both the key and value.
 
Optional attributes for IdentityReader
output = cond ? then_branch(input) : else_branch(input)
Optional attributes for If
Ifft<T extends TType>
Inverse fast Fourier transform.
 
Ifft2d<T extends TType>
Inverse 2D fast Fourier transform.
 
Ifft3d<T extends TType>
Inverse 3D fast Fourier transform.
 
IfftNd<T extends TType>
ND inverse fast Fourier transform.
 
Igamma<T extends TNumber>
Compute the lower regularized incomplete Gamma function P(a, x).
 
Igammac<T extends TNumber>
Compute the upper regularized incomplete Gamma function Q(a, x).
 
Computes the gradient of igamma(a, x) wrt a.
 
Creates a dataset that contains the elements of input_dataset ignoring errors.
Creates a dataset that contains the elements of input_dataset ignoring errors.
 
 
Optional attributes for IgnoreErrorsDataset
Optional attributes for IgnoreErrorsDataset
Imag<U extends TNumber>
Returns the imaginary part of a complex number.
 
An API for building image operations as Ops
Applies the given transform to each of the images.
 
Optional attributes for ImageProjectiveTransformV2
Applies the given transform to each of the images.
 
Optional attributes for ImageProjectiveTransformV3
Outputs a Summary protocol buffer with images.
 
Optional attributes for ImageSummary
Returns immutable tensor from memory region.
 
The ImportEvent operation
 
A placeholder op for a value that will be fed into the computation.
 
Fetches multiple values from infeed as an XLA tuple.
 
An op which feeds a single Tensor value into the computation.
 
Optional attributes for InfeedEnqueue
An op which enqueues prelinearized buffer into TPU infeed.
 
Optional attributes for InfeedEnqueuePrelinearizedBuffer
Feeds multiple Tensor values into the computation as an XLA tuple.
 
Optional attributes for InfeedEnqueueTuple
Table initializer that takes two tensors for keys and values respectively.
 
The InitializeTableFromDataset operation
 
Initializes a table from a text file.
 
Optional attributes for InitializeTableFromTextFile
InplaceAdd<T extends TType>
Adds v into specified rows of x.
 
InplaceSub<T extends TType>
Subtracts `v` into specified rows of `x`.
 
Updates specified rows 'i' with values 'v'.
 
Creates a dataset that applies f to the outputs of input_dataset.
 
Optional attributes for InterleaveDataset
Says whether the targets are in the top K predictions.
 
Inv<T extends TType>
Computes the inverse of one or more square invertible matrices or their adjoints (conjugate transposes).
Inv.Inputs<T extends TType>
 
Optional attributes for Inv
Invert<T extends TNumber>
Invert (flip) each bit of supported types; for example, type uint8 value 01010101 becomes 10101010.
 
Computes the inverse permutation of a tensor.
 
InvGrad<T extends TType>
Computes the gradient for the inverse of x wrt its input.
 
An API for building io operations as Ops
Irfft<U extends TNumber>
Inverse real-valued fast Fourier transform.
 
Irfft2d<U extends TNumber>
Inverse 2D real-valued fast Fourier transform.
 
Irfft3d<U extends TNumber>
Inverse 3D real-valued fast Fourier transform.
 
IrfftNd<U extends TNumber>
ND inverse real fast Fourier transform.
 
Returns which elements of x are finite.
 
Returns which elements of x are Inf.
 
Returns which elements of x are NaN.
 
Solves a batch of isotonic regression problems.
 
Whether TPU Embedding is initialized in a distributed TPU system.
 
Optional attributes for IsTPUEmbeddingInitialized
Checks whether a tensor has been initialized.
 
The IteratorV2 operation
 
The IteratorFromStringHandleV2 operation
 
Optional attributes for IteratorFromStringHandle
Returns the name of the device on which resource has been placed.
Returns the name of the device on which resource has been placed.
 
 
Gets the next output from the given iterator .
 
Gets the next output from the given iterator as an Optional variant.
 
Gets the next output from the given iterator.
 
Converts the given resource_handle representing an iterator to a string.
 
Joins the strings in the given list of string tensors into one tensor; with the given separator (default is an empty separator).
 
Optional attributes for Join
Returns the index of a data point that should be added to the seed set.
 
Selects num_to_sample rows of input using the KMeans++ criterion.
 
Computes the Kth order statistic of a data set.
 
L2Loss<T extends TNumber>
L2 Loss.
 
Records the latency of producing input_dataset elements in a StatsAggregator.
Records the latency of producing input_dataset elements in a StatsAggregator.
 
 
Computes rectified linear: max(features, features * alpha).
 
Optional attributes for LeakyRelu
Computes rectified linear gradients for a LeakyRelu operation.
 
Optional attributes for LeakyReluGrad
Generates labels for candidate sampling with a learned unigram distribution.
 
Optional attributes for LearnedUnigramCandidateSampler
Elementwise computes the bitwise left-shift of x and y.
 
Creates a dataset that applies f to the outputs of input_dataset.
 
Optional attributes for LegacyParallelInterleaveDataset
Returns the truth value of (x < y) element-wise.
 
Returns the truth value of (x <= y) element-wise.
 
Lgamma<T extends TNumber>
Computes the log of the absolute value of Gamma(x) element-wise.
 
An API for building linalg operations as Ops
An API for building linalg.sparse operations as Ops
LinSpace<T extends TNumber>
Generates values in an interval.
 
Creates a dataset that emits each of tensors once.
 
Optional attributes for ListDataset
The ListSnapshotChunksDataset operation
 
The ExperimentalLMDBDataset operation
Creates a dataset that emits the key-value pairs in one or more LMDB files.
 
 
A Reader that outputs the records from a LMDB file.
 
Optional attributes for LmdbReader
An op that loads optimization parameters into embedding memory.
 
Loads a 2-D (matrix) Tensor with name old_tensor_name from the checkpoint at ckpt_path and potentially reorders its rows and columns using the specified remappings.
 
Optional attributes for LoadAndRemapMatrix
The LoadDataset operation
 
Optional attributes for LoadDataset
Load Adadelta embedding parameters.
 
Optional attributes for LoadTPUEmbeddingAdadeltaParameters
Load Adagrad Momentum embedding parameters.
 
Load Adagrad embedding parameters.
 
Optional attributes for LoadTPUEmbeddingAdagradParameters
Load ADAM embedding parameters.
 
Optional attributes for LoadTPUEmbeddingADAMParameters
Load centered RMSProp embedding parameters.
 
Load frequency estimator embedding parameters.
 
Load FTRL embedding parameters.
 
Optional attributes for LoadTPUEmbeddingFTRLParameters
Load MDL Adagrad Light embedding parameters.
 
Load Momentum embedding parameters.
 
Optional attributes for LoadTPUEmbeddingMomentumParameters
Load proximal Adagrad embedding parameters.
 
The LoadTPUEmbeddingProximalYogiParameters operation
 
Load RMSProp embedding parameters.
 
Optional attributes for LoadTPUEmbeddingRMSPropParameters
Load SGD embedding parameters.
 
Local Response Normalization.
 
Optional attributes for LocalResponseNormalization
Gradients for Local Response Normalization.
 
Optional attributes for LocalResponseNormalizationGrad
Log<T extends TType>
Computes natural logarithm of x element-wise.
Log.Inputs<T extends TType>
 
Log1p<T extends TType>
Computes natural logarithm of (1 + x) element-wise.
 
Returns the truth value of x AND y element-wise.
 
Returns the truth value of NOT x element-wise.
 
Returns the truth value of x OR y element-wise.
 
Computes the sign and the log of the absolute value of the determinant of one or more square matrices.
 
Computes log softmax activations.
 
Generates labels for candidate sampling with a log-uniform distribution.
 
Optional attributes for LogUniformCandidateSampler
LookupTableExport<T extends TType,U extends TType>
Outputs all keys and values in the table.
 
Looks up keys in a table, outputs the corresponding values.
 
Replaces the contents of the table with the specified keys and values.
 
Updates the table to associates keys with values.
 
Removes keys and its associated values from a table.
 
Computes the number of elements in the given table.
 
Forwards the input to the output.
 
Converts all uppercase characters into their respective lowercase replacements.
 
Optional attributes for Lower
Applies lower_bound(sorted_search_values, values) along each row.
 
Computes the LSTM cell forward propagation for 1 time step.
 
Optional attributes for LSTMBlockCell
Computes the LSTM cell backward propagation for 1 timestep.
 
Lu<T extends TType,U extends TNumber>
Computes the LU decomposition of one or more square matrices.
Lu.Inputs<T extends TType>
 
Makes a new iterator from the given dataset and stores it in iterator.
 
Make all elements in the non-Batch dimension unique, but "close" to their initial value.
 
Creates a dataset that fuses mapping with batching.
Creates a dataset that fuses mapping with batching.
 
 
Optional attributes for MapAndBatchDataset
Optional attributes for MapAndBatchDataset
Op removes all elements in the underlying container.
 
Optional attributes for MapClear
Creates a dataset that applies f to the outputs of input_dataset.
Creates a dataset that applies f to the outputs of input_dataset.
 
 
Optional attributes for MapDataset
Optional attributes for MapDataset
Maps a function on the list of tensors unpacked from arguments on dimension 0.
 
Optional attributes for MapDefun
Op returns the number of incomplete elements in the underlying container.
 
Optional attributes for MapIncompleteSize
Op peeks at the values at the specified key.
 
Optional attributes for MapPeek
Op returns the number of elements in the underlying container.
 
Optional attributes for MapSize
Stage (key, values) in the underlying container which behaves like a hashtable.
 
Optional attributes for MapStage
Op removes and returns the values associated with the key from the underlying container.
 
Optional attributes for MapUnstage
Op removes and returns a random (key, value) from the underlying container.
 
Optional attributes for MapUnstageNoKey
Returns the set of files matching one or more glob patterns.
 
The ExperimentalMatchingFilesDataset operation
The MatchingFilesDataset operation
 
 
An API for building math operations as Ops
An API for building math.special operations as Ops
MatMul<T extends TType>
Multiply the matrix "a" by the matrix "b".
 
Optional attributes for MatMul
MatrixDiag<T extends TType>
Returns a batched diagonal tensor with given batched diagonal values.
 
Returns the batched diagonal part of a batched tensor.
 
Returns the batched diagonal part of a batched tensor.
 
Optional attributes for MatrixDiagPartV3
Returns a batched diagonal tensor with given batched diagonal values.
 
Optional attributes for MatrixDiagV3
Deprecated, use python implementation tf.linalg.matrix_exponential.
 
Computes the matrix logarithm of one or more square matrices: \(log(exp(A)) = A\)
 
Returns a batched matrix tensor with new batched diagonal values.
 
Optional attributes for MatrixSetDiag
Solves one or more linear least-squares problems.
 
Optional attributes for MatrixSolveLs
Max<T extends TNumber>
Computes the maximum of elements across dimensions of a tensor.
 
Optional attributes for Max
Maximum<T extends TNumber>
Returns the max of x and y (i.e.
 
Creates a dataset that overrides the maximum intra-op parallelism.
Creates a dataset that overrides the maximum intra-op parallelism.
 
 
MaxPool<T extends TNumber>
Performs max pooling on the input.
 
Optional attributes for MaxPool
Performs 3D max pooling on the input.
 
Optional attributes for MaxPool3d
Computes gradients of 3D max pooling function.
 
Optional attributes for MaxPool3dGrad
Computes second-order gradients of the maxpooling function.
 
Optional attributes for MaxPool3dGradGrad
Computes gradients of the maxpooling function.
 
Optional attributes for MaxPoolGrad
Computes second-order gradients of the maxpooling function.
 
Optional attributes for MaxPoolGradGrad
Computes second-order gradients of the maxpooling function.
 
Optional attributes for MaxPoolGradGradWithArgmax
Computes gradients of the maxpooling function.
 
Optional attributes for MaxPoolGradWithArgmax
Performs max pooling on the input and outputs both max values and indices.
 
Optional attributes for MaxPoolWithArgmax
Mean<T extends TType>
Computes the mean of elements across dimensions of a tensor.
 
Optional attributes for Mean
Merge<T extends TType>
Forwards the value of an available tensor from inputs to output.
 
An op merges elements of integer and float tensors into deduplication data as XLA tuple.
 
Optional attributes for MergeDedupData
Merges summaries.
 
V2 format specific: merges the metadata files of sharded checkpoints.
 
Optional attributes for MergeV2Checkpoints
Transforms a spectrogram into a form that's useful for speech recognition.
 
Optional attributes for Mfcc
Min<T extends TNumber>
Computes the minimum of elements across dimensions of a tensor.
 
Optional attributes for Min
Minimum<T extends TNumber>
Returns the min of x and y (i.e.
 
MirrorPad<T extends TType>
Pads a tensor with mirrored values.
 
Gradient op for MirrorPad op.
 
Wraps an arbitrary MLIR computation expressed as a module with a main() function.
 
Mod<T extends TNumber>
Returns element-wise remainder of division.
 
Identity transformation that models performance.
 
Optional attributes for ModelDataset
Mul<T extends TType>
Returns x * y element-wise.
Mul.Inputs<T extends TType>
 
MulNoNan<T extends TType>
Returns x * y element-wise.
 
Creates a MultiDeviceIterator resource.
 
Generates a MultiDeviceIterator resource from its provided string handle.
 
Optional attributes for MultiDeviceIteratorFromStringHandle
Gets next element for the provided shard number.
 
Initializes the multi device iterator with the given dataset.
 
Produces a string handle for the given MultiDeviceIterator.
 
Draws samples from a multinomial distribution.
 
Optional attributes for Multinomial
Creates an empty hash table that uses tensors as the backing store.
 
Optional attributes for MutableDenseHashTable
Creates an empty hash table.
 
Optional attributes for MutableHashTable
Creates an empty hash table.
 
Optional attributes for MutableHashTableOfTensors
Creates a Mutex resource that can be locked by MutexLock.
 
Optional attributes for Mutex
Locks a mutex resource.
 
A Scope implementation backed by a native scope.
Deprecated.
use NcclAllReduce instead
Outputs a tensor containing the reduction across all input tensors.
 
 
Deprecated.
use NcclBroadcast instead
Sends input to all devices that are connected to the output.
 
 
Deprecated.
use NcclReduce instead
Reduces input from num_devices using reduction to a single device.
 
 
Ndtri<T extends TNumber>
The Ndtri operation
 
Selects the k nearest centers for each point.
 
Neg<T extends TType>
Computes numerical negative value element-wise.
Neg.Inputs<T extends TType>
 
Training via negative sampling.
 
Returns the next representable value of x1 in the direction of x2, element-wise.
 
Makes its input available to the next iteration.
 
An API for building nn operations as Ops
Non-deterministically generates some integers.
 
Greedily selects a subset of bounding boxes in descending order of score, pruning away boxes that have high intersection-over-union (IOU) overlap with previously selected boxes.
 
Optional attributes for NonMaxSuppression
Greedily selects a subset of bounding boxes in descending order of score, pruning away boxes that have high overlaps with previously selected boxes.
 
The ExperimentalNonSerializableDataset operation
The NonSerializableDataset operation
 
 
Does nothing.
 
Returns the truth value of (x != y) element-wise.
 
Optional attributes for NotEqual
Finds values of the n-th order statistic for the last dimension.
 
Optional attributes for NthElement
OneHot<U extends TType>
Returns a one-hot tensor.
 
Optional attributes for OneHot
Ones<T extends TType>
An operator creating a constant initialized with ones of the shape given by `dims`.
Makes a "one-shot" iterator that can be iterated only once.
 
Optional attributes for OneShotIterator
OnesLike<T extends TType>
Returns a tensor of ones with the same shape and type as x.
 
A logical unit of computation.
Operand<T extends TType>
Interface implemented by operands of a TensorFlow operation.
Utilities for manipulating operand related types and lists.
Performs computation on Tensors.
Helper type for attribute getters, so we don't clutter the operation classes too much.
A builder for Operations.
Annotation used by classes to make TensorFlow operations conveniently accessible via org.tensorflow.op.Ops or one of its groups.
An annotation to provide metadata about an op inputs accessor class.
An annotation to provide metadata about an op.
An API for building operations as Ops
A Java implementation of Scope.
Creates a dataset by applying related optimizations to input_dataset.
 
Optional attributes for OptimizeDataset
Constructs an Optional variant from a tuple of tensors.
 
Returns the value stored in an Optional variant or raises an error if none exists.
 
Returns true if and only if the given Optional variant has a value.
 
Creates an Optional variant with no value.
 
Creates a dataset by attaching tf.data.Options to input_dataset.
 
Optional attributes for OptionsDataset
Op removes all elements in the underlying container.
 
Optional attributes for OrderedMapClear
Op returns the number of incomplete elements in the underlying container.
 
Optional attributes for OrderedMapIncompleteSize
Op peeks at the values at the specified key.
 
Optional attributes for OrderedMapPeek
Op returns the number of elements in the underlying container.
 
Optional attributes for OrderedMapSize
Stage (key, values) in the underlying container which behaves like a ordered associative container.
 
Optional attributes for OrderedMapStage
Op removes and returns the values associated with the key from the underlying container.
 
Optional attributes for OrderedMapUnstage
Op removes and returns the (key, value) element with the smallest key from the underlying container.
 
Optional attributes for OrderedMapUnstageNoKey
A TPU core selector Op.
 
Retrieves a single tensor from the computation outfeed.
 
Optional attributes for OutfeedDequeue
Retrieve multiple values from the computation outfeed.
 
Optional attributes for OutfeedDequeueTuple
Retrieve multiple values from the computation outfeed.
 
Retrieves a single tensor from the computation outfeed.
 
Enqueue a Tensor on the computation outfeed.
 
Enqueue multiple Tensor values on the computation outfeed.
 
Output<T extends TType>
A symbolic handle to a tensor produced by an Operation.
Pad<T extends TType>
Pads a tensor.
Pad.Inputs<T extends TType>
 
Creates a dataset that batches and pads batch_size elements from the input.
 
Optional attributes for PaddedBatchDataset
A queue that produces elements in first-in first-out order.
 
Optional attributes for PaddingFifoQueue
The ParallelBatchDataset operation
 
Optional attributes for ParallelBatchDataset
Concatenates a list of N tensors along the first dimension.
 
Interleave the values from the data tensors into a single tensor.
 
Creates a dataset containing elements of input_dataset matching predicate.
 
Optional attributes for ParallelFilterDataset
Creates a dataset that applies f to the outputs of input_dataset.
Creates a dataset that applies f to the outputs of input_dataset.
 
 
Optional attributes for ParallelInterleaveDataset
Creates a dataset that applies f to the outputs of input_dataset.
 
Optional attributes for ParallelMapDataset
Outputs random values from a normal distribution.
 
Optional attributes for ParameterizedTruncatedNormal
Transforms a vector of tf.Example protos (as strings) into typed tensors.
 
Transforms input_dataset containing Example protos as vectors of DT_STRING into a dataset of Tensor or SparseTensor objects representing the parsed features.
Transforms input_dataset containing Example protos as vectors of DT_STRING into a dataset of Tensor or SparseTensor objects representing the parsed features.
 
 
Optional attributes for ParseExampleDataset
Optional attributes for ParseExampleDataset
Transforms a vector of tf.io.SequenceExample protos (as strings) into typed tensors.
 
Optional attributes for ParseSequenceExample
Transforms a tf.Example proto (as a string) into typed tensors.
 
Transforms a scalar brain.SequenceExample proto (as strings) into typed tensors.
 
Optional attributes for ParseSingleSequenceExample
Transforms a serialized tensorflow.TensorProto proto into a Tensor.
 
returns f(inputs), where f's body is placed and partitioned.
Calls a function placed on a specified TPU device.
 
 
Optional attributes for PartitionedCall
Optional attributes for PartitionedCall
An op that groups a list of partitioned inputs together.
 
Optional attributes for PartitionedInput
An op that demultiplexes a tensor to be sharded by XLA to a list of partitioned outputs outside the XLA computation.
 
A placeholder op for a value that will be fed into the computation.
 
Optional attributes for Placeholder
A placeholder op that passes through input when its output is not fed.
 
Compute the polygamma function \(\psi^{(n)}(x)\).
 
Computes element-wise population count (a.k.a.
 
Pow<T extends TType>
Computes the power of one value to another.
Pow.Inputs<T extends TType>
 
Creates a dataset that asynchronously prefetches elements from input_dataset.
 
Optional attributes for PrefetchDataset
An op which linearizes one Tensor value to an opaque variant tensor.
 
Optional attributes for Prelinearize
An op which linearizes multiple Tensor values to an opaque variant tensor.
 
Optional attributes for PrelinearizeTuple
An identity op that triggers an error if a gradient is requested.
 
Optional attributes for PreventGradient
Prints a string scalar.
 
Optional attributes for Print
A queue that produces elements sorted by the first component value.
 
Optional attributes for PriorityQueue
Creates a dataset that uses a custom thread pool to compute input_dataset.
Creates a dataset that uses a custom thread pool to compute input_dataset.
 
 
Prod<T extends TType>
Computes the product of elements across dimensions of a tensor.
 
Optional attributes for Prod
Qr<T extends TType>
Computes the QR decompositions of one or more matrices.
Qr.Inputs<T extends TType>
 
Optional attributes for Qr
An API for building quantization operations as Ops
Quantize<T extends TNumber>
Quantize the 'input' tensor of type float to 'output' tensor of type 'T'.
 
Optional attributes for Quantize
Quantizes then dequantizes a tensor.
 
Optional attributes for QuantizeAndDequantize
Quantizes then dequantizes a tensor.
 
Optional attributes for QuantizeAndDequantizeV3
Quantizes then dequantizes a tensor.
 
Optional attributes for QuantizeAndDequantizeV4
Returns the gradient of QuantizeAndDequantizeV4.
 
Optional attributes for QuantizeAndDequantizeV4Grad
Returns x + y element-wise, working on quantized buffers.
 
Produces the average pool of the input tensor for quantized types.
 
Quantized Batch normalization.
 
Adds Tensor 'bias' to Tensor 'input' for Quantized types.
 
Concatenates quantized tensors along one dimension.
 
Computes a 2D convolution given quantized 4D input and filter tensors.
 
Optional attributes for QuantizedConv2d
The QuantizedConv2DAndRelu operation
 
Optional attributes for QuantizedConv2DAndRelu
The QuantizedConv2DAndReluAndRequantize operation
 
Optional attributes for QuantizedConv2DAndReluAndRequantize
The QuantizedConv2DAndRequantize operation
 
Optional attributes for QuantizedConv2DAndRequantize
Computes QuantizedConv2D per channel.
 
Optional attributes for QuantizedConv2DPerChannel
The QuantizedConv2DWithBias operation
 
Optional attributes for QuantizedConv2DWithBias
The QuantizedConv2DWithBiasAndRelu operation
 
Optional attributes for QuantizedConv2DWithBiasAndRelu
The QuantizedConv2DWithBiasAndReluAndRequantize operation
 
The QuantizedConv2DWithBiasAndRequantize operation
 
Optional attributes for QuantizedConv2DWithBiasAndRequantize
The QuantizedConv2DWithBiasSignedSumAndReluAndRequantize operation
 
The QuantizedConv2DWithBiasSumAndRelu operation
 
Optional attributes for QuantizedConv2DWithBiasSumAndRelu
The QuantizedConv2DWithBiasSumAndReluAndRequantize operation
 
Computes quantized depthwise Conv2D.
 
Optional attributes for QuantizedDepthwiseConv2D
Computes quantized depthwise Conv2D with Bias.
 
Optional attributes for QuantizedDepthwiseConv2DWithBias
Computes quantized depthwise Conv2D with Bias and Relu.
 
Computes quantized depthwise Conv2D with Bias, Relu and Requantize.
 
Quantized Instance normalization.
 
Optional attributes for QuantizedInstanceNorm
Perform a quantized matrix multiplication of a by the matrix b.
 
Optional attributes for QuantizedMatMul
Performs a quantized matrix multiplication of a by the matrix b with bias add.
 
Optional attributes for QuantizedMatMulWithBias
The QuantizedMatMulWithBiasAndDequantize operation
 
Optional attributes for QuantizedMatMulWithBiasAndDequantize
Perform a quantized matrix multiplication of a by the matrix b with bias add and relu fusion.
 
Optional attributes for QuantizedMatMulWithBiasAndRelu
Perform a quantized matrix multiplication of a by the matrix b with bias add and relu and requantize fusion.
 
The QuantizedMatMulWithBiasAndRequantize operation
 
Optional attributes for QuantizedMatMulWithBiasAndRequantize
Produces the max pool of the input tensor for quantized types.
 
Returns x * y element-wise, working on quantized buffers.
 
Convert the quantized 'input' tensor into a lower-precision 'output', using the actual distribution of the values to maximize the usage of the lower bit depth and adjusting the output min and max ranges accordingly.
 
Computes Quantized Rectified Linear: max(features, 0)
 
Computes Quantized Rectified Linear 6: min(max(features, 0), 6)
 
Computes Quantized Rectified Linear X: min(max(features, 0), max_value)
 
Reshapes a quantized tensor as per the Reshape op.
 
Resize quantized images to size using quantized bilinear interpolation.
 
Optional attributes for QuantizedResizeBilinear
Closes the given queue.
 
Optional attributes for QueueClose
Dequeues a tuple of one or more tensors from the given queue.
 
Optional attributes for QueueDequeue
Dequeues n tuples of one or more tensors from the given queue.
 
Optional attributes for QueueDequeueMany
Dequeues n tuples of one or more tensors from the given queue.
 
Optional attributes for QueueDequeueUpTo
Enqueues a tuple of one or more tensors in the given queue.
 
Optional attributes for QueueEnqueue
Enqueues zero or more tuples of one or more tensors in the given queue.
 
Optional attributes for QueueEnqueueMany
Returns true if queue is closed.
 
Computes the number of elements in the given queue.
 
Counts the number of occurrences of each value in an integer array.
 
Optional attributes for RaggedBincount
Performs sparse-output bin counting for a ragged tensor input.
 
Optional attributes for RaggedCountSparseOutput
RaggedCross<T extends TType,U extends TNumber>
Generates a feature cross from a list of tensors, and returns it as a RaggedTensor.
 
The RaggedFillEmptyRows operation
 
The RaggedFillEmptyRowsGrad operation
 
RaggedGather<T extends TNumber,U extends TType>
Gather ragged slices from params axis 0 according to indices.
 
An API for building ragged operations as Ops
RaggedRange<U extends TNumber,T extends TNumber>
Returns a RaggedTensor containing the specified sequences of numbers.
 
Decodes a variant Tensor into a RaggedTensor.
 
Converts a RaggedTensor into a SparseTensor with the same values.
 
Create a dense tensor from a ragged tensor, possibly altering its shape.
 
Encodes a RaggedTensor into a variant Tensor.
 
Helper used to compute the gradient for RaggedTensorToVariant.
 
Randomly crop image.
 
Optional attributes for RandomCrop
Creates a Dataset that returns pseudorandom numbers.
Creates a Dataset that returns pseudorandom numbers.
 
 
Optional attributes for RandomDataset
An API for building random.experimental operations as Ops
Outputs random values from the Gamma distribution(s) described by alpha.
 
Optional attributes for RandomGamma
Computes the derivative of a Gamma random sample w.r.t.
 
Outputs the position of value in a permutation of [0, ..., max_index].
 
Optional attributes for RandomIndexShuffle
An API for building random operations as Ops
Outputs random values from the Poisson distribution(s) described by rate.
 
Optional attributes for RandomPoisson
Randomly shuffles a tensor along its first dimension.
 
Optional attributes for RandomShuffle
A queue that randomizes the order of elements.
 
Optional attributes for RandomShuffleQueue
Outputs random values from a normal distribution.
 
Optional attributes for RandomStandardNormal
Outputs random values from a uniform distribution.
 
Optional attributes for RandomUniform
Outputs random integers from a uniform distribution.
 
Optional attributes for RandomUniformInt
Range<T extends TNumber>
Creates a sequence of numbers.
 
Creates a dataset with a range of values.
 
Optional attributes for RangeDataset
Returns the rank of a tensor.
 
A custom gradient for an op of unspecified type.
A base class for Op implementations that are backed by a single Operation.
A base class for operation input accessors.
A tensor which memory has not been mapped to a data space directly accessible from the JVM.
Returns the number of records this Reader has produced.
 
Returns the number of work units this Reader has finished processing.
 
Returns the next record (key, value pair) produced by a Reader.
 
Returns up to num_records (key, value) pairs produced by a Reader.
 
Restore a Reader to its initial clean state.
 
Restore a reader to a previously saved state.
 
Produce a string tensor that encodes the state of a Reader.
 
Reads and outputs the entire contents of the input filename.
 
Reads the value of a variable.
 
Splits resource variable input tensor across all dimensions.
 
Optional attributes for ReadVariableSplitND
Real<U extends TNumber>
Returns the real part of a complex number.
 
RealDiv<T extends TType>
Returns x / y element-wise for real types.
 
Creates a dataset that changes the batch size.
 
Optional attributes for RebatchDataset
Creates a dataset that changes the batch size.
 
Reciprocal<T extends TType>
Computes the reciprocal of x element-wise.
 
Computes the gradient for the inverse of x wrt its input.
 
Emits randomized records.
 
Optional attributes for RecordInput
Recv<T extends TType>
Receives the named tensor from send_device on recv_device.
 
Optional attributes for Recv
An op that receives embedding activations on the TPU.
 
Computes the "logical and" of elements across dimensions of a tensor.
 
Optional attributes for ReduceAll
Computes the "logical or" of elements across dimensions of a tensor.
 
Optional attributes for ReduceAny
Reduces the input dataset to a singleton using a reduce function.
 
Optional attributes for ReduceDataset
Joins a string Tensor across the given dimensions.
 
Optional attributes for ReduceJoin
Computes the maximum of elements across dimensions of a tensor.
 
Optional attributes for ReduceMax
Computes the minimum of elements across dimensions of a tensor.
 
Optional attributes for ReduceMin
ReduceProd<T extends TType>
Computes the product of elements across dimensions of a tensor.
 
Optional attributes for ReduceProd
ReduceSum<T extends TType>
Computes the sum of elements across dimensions of a tensor.
 
Optional attributes for ReduceSum
RefEnter<T extends TType>
Creates or finds a child frame, and makes data available to the child frame.
 
Optional attributes for RefEnter
RefExit<T extends TType>
Exits the current frame to its parent frame.
 
Return the same ref tensor as the input ref tensor.
 
RefMerge<T extends TType>
Forwards the value of an available tensor from inputs to output.
 
Makes its input available to the next iteration.
 
RefSelect<T extends TType>
Forwards the indexth element of inputs to output.
 
RefSwitch<T extends TType>
Forwards the ref tensor data to the output port determined by pred.
 
Check if the input matches the regex pattern.
 
Replaces matches of the pattern regular expression in input with the replacement string provided in rewrite.
 
Optional attributes for RegexReplace
Registers a dataset with the tf.data service.
 
Optional attributes for RegisterDataset
Relayout<T extends TType>
The Relayout operation
 
The RelayoutLike operation
 
Relu<T extends TNumber>
Computes rectified linear: max(features, 0).
 
Relu6<T extends TNumber>
Computes rectified linear 6: min(max(features, 0), 6).
 
Computes rectified linear 6 gradients for a Relu6 operation.
 
ReluGrad<T extends TNumber>
Computes rectified linear gradients for a Relu operation.
 
Runs function f on a remote device indicated by target.
 
Creates a dataset that emits the outputs of input_dataset count times.
 
Optional attributes for RepeatDataset
Connects N inputs to an N-way replicated TPU computation.
 
Optional attributes for ReplicatedInput
Connects N outputs from an N-way replicated TPU computation.
 
Metadata indicating how the TPU computation should be replicated.
 
Optional attributes for ReplicateMetadata
Computes a range that covers the actual values present in a quantized tensor.
 
Computes requantization range per channel.
 
Converts the quantized input tensor into a lower-precision output.
 
Requantizes input with min and max values known per channel.
 
Reshape<T extends TType>
Reshapes a tensor.
 
Resize images to size using area interpolation.
 
Optional attributes for ResizeArea
Resize images to size using bicubic interpolation.
 
Optional attributes for ResizeBicubic
Computes the gradient of bicubic interpolation.
 
Optional attributes for ResizeBicubicGrad
Resize images to size using bilinear interpolation.
 
Optional attributes for ResizeBilinear
Computes the gradient of bilinear interpolation.
 
Optional attributes for ResizeBilinearGrad
Resize images to size using nearest neighbor interpolation.
 
Optional attributes for ResizeNearestNeighbor
Computes the gradient of nearest neighbor interpolation.
 
Optional attributes for ResizeNearestNeighborGrad
Applies a gradient to a given accumulator.
 
Returns the number of gradients aggregated in the given accumulators.
 
Updates the accumulator with a new value for global_step.
 
Extracts the average gradient in the given ConditionalAccumulator.
 
Update '*var' according to the adadelta scheme.
 
Optional attributes for ResourceApplyAdadelta
Update '*var' according to the adagrad scheme.
 
Optional attributes for ResourceApplyAdagrad
Update '*var' according to the proximal adagrad scheme.
 
Optional attributes for ResourceApplyAdagradDa
Update '*var' according to the Adam algorithm.
 
Optional attributes for ResourceApplyAdam
Update '*var' according to the AdaMax algorithm.
 
Optional attributes for ResourceApplyAdaMax
Update '*var' according to the Adam algorithm.
 
Optional attributes for ResourceApplyAdamWithAmsgrad
Update '*var' according to the AddSign update.
 
Optional attributes for ResourceApplyAddSign
Update '*var' according to the centered RMSProp algorithm.
 
Optional attributes for ResourceApplyCenteredRmsProp
Update '*var' according to the Ftrl-proximal scheme.
 
Optional attributes for ResourceApplyFtrl
Update '*var' by subtracting 'alpha' * 'delta' from it.
 
Optional attributes for ResourceApplyGradientDescent
Update '*var' according to the momentum scheme.
 
Optional attributes for ResourceApplyKerasMomentum
Update '*var' according to the momentum scheme.
 
Optional attributes for ResourceApplyMomentum
Update '*var' according to the AddSign update.
 
Optional attributes for ResourceApplyPowerSign
Update '*var' and '*accum' according to FOBOS with Adagrad learning rate.
 
Optional attributes for ResourceApplyProximalAdagrad
Update '*var' as FOBOS algorithm with fixed learning rate.
 
Optional attributes for ResourceApplyProximalGradientDescent
Update '*var' according to the RMSProp algorithm.
 
Optional attributes for ResourceApplyRmsProp
A conditional accumulator for aggregating gradients.
 
Optional attributes for ResourceConditionalAccumulator
Increments variable pointed to by 'resource' until it reaches 'limit'.
 
Gather slices from the variable pointed to by resource according to indices.
 
Optional attributes for ResourceGather
The ResourceGatherNd operation
 
Adds sparse updates to the variable referenced by resource.
 
Divides sparse updates into the variable referenced by resource.
 
Reduces sparse updates into the variable referenced by resource using the max operation.
 
Reduces sparse updates into the variable referenced by resource using the min operation.
 
Multiplies sparse updates into the variable referenced by resource.
 
Applies sparse addition to individual values or slices in a Variable.
 
Optional attributes for ResourceScatterNdAdd
The ResourceScatterNdMax operation
 
Optional attributes for ResourceScatterNdMax
The ResourceScatterNdMin operation
 
Optional attributes for ResourceScatterNdMin
Applies sparse subtraction to individual values or slices in a Variable.
 
Optional attributes for ResourceScatterNdSub
Applies sparse updates to individual values or slices within a given variable according to indices.
 
Optional attributes for ResourceScatterNdUpdate
Subtracts sparse updates from the variable referenced by resource.
 
Assigns sparse updates to the variable referenced by resource.
 
var: Should be from a Variable().
 
Optional attributes for ResourceSparseApplyAdadelta
Update relevant entries in '*var' and '*accum' according to the adagrad scheme.
 
Optional attributes for ResourceSparseApplyAdagrad
Update entries in '*var' and '*accum' according to the proximal adagrad scheme.
 
Optional attributes for ResourceSparseApplyAdagradDa
Update relevant entries in '*var' and '*accum' according to the adagrad scheme.
 
Optional attributes for ResourceSparseApplyAdagradV2
Update '*var' according to the centered RMSProp algorithm.
 
Optional attributes for ResourceSparseApplyCenteredRmsProp
Update relevant entries in '*var' according to the Ftrl-proximal scheme.
 
Optional attributes for ResourceSparseApplyFtrl
Update relevant entries in '*var' and '*accum' according to the momentum scheme.
 
Optional attributes for ResourceSparseApplyKerasMomentum
Update relevant entries in '*var' and '*accum' according to the momentum scheme.
 
Optional attributes for ResourceSparseApplyMomentum
Sparse update entries in '*var' and '*accum' according to FOBOS algorithm.
 
Optional attributes for ResourceSparseApplyProximalAdagrad
Sparse update '*var' as FOBOS algorithm with fixed learning rate.
 
Update '*var' according to the RMSProp algorithm.
 
Optional attributes for ResourceSparseApplyRmsProp
Assign value to the sliced l-value reference of ref.
 
Optional attributes for ResourceStridedSliceAssign
Restores tensors from a V2 checkpoint.
 
Restores a tensor from checkpoint files.
 
Optional attributes for RestoreSlice
An AutoCloseable wrapper around a Map containing Tensors.
An op that retrieves optimization parameters from embedding to host memory.
 
Retrieve Adadelta embedding parameters.
 
Retrieve Adagrad Momentum embedding parameters.
 
Retrieve Adagrad embedding parameters.
 
Retrieve ADAM embedding parameters.
 
Optional attributes for RetrieveTPUEmbeddingADAMParameters
Retrieve centered RMSProp embedding parameters.
 
Retrieve frequency estimator embedding parameters.
 
Retrieve FTRL embedding parameters.
 
Optional attributes for RetrieveTPUEmbeddingFTRLParameters
Retrieve MDL Adagrad Light embedding parameters.
 
Retrieve Momentum embedding parameters.
 
Retrieve proximal Adagrad embedding parameters.
 
The RetrieveTPUEmbeddingProximalYogiParameters operation
 
Retrieve RMSProp embedding parameters.
 
Retrieve SGD embedding parameters.
 
Reverse<T extends TType>
Reverses specific dimensions of a tensor.
 
Reverses variable length slices.
 
Optional attributes for ReverseSequence
The RewriteDataset operation
 
Rfft<U extends TType>
Real-valued fast Fourier transform.
 
Rfft2d<U extends TType>
2D real-valued fast Fourier transform.
 
Rfft3d<U extends TType>
3D real-valued fast Fourier transform.
 
RfftNd<U extends TType>
ND fast real Fourier transform.
 
RgbToHsv<T extends TNumber>
Converts one or more images from RGB to HSV.
 
Elementwise computes the bitwise right-shift of x and y.
 
Rint<T extends TNumber>
Returns element-wise integer closest to x.
 
Advance the counter of a counter-based RNG.
 
Advance the counter of a counter-based RNG.
 
Roll<T extends TType>
Rolls the elements of a tensor along an axis.
 
Round<T extends TType>
Rounds the values of a tensor to the nearest integer, element-wise.
 
Rsqrt<T extends TType>
Computes reciprocal of square root of x element-wise.
 
RsqrtGrad<T extends TType>
Computes the gradient for the rsqrt of x wrt its input.
 
Generate a single randomly distorted bounding box for an image.
 
Optional attributes for SampleDistortedBoundingBox
Creates a dataset that takes a Bernoulli sample of the contents of another dataset.
 
Saves tensors in V2 checkpoint format.
 
The SaveDatasetV2 operation
 
Optional attributes for SaveDataset
SavedModelBundle represents a model loaded from storage.
Options for exporting a SavedModel.
Options for loading a SavedModel.
Saves input tensors slices to disk.
 
Outputs a Summary protocol buffer with scalar values.
 
The ScaleAndTranslate operation
 
Optional attributes for ScaleAndTranslate
The ScaleAndTranslateGrad operation
 
Optional attributes for ScaleAndTranslateGrad
Creates a dataset successively reduces f over the elements of input_dataset.
Creates a dataset successively reduces f over the elements of input_dataset.
 
 
Optional attributes for ScanDataset
Optional attributes for ScanDataset
ScatterAdd<T extends TType>
Adds sparse updates to a variable reference.
 
Optional attributes for ScatterAdd
ScatterDiv<T extends TType>
Divides a variable reference by sparse updates.
 
Optional attributes for ScatterDiv
Reduces sparse updates into a variable reference using the max operation.
 
Optional attributes for ScatterMax
Reduces sparse updates into a variable reference using the min operation.
 
Optional attributes for ScatterMin
ScatterMul<T extends TType>
Multiplies sparse updates into a variable reference.
 
Optional attributes for ScatterMul
ScatterNd<U extends TType>
Scatters updates into a tensor of shape shape according to indices.
ScatterNd.Inputs<T extends TNumber,U extends TType>
 
Applies sparse addition to individual values or slices in a Variable.
 
Optional attributes for ScatterNdAdd
Computes element-wise maximum.
 
Optional attributes for ScatterNdMax
Computes element-wise minimum.
 
Optional attributes for ScatterNdMin
Applies sparse addition to input using individual values or slices from updates according to indices indices.
 
Applies sparse subtraction to individual values or slices in a Variable.
 
Optional attributes for ScatterNdSub
Applies sparse updates to individual values or slices within a given variable according to indices.
 
Optional attributes for ScatterNdUpdate
ScatterSub<T extends TType>
Subtracts sparse updates to a variable reference.
 
Optional attributes for ScatterSub
Applies sparse updates to a variable reference.
 
Optional attributes for ScatterUpdate
Manages groups of related properties when creating Tensorflow Operations, such as a common name prefix.
Computes fingerprints of the input strings.
 
Distributed version of Stochastic Dual Coordinate Ascent (SDCA) optimizer for linear models with L1 + L2 regularization.
 
Optional attributes for SdcaOptimizer
Applies L1 regularization shrink step on the parameters.
 
Computes the maximum along segments of a tensor.
 
Computes the mean along segments of a tensor.
 
Computes the minimum along segments of a tensor.
 
Computes the product along segments of a tensor.
 
SegmentSum<T extends TType>
Computes the sum along segments of a tensor.
 
Select<T extends TType>
The SelectV2 operation
 
Computes the eigen decomposition of one or more square self-adjoint matrices.
 
Optional attributes for SelfAdjointEig
Selu<T extends TNumber>
Computes scaled exponential linear: scale * alpha * (exp(features) - 1) if < 0, scale * features otherwise.
 
SeluGrad<T extends TNumber>
Computes gradients for the scaled exponential linear (Selu) operation.
 
Sends the named tensor from send_device to recv_device.
 
Optional attributes for Send
Performs gradient updates of embedding tables.
 
Optional attributes for SendTPUEmbeddingGradients
Converts the given resource_handle representing an iterator to a variant tensor.
 
Optional attributes for SerializeIterator
Serialize an N-minibatch SparseTensor into an [N, 3] Tensor object.
 
Serialize a SparseTensor into a [3] Tensor object.
 
Transforms a Tensor into a serialized TensorProto proto.
 
An in-process TensorFlow server, for use in distributed training.
Driver for Graph execution.
A callable function backed by a session.
SetDiff1d<T extends TType,U extends TNumber>
Computes the difference between two lists of numbers or strings.
 
Number of unique elements along last dimension of input set.
 
Optional attributes for SetSize
The ExperimentalSetStatsAggregatorDataset operation
The SetStatsAggregatorDataset operation
 
 
Shape<U extends TNumber>
Returns the shape of a tensor.
 
ShapeN<U extends TNumber>
Returns shape of tensors.
 
An API for building shape operations as Ops
An operator providing methods on org.tensorflow.op.core.Shape tensors and 1d operands that represent the dimensions of a shape.
Creates a Dataset that includes only 1/num_shards of this dataset.
 
Optional attributes for ShardDataset
Generate a sharded filename.
 
Generate a glob pattern matching all sharded file names.
 
The ShuffleAndRepeatDatasetV2 operation
 
Optional attributes for ShuffleAndRepeatDataset
The ShuffleDatasetV3 operation
 
Optional attributes for ShuffleDataset
Shuts down a running distributed TPU system.
 
An op that shuts down the TPU system.
 
Sigmoid<T extends TType>
Computes sigmoid of x element-wise.
 
Computes the gradient of the sigmoid of x wrt its input.
 
Sign<T extends TType>
Returns an element-wise indication of the sign of a number.
 
An API for building signal operations as Ops
Describe the inputs and outputs of an executable entity, such as a ConcreteFunction, among other useful metadata.
Builds a new function signature.
 
Sin<T extends TType>
Computes sine of x element-wise.
Sin.Inputs<T extends TType>
 
Sinh<T extends TType>
Computes hyperbolic sine of x element-wise.
 
Size<U extends TNumber>
Returns the size of a tensor.
 
Creates a dataset that skips count elements from the input_dataset.
 
Optional attributes for SkipDataset
Parses a text file and creates a batch of examples.
 
Optional attributes for Skipgram
The ExperimentalSleepDataset operation
The SleepDataset operation
 
 
Slice<T extends TType>
Return a slice from 'input'.
Slice.Inputs<T extends TType,U extends TNumber>
 
Creates a dataset that passes a sliding window over input_dataset.
Creates a dataset that passes a sliding window over input_dataset.
 
 
Optional attributes for SlidingWindowDataset
Snapshot<T extends TType>
Returns a copy of the input tensor.
 
The SnapshotChunkDataset operation
 
Optional attributes for SnapshotChunkDataset
Creates a dataset that will write to / read from a snapshot.
 
Optional attributes for SnapshotDataset
The SnapshotDatasetReader operation
 
Optional attributes for SnapshotDatasetReader
The SnapshotNestedDatasetReader operation
 
Generates points from the Sobol sequence.
 
Softmax<T extends TNumber>
Computes softmax activations.
 
Computes softmax cross entropy cost and gradients to backpropagate.
 
Softplus<T extends TNumber>
The Softplus operation
 
Computes softplus gradients for a softplus operation.
 
Softsign<T extends TNumber>
Computes softsign: features / (abs(features) + 1).
 
Computes softsign gradients for a softsign operation.
 
Solve<T extends TType>
Solves systems of linear equations.
 
Optional attributes for Solve
SpaceToBatch for 4-D tensors of type T.
 
SpaceToBatch for N-D tensors of type T.
 
SpaceToDepth for tensors of type T.
 
Optional attributes for SpaceToDepth
Applies a sparse gradient to a given accumulator.
 
Extracts the average sparse gradient in a SparseConditionalAccumulator.
 
SparseAdd<T extends TType>
Adds two SparseTensor objects to produce another SparseTensor.
 
The gradient operator for the SparseAdd op.
 
var: Should be from a Variable().
 
Optional attributes for SparseApplyAdadelta
Update relevant entries in '*var' and '*accum' according to the adagrad scheme.
 
Optional attributes for SparseApplyAdagrad
Update entries in '*var' and '*accum' according to the proximal adagrad scheme.
 
Optional attributes for SparseApplyAdagradDa
Update '*var' according to the centered RMSProp algorithm.
 
Optional attributes for SparseApplyCenteredRmsProp
Update relevant entries in '*var' according to the Ftrl-proximal scheme.
 
Optional attributes for SparseApplyFtrl
Update relevant entries in '*var' and '*accum' according to the momentum scheme.
 
Optional attributes for SparseApplyMomentum
Sparse update entries in '*var' and '*accum' according to FOBOS algorithm.
 
Optional attributes for SparseApplyProximalAdagrad
Sparse update '*var' as FOBOS algorithm with fixed learning rate.
 
Optional attributes for SparseApplyProximalGradientDescent
Update '*var' according to the RMSProp algorithm.
 
Optional attributes for SparseApplyRmsProp
Counts the number of occurrences of each value in an integer array.
 
Optional attributes for SparseBincount
Concatenates a list of SparseTensor along the specified dimension.
 
A conditional accumulator for aggregating sparse gradients.
 
Optional attributes for SparseConditionalAccumulator
Performs sparse-output bin counting for a sparse tensor input.
 
Optional attributes for SparseCountSparseOutput
Generates sparse cross from a list of sparse and dense tensors.
 
Generates sparse cross from a list of sparse and dense tensors.
 
Adds up a SparseTensor and a dense Tensor, using these special rules: (1) Broadcasts the dense side to have the same shape as the sparse side, if eligible; (2) Then, only the dense values pointed to by the indices of the SparseTensor participate in the cwise addition.
 
Component-wise divides a SparseTensor by a dense Tensor.
 
Component-wise multiplies a SparseTensor by a dense Tensor.
 
Fills empty rows in the input 2-D SparseTensor with a default value.
 
The gradient of SparseFillEmptyRows.
 
Multiply matrix "a" by matrix "b".
 
Optional attributes for SparseMatMul
Sparse addition of two CSR matrices, C = alpha * A + beta * B.
 
Matrix-multiplies a sparse matrix with a dense matrix.
 
Optional attributes for SparseMatrixMatMul
Element-wise multiplication of a sparse matrix with a dense tensor.
 
Returns the number of nonzeroes of sparse_matrix.
 
Computes the Approximate Minimum Degree (AMD) ordering of input.
 
Calculates the softmax of a CSRSparseMatrix.
 
Calculates the gradient of the SparseMatrixSoftmax op.
 
Computes the sparse Cholesky decomposition of input.
 
Sparse-matrix-multiplies two CSR matrices a and b.
 
Optional attributes for SparseMatrixSparseMatMul
Transposes the inner (matrix) dimensions of a CSRSparseMatrix.
 
Optional attributes for SparseMatrixTranspose
Creates an all-zeros CSRSparseMatrix with shape dense_shape.
 
An API for building sparse operations as Ops
Computes the max of elements across dimensions of a SparseTensor.
 
Optional attributes for SparseReduceMax
Computes the max of elements across dimensions of a SparseTensor.
 
Optional attributes for SparseReduceMaxSparse
Computes the sum of elements across dimensions of a SparseTensor.
 
Optional attributes for SparseReduceSum
Computes the sum of elements across dimensions of a SparseTensor.
 
Optional attributes for SparseReduceSumSparse
Reorders a SparseTensor into the canonical, row-major ordering.
 
Reshapes a SparseTensor to represent values in a new dense shape.
 
Computes the mean along sparse segments of a tensor.
 
Optional attributes for SparseSegmentMean
Computes gradients for SparseSegmentMean.
 
Computes the mean along sparse segments of a tensor.
 
Optional attributes for SparseSegmentMeanWithNumSegments
Computes the sum along sparse segments of a tensor divided by the sqrt of N.
 
Optional attributes for SparseSegmentSqrtN
Computes gradients for SparseSegmentSqrtN.
 
Computes the sum along sparse segments of a tensor divided by the sqrt of N.
 
Optional attributes for SparseSegmentSqrtNWithNumSegments
Computes the sum along sparse segments of a tensor.
 
Optional attributes for SparseSegmentSum
Computes gradients for SparseSegmentSum.
 
Computes the sum along sparse segments of a tensor.
 
Optional attributes for SparseSegmentSumWithNumSegments
Slice a SparseTensor based on the start and size.
 
The gradient operator for the SparseSlice op.
 
Applies softmax to a batched N-D SparseTensor.
 
Computes softmax cross entropy cost and gradients to backpropagate.
 
Returns the element-wise max of two SparseTensors.
 
Returns the element-wise min of two SparseTensors.
 
Split a SparseTensor into num_split tensors along one dimension.
 
A virtual type of Tensor composed of three dense tensors (indices, values and dimensions) used to represent the sparse data into a multi-dimensional dense space.
Adds up a SparseTensor and a dense Tensor, producing a dense Tensor.
 
Multiply SparseTensor (of rank 2) "A" by dense matrix "B".
 
Optional attributes for SparseTensorDenseMatMul
Creates a dataset that splits a SparseTensor into elements row-wise.
 
Converts a SparseTensor to a (possibly batched) CSRSparseMatrix.
 
Converts a sparse representation into a dense tensor.
 
Optional attributes for SparseToDense
Applies set operation along last dimension of 2 SparseTensor inputs.
 
Optional attributes for SparseToSparseSetOperation
Spence<T extends TNumber>
The Spence operation
 
Split<T extends TType>
Splits a tensor into num_split tensors along one dimension.
 
SplitDedupData<T extends TNumber,U extends TNumber>
An op splits input deduplication data XLA tuple into integer and floating point tensors.
 
Optional attributes for SplitDedupData
SplitND<T extends TType>
Splits input tensor across all dimensions.
 
Optional attributes for SplitND
SplitV<T extends TType>
Splits a tensor into num_split tensors along one dimension.
 
Creates a dataset that executes a SQL query and emits rows of the result set.
Creates a dataset that executes a SQL query and emits rows of the result set.
 
 
Sqrt<T extends TType>
Computes square root of x element-wise.
 
SqrtGrad<T extends TType>
Computes the gradient for the sqrt of x wrt its input.
 
Sqrtm<T extends TType>
Computes the matrix square root of one or more square matrices: matmul(sqrtm(A), sqrtm(A)) = A
 
Square<T extends TType>
Computes square of x element-wise.
 
Returns conj(x - y)(x - y) element-wise.
 
Squeeze<T extends TType>
Removes dimensions of size 1 from the shape of a tensor.
 
Optional attributes for Squeeze
Stack<T extends TType>
Packs a list of N rank-R tensors into one rank-(R+1) tensor.
 
Optional attributes for Stack
Delete the stack from its resource container.
 
A stack that produces elements in first-in last-out order.
 
Optional attributes for StackCreate
StackPop<T extends TType>
Pop the element at the top of the stack.
 
StackPush<T extends TType>
Push an element onto the stack.
 
Optional attributes for StackPush
Stage values similar to a lightweight Enqueue.
 
Optional attributes for Stage
Op removes all elements in the underlying container.
 
Optional attributes for StageClear
Op peeks at the values at the specified index.
 
Optional attributes for StagePeek
Op returns the number of elements in the underlying container.
 
Optional attributes for StageSize
An n-way switch statement which calls a single branch function.
 
output = cond ? then_branch(input) : else_branch(input)
 
returns f(inputs), where f's body is placed and partitioned.
 
Optional attributes for StatefulPartitionedCall
The StatefulRandomBinomial operation
 
Outputs random values from a normal distribution.
 
Outputs random values from a truncated normal distribution.
 
Outputs random values from a uniform distribution.
 
Outputs random integers from a uniform distribution.
 
Outputs random integers from a uniform distribution.
 
output = input; While (Cond(output)) { output = Body(output) }
 
An n-way switch statement which calls a single branch function.
 
output = cond ? then_branch(input) : else_branch(input)
 
Draws samples from a multinomial distribution.
 
The StatelessParameterizedTruncatedNormal operation
 
Outputs deterministic pseudorandom random numbers from a binomial distribution.
 
Outputs deterministic pseudorandom random numbers from a gamma distribution.
 
Picks the best counter-based RNG algorithm based on device.
 
Scrambles seed into key and counter, using the best algorithm based on device.
 
Picks the best algorithm based on device, and scrambles seed into key and counter.
 
Outputs deterministic pseudorandom values from a normal distribution.
 
Outputs deterministic pseudorandom values from a normal distribution.
 
Outputs deterministic pseudorandom random numbers from a Poisson distribution.
 
Outputs deterministic pseudorandom random values from a uniform distribution.
 
Outputs deterministic pseudorandom random integers from a uniform distribution.
 
Outputs deterministic pseudorandom random integers from a uniform distribution.
 
Outputs deterministic pseudorandom random integers from a uniform distribution.
 
Outputs deterministic pseudorandom random integers from a uniform distribution.
 
Outputs deterministic pseudorandom random values from a uniform distribution.
 
Generate a randomly distorted bounding box for an image deterministically.
 
Optional attributes for StatelessSampleDistortedBoundingBox
Randomly and deterministically shuffles a tensor along its first dimension.
 
Outputs deterministic pseudorandom values from a truncated normal distribution.
 
Outputs deterministic pseudorandom values from a truncated normal distribution.
 
output = input; While (Cond(output)) { output = Body(output) }
 
Check if the input matches the regex pattern.
 
Replaces the match of pattern in input with rewrite.
 
Optional attributes for StaticRegexReplace
Creates a statistics manager resource.
The StatsAggregatorHandleV2 operation
 
 
Optional attributes for StatsAggregatorHandle
Optional attributes for StatsAggregatorHandle
Set a summary_writer_interface to record statistics using given stats_aggregator.
 
Produces a summary of any statistics recorded by the given statistics manager.
Produces a summary of any statistics recorded by the given statistics manager.
 
 
Stochastically cast a given tensor from floats to ints.
 
Stops gradient computation.
 
The StoreMinibatchStatisticsInFdo operation
 
Return a strided slice from input.
 
Optional attributes for StridedSlice
Assign value to the sliced l-value reference of ref.
 
Optional attributes for StridedSliceAssign
Returns the gradient of StridedSlice.
 
Optional attributes for StridedSliceGrad
Helper endpoint methods for Python like indexing.
Formats a string template using a list of tensors.
 
Optional attributes for StringFormat
String lengths of input.
 
Optional attributes for StringLength
Creates ngrams from ragged string data.
 
An API for building strings operations as Ops
Split elements of source based on sep into a SparseTensor.
 
Optional attributes for StringSplit
Strip leading and trailing whitespaces from the Tensor.
 
Sub<T extends TType>
Returns x - y element-wise.
Sub.Inputs<T extends TType>
 
Return substrings from Tensor of strings.
 
Optional attributes for Substr
Sum<T extends TType>
Computes the sum of elements across dimensions of a tensor.
Sum.Inputs<T extends TType>
 
Optional attributes for Sum
An API for building summary operations as Ops
The SummaryWriter operation
 
Optional attributes for SummaryWriter
Svd<T extends TType>
Computes the singular value decompositions of one or more matrices.
Svd.Inputs<T extends TType>
 
Optional attributes for Svd
SwitchCond<T extends TType>
Forwards data to the output port determined by pred.
 
Computes the gradient function for function f via backpropagation.
 
Synchronizes the device this op is run on.
 
Creates a dataset that contains count elements from the input_dataset.
 
Optional attributes for TakeDataset
Read SparseTensors from a SparseTensorsMap and concatenate them.
 
Optional attributes for TakeManySparseFromTensorsMap
Creates a dataset that stops iteration when predicate` is false.
Creates a dataset that stops iteration when predicate` is false.
 
 
Optional attributes for TakeWhileDataset
Tan<T extends TType>
Computes tan of x element-wise.
Tan.Inputs<T extends TType>
 
Tanh<T extends TType>
Computes hyperbolic tangent of x element-wise.
 
TanhGrad<T extends TType>
Computes the gradient for the tanh of x wrt its input.
 
Brain 16-bit float tensor type.
Boolean tensor type.
Returns a tensor that may be mutated, but only persists within a single step.
 
Optional attributes for TemporaryVariable
A statically typed multi-dimensional array.
An array of Tensors of given size.
 
Optional attributes for TensorArray
Delete the TensorArray from its resource container.
 
Concat the elements from the TensorArray into value value.
 
Optional attributes for TensorArrayConcat
Gather specific elements from the TensorArray into output value.
 
Optional attributes for TensorArrayGather
Creates a TensorArray for storing the gradients of values in the given handle.
 
Creates a TensorArray for storing multiple gradients of values in the given handle.
 
The TensorArrayPack operation
 
Optional attributes for TensorArrayPack
Read an element from the TensorArray into output value.
 
Scatter the data from the input value into specific TensorArray elements.
 
Get the current size of the TensorArray.
 
Split the data from the input value into TensorArray elements.
 
The TensorArrayUnpack operation
 
Push an element onto the tensor_array.
 
Creates a dataset that emits components as a tuple of tensors once.
 
Optional attributes for TensorDataset
TensorDiag<T extends TType>
Returns a diagonal tensor with a given diagonal values.
 
Returns the diagonal part of the tensor.
 
Static utility methods describing the TensorFlow runtime.
A function that can be called with tensors.
Concats all tensors in the list along the 0th dimension.
 
The TensorListConcatLists operation
 
The shape of the elements of the given list, as a tensor.
 
Creates a TensorList which, when stacked, has the value of tensor.
 
Creates a Tensor by indexing into the TensorList.
 
Returns the item in the list with the given index.
 
Returns the number of tensors in the input tensor list.
 
Returns the last element of the input list as well as a list with all but that element.
 
Returns a list which has the passed-in Tensor as last element and the other elements of the given list in input_handle.
 
The TensorListPushBackBatch operation
 
List of the given size with empty elements.
 
Resizes the list.
 
Creates a TensorList by indexing into a Tensor.
 
Scatters tensor at indices in an input list.
 
Sets the index-th position of the list to contain the given tensor.
 
Optional attributes for TensorListSetItem
Splits a tensor into a list.
 
Stacks all tensors in the list.
 
Optional attributes for TensorListStack
Returns a tensor map with item from given key erased.
 
Returns whether the given key exists in the map.
 
Returns a map that is the 'input_handle' with the given key-value pair inserted.
 
Returns the value from a given key in a tensor map.
 
Maps the native memory of a RawTensor to a n-dimensional typed data space accessible from the JVM.
Returns the number of tensors in the input tensor map.
 
Returns a Tensor stack of all keys in a tensor map.
 
Adds sparse updates to an existing tensor according to indices.
 
Apply a sparse update to a tensor taking the element-wise maximum.
 
The TensorScatterMin operation
 
Subtracts sparse updates from an existing tensor according to indices.
 
Scatter updates into an existing tensor according to indices.
 
Creates a dataset that emits each dim-0 slice of components once.
 
Optional attributes for TensorSliceDataset
Assign value to the sliced l-value reference of input.
 
Optional attributes for TensorStridedSliceUpdate
Outputs a Summary protocol buffer with a tensor and per-plugin data.
 
Annotation for all tensor types.
Creates a dataset that emits the lines of one or more text files.
 
Optional attributes for TextLineDataset
A Reader that outputs the lines of a file delimited by '\n'.
 
Optional attributes for TextLineReader
IEEE-754 half-precision 16-bit float tensor type.
IEEE-754 single-precision 32-bit float tensor type.
IEEE-754 double-precision 64-bit float tensor type.
Common interface for all floating point tensors.
Creates a dataset that emits the records from one or more TFRecord files.
 
Optional attributes for TfRecordDataset
A Reader that outputs the records from a TensorFlow Records file.
 
Optional attributes for TfRecordReader
Creates a dataset that uses a custom thread pool to compute input_dataset.
Creates a dataset that uses a custom thread pool to compute input_dataset.
 
 
Creates a dataset that uses a custom thread pool to compute input_dataset.
Creates a dataset that uses a custom thread pool to compute input_dataset.
 
 
Optional attributes for ThreadPoolHandle
Optional attributes for ThreadPoolHandle
Generates labels for candidate sampling with a learned unigram distribution.
 
Optional attributes for ThreadUnsafeUnigramCandidateSampler
Tile<T extends TType>
Constructs a tensor by tiling a given tensor.
 
TileGrad<T extends TType>
Returns the gradient of Tile.
 
Provides the time since epoch in seconds.
 
32-bit signed integer tensor type.
64-bit signed integer tensor type.
Common interface for all integral numeric tensors.
Common interface for all numeric tensors.
Converts a tensor to a scalar predicate.
 
Converts each string in the input Tensor to its hash mod by a number of buckets.
 
Converts each string in the input Tensor to its hash mod by a number of buckets.
 
Converts each string in the input Tensor to its hash mod by a number of buckets.
 
ToNumber<T extends TNumber>
Converts each string in the input Tensor to the specified numeric type.
 
TopK<T extends TNumber,V extends TNumber>
Finds values and indices of the k largest elements for the last dimension.
 
Optional attributes for TopK
Returns the TopK unique values in the array in sorted order.
 
Returns the TopK values in the array in sorted order.
 
The TPUAnnotateTensorsWithDynamicShape operation
 
Deprecated.
use CompilationResult instead
 
Op that copies host tensor to device with dynamic shape support.
 
Deprecated.
 
Converts XRT's uid handles to TensorFlow-friendly input format.
 
An API for building tpu operations as Ops
Deprecated.
use ReplicatedInput instead
 
Optional attributes for TPUReplicatedInput
Deprecated.
use ReplicatedOutput instead
 
Deprecated.
use ReplicateMetadata instead
 
Optional attributes for TPUReplicateMetadata
Op that reshards on-device TPU variables to specified state.
 
Round-robin load balancing on TPU cores.
 
An API for building train operations as Ops
Transpose<T extends TType>
Shuffle dimensions of x according to a permutation.
 
Solves systems of linear equations with upper or lower triangular matrices by backsubstitution.
 
Optional attributes for TriangularSolve
Calculate product with tridiagonal matrix.
 
Solves tridiagonal systems of equations.
 
Optional attributes for TridiagonalSolve
Returns x / y element-wise, rounded towards zero.
 
Outputs random values from a truncated normal distribution.
 
Optional attributes for TruncatedNormal
Returns element-wise remainder of division.
 
String type.
Common interface for all typed tensors.
16-bit unsigned integer tensor type.
8-bit unsigned integer tensor type.
Unbatch<T extends TType>
Reverses the operation of Batch for a single output Tensor.
 
Optional attributes for Unbatch
A dataset that splits the elements of its input into multiple elements.
A dataset that splits the elements of its input into multiple elements.
 
 
Optional attributes for UnbatchDataset
Gradient of Unbatch.
 
Optional attributes for UnbatchGrad
Uncompresses a compressed dataset element.
 
Decodes each string in input into a sequence of Unicode code points.
 
Optional attributes for UnicodeDecode
Decodes each string in input into a sequence of Unicode code points.
 
Optional attributes for UnicodeDecodeWithOffsets
Encode a tensor of ints into unicode strings.
 
Optional attributes for UnicodeEncode
Determine the script codes of a given tensor of Unicode integer code points.
 
Transcode the input text from a source encoding to a destination encoding.
 
Optional attributes for UnicodeTranscode
Generates labels for candidate sampling with a uniform distribution.
 
Optional attributes for UniformCandidateSampler
Perform dequantization on the quantized Tensor input.
 
Optional attributes for UniformDequantize
Perform quantization on Tensor input.
 
Optional attributes for UniformQuantize
Perform quantized add of quantized Tensor lhs and quantized Tensor rhs to make quantized output.
 
Optional attributes for UniformQuantizedAdd
Perform clip by value on the quantized Tensor operand.
 
Optional attributes for UniformQuantizedClipByValue
Perform quantized convolution of quantized Tensor lhs and quantized Tensor rhs.
 
Optional attributes for UniformQuantizedConvolution
Perform hybrid quantized convolution of float Tensor lhs and quantized Tensor rhs.
 
Optional attributes for UniformQuantizedConvolutionHybrid
Perform quantized dot of quantized Tensor lhs and quantized Tensor rhs to make quantized output.
 
Optional attributes for UniformQuantizedDot
Perform hybrid quantized dot of float Tensor lhs and quantized Tensor rhs.
 
Optional attributes for UniformQuantizedDotHybrid
Given quantized tensor input, requantize it with new quantization parameters.
 
Optional attributes for UniformRequantize
Unique<T extends TType,V extends TNumber>
Finds unique elements along an axis of a tensor.
 
Creates a dataset that contains the unique elements of input_dataset.
Creates a dataset that contains the unique elements of input_dataset.
 
 
Optional attributes for UniqueDataset
UniqueWithCounts<T extends TType,V extends TNumber>
Finds unique elements along an axis of a tensor.
 
Converts an array of flat indices into a tuple of coordinate arrays.
 
The UnsortedSegmentJoin operation
 
Optional attributes for UnsortedSegmentJoin
Computes the maximum along segments of a tensor.
 
Computes the minimum along segments of a tensor.
 
Computes the product along segments of a tensor.
 
Computes the sum along segments of a tensor.
 
Unstack<T extends TType>
Unpacks a given dimension of a rank-R tensor into num rank-(R-1) tensors.
 
Optional attributes for Unstack
Op is similar to a lightweight Dequeue.
 
Optional attributes for Unstage
The UnwrapDatasetVariant operation
 
Converts all lowercase characters into their respective uppercase replacements.
 
Optional attributes for Upper
Applies upper_bound(sorted_search_values, values) along each row.
 
Creates a handle to a Variable resource.
 
Optional attributes for VarHandleOp
Variable<T extends TType>
Holds state in the form of a tensor that persists across steps.
 
Optional attributes for Variable
Returns the shape of the variable pointed to by resource.
 
Checks whether a resource handle-based variable has been initialized.
 
Returns locations of nonzero / true values in a tensor.
 
output = input; While (Cond(output)) { output = Body(output) }
Optional attributes for While
A Reader that outputs the entire contents of a file as a value.
 
Optional attributes for WholeFileReader
Combines (nests of) input elements into a dataset of (nests of) windows.
 
Optional attributes for WindowDataset
The WindowOp operation
 
Worker heartbeat op.
 
The WrapDatasetVariant operation
 
Writes an audio summary.
 
Optional attributes for WriteAudioSummary
Writes contents to the file at input filename.
 
Writes a graph summary.
 
Writes a histogram summary.
 
Writes an image summary.
 
Optional attributes for WriteImageSummary
Writes a serialized proto summary.
 
Writes a scalar summary.
 
Writes a tensor summary.
 
Xdivy<T extends TType>
Returns 0 if x == 0, and x / y otherwise, elementwise.
 
A pseudo-op to represent host-side computation in an XLA program.
 
Optional attributes for XlaHostCompute
An API for building xla operations as Ops
An op to receive a tensor from the host.
 
An op that receives embedding activations on the TPU.
 
Receives deduplication data (indices and weights) from the embedding core.
 
An op to send a tensor to the host.
 
An op that performs gradient updates of embedding tables.
 
Optional attributes for XlaSendTPUEmbeddingGradients
The XlaSparseCoreAdagrad operation
 
The XlaSparseCoreAdagradMomentum operation
 
The XlaSparseCoreAdam operation
 
The XlaSparseCoreFtrl operation
 
The XlaSparseCoreSgd operation
 
The XlaSparseDenseMatmul operation
 
The XlaSparseDenseMatmulGradWithAdagradAndCsrInput operation
 
The XlaSparseDenseMatmulGradWithAdagradMomentumAndCsrInput operation
 
The XlaSparseDenseMatmulGradWithAdamAndCsrInput operation
 
The XlaSparseDenseMatmulGradWithFtrlAndCsrInput operation
 
The XlaSparseDenseMatmulGradWithSgdAndCsrInput operation
 
The XlaSparseDenseMatmulWithCsrInput operation
 
Xlog1py<T extends TType>
Returns 0 if x == 0, and x * log1p(y) otherwise, elementwise.
 
Xlogy<T extends TType>
Returns 0 if x == 0, and x * log(y) otherwise, elementwise.
 
Zeros<T extends TType>
An operator creating a constant initialized with zeros of the shape given by `dims`.
ZerosLike<T extends TType>
Returns a tensor of zeros with the same shape and type as x.
 
Zeta<T extends TNumber>
Compute the Hurwitz zeta function \(\zeta(x, q)\).
 
Creates a dataset that zips together input_datasets.
 
Optional attributes for ZipDataset