A B C D E F G H I K L M N O P R S T U V W Z 
All Classes All Packages

A

A_MINUS_B - org.tensorflow.framework.op.sets.Sets.Operation
 
AbstractActivation - Class in org.tensorflow.framework.activations
Abstract base class for Activations
AbstractActivation() - Constructor for class org.tensorflow.framework.activations.AbstractActivation
Creates the abstract class for an AbstractActivation
AbstractConstraint - Class in org.tensorflow.framework.constraints
Base class for Constraints.
AbstractConstraint() - Constructor for class org.tensorflow.framework.constraints.AbstractConstraint
Creates a AbstractConstraint
AbstractRegularizer - Class in org.tensorflow.framework.regularizers
Base class for Regularizers
AbstractRegularizer() - Constructor for class org.tensorflow.framework.regularizers.AbstractRegularizer
Creates a AbstractRegularizer, using Class.getSimpleName() for the name
AbstractRegularizer(String) - Constructor for class org.tensorflow.framework.regularizers.AbstractRegularizer
Creates a AbstractRegularizer
ACCUMULATOR - Static variable in class org.tensorflow.framework.optimizers.AdaDelta
 
ACCUMULATOR - Static variable in class org.tensorflow.framework.optimizers.AdaGrad
 
ACCUMULATOR - Static variable in class org.tensorflow.framework.optimizers.AdaGradDA
 
ACCUMULATOR - Static variable in class org.tensorflow.framework.optimizers.Ftrl
 
ACCUMULATOR_UPDATE - Static variable in class org.tensorflow.framework.optimizers.AdaDelta
 
Accuracy<T extends TNumber> - Class in org.tensorflow.framework.metrics
Metric that calculates how often predictions equals labels.
Accuracy(long, Class<T>) - Constructor for class org.tensorflow.framework.metrics.Accuracy
Creates an Accuracy Metric using Class.getSimpleName() for the metric name
Accuracy(String, long, Class<T>) - Constructor for class org.tensorflow.framework.metrics.Accuracy
Creates an Accuracy Metric
Activation - Interface in org.tensorflow.framework.activations
Interface for Activations
Activations - Enum in org.tensorflow.framework.activations
The Enumerations for creating Activations based an activation name, with either an empty constructor or a constructor that takes a Map object that contains the Activation's state.
AdaDelta - Class in org.tensorflow.framework.optimizers
Optimizer that implements the Adadelta algorithm.
AdaDelta(Graph) - Constructor for class org.tensorflow.framework.optimizers.AdaDelta
 
AdaDelta(Graph, float) - Constructor for class org.tensorflow.framework.optimizers.AdaDelta
Creates an AdaDelta Optimizer
AdaDelta(Graph, float, float, float) - Constructor for class org.tensorflow.framework.optimizers.AdaDelta
Creates an AdaDelta Optimizer
AdaDelta(Graph, String, float) - Constructor for class org.tensorflow.framework.optimizers.AdaDelta
Creates an AdaDelta Optimizer
AdaDelta(Graph, String, float, float, float) - Constructor for class org.tensorflow.framework.optimizers.AdaDelta
Creates an AdaDelta Optimizer
ADADELTA - org.tensorflow.framework.optimizers.Optimizers
 
AdaGrad - Class in org.tensorflow.framework.optimizers
Optimizer that implements the Adagrad algorithm.
AdaGrad(Graph) - Constructor for class org.tensorflow.framework.optimizers.AdaGrad
Creates an AdaGrad Optimizer
AdaGrad(Graph, float) - Constructor for class org.tensorflow.framework.optimizers.AdaGrad
Creates an AdaGrad Optimizer
AdaGrad(Graph, float, float) - Constructor for class org.tensorflow.framework.optimizers.AdaGrad
Creates an AdaGrad Optimizer
AdaGrad(Graph, String, float) - Constructor for class org.tensorflow.framework.optimizers.AdaGrad
Creates an AdaGrad Optimizer
AdaGrad(Graph, String, float, float) - Constructor for class org.tensorflow.framework.optimizers.AdaGrad
Creates an AdaGrad Optimizer
ADAGRAD - org.tensorflow.framework.optimizers.Optimizers
 
ADAGRAD_DA - org.tensorflow.framework.optimizers.Optimizers
 
AdaGradDA - Class in org.tensorflow.framework.optimizers
Optimizer that implements the Adagrad Dual-Averaging algorithm.
AdaGradDA(Graph) - Constructor for class org.tensorflow.framework.optimizers.AdaGradDA
Creates an AdaGradDA Optimizer
AdaGradDA(Graph, float) - Constructor for class org.tensorflow.framework.optimizers.AdaGradDA
Creates an AdaGradDA Optimizer
AdaGradDA(Graph, float, float, float, float) - Constructor for class org.tensorflow.framework.optimizers.AdaGradDA
Creates an AdaGradDA Optimizer
AdaGradDA(Graph, String, float) - Constructor for class org.tensorflow.framework.optimizers.AdaGradDA
Creates an AdaGradDA Optimizer
AdaGradDA(Graph, String, float, float, float, float) - Constructor for class org.tensorflow.framework.optimizers.AdaGradDA
Creates an AdaGradDA Optimizer
Adam - Class in org.tensorflow.framework.optimizers
Optimizer that implements the Adam algorithm.
Adam(Graph) - Constructor for class org.tensorflow.framework.optimizers.Adam
Creates an Adam optimizer
Adam(Graph, float) - Constructor for class org.tensorflow.framework.optimizers.Adam
Creates an Adam optimizer
Adam(Graph, float, float, float, float) - Constructor for class org.tensorflow.framework.optimizers.Adam
Creates an Adam optimizer
Adam(Graph, String, float) - Constructor for class org.tensorflow.framework.optimizers.Adam
Creates an Adam optimizer
Adam(Graph, String, float, float, float, float) - Constructor for class org.tensorflow.framework.optimizers.Adam
Creates an Adam optimizer
ADAM - org.tensorflow.framework.optimizers.Optimizers
 
Adamax - Class in org.tensorflow.framework.optimizers
Optimizer that implements the Adamax algorithm.
Adamax(Graph) - Constructor for class org.tensorflow.framework.optimizers.Adamax
Creates an Optimizer that implements the Adamax algorithm.
Adamax(Graph, float) - Constructor for class org.tensorflow.framework.optimizers.Adamax
Creates an Optimizer that implements the Adamax algorithm.
Adamax(Graph, float, float, float, float) - Constructor for class org.tensorflow.framework.optimizers.Adamax
Creates an Optimizer that implements the Adamax algorithm.
Adamax(Graph, String) - Constructor for class org.tensorflow.framework.optimizers.Adamax
Creates an Optimizer that implements the Adamax algorithm.
Adamax(Graph, String, float) - Constructor for class org.tensorflow.framework.optimizers.Adamax
Creates an Optimizer that implements the Adamax algorithm.
Adamax(Graph, String, float, float, float, float) - Constructor for class org.tensorflow.framework.optimizers.Adamax
Creates an Optimizer that implements the Adamax algorithm.
ADAMAX - org.tensorflow.framework.optimizers.Optimizers
 
allAxes(Scope, Operand<? extends TType>) - Static method in class org.tensorflow.framework.op.math.Axes
Creates an Operand that has all axes contained in the Operand's shape.
allAxes(Operand<? extends TType>) - Method in class org.tensorflow.framework.op.MathOps
Creates an Operand that has all axes contained in the Operand's shape.
ALPHA_DEFAULT - Static variable in class org.tensorflow.framework.activations.ReLU
 
applyDense(Ops, Output<T>, Output<T>) - Method in class org.tensorflow.framework.optimizers.AdaDelta
Generates the gradient update operations for the specific variable and gradient.
applyDense(Ops, Output<T>, Output<T>) - Method in class org.tensorflow.framework.optimizers.AdaGrad
Generates the gradient update operations for the specific variable and gradient.
applyDense(Ops, Output<T>, Output<T>) - Method in class org.tensorflow.framework.optimizers.AdaGradDA
Generates the gradient update operations for the specific variable and gradient.
applyDense(Ops, Output<T>, Output<T>) - Method in class org.tensorflow.framework.optimizers.Adam
Generates the gradient update operations for the specific variable and gradient.
applyDense(Ops, Output<T>, Output<T>) - Method in class org.tensorflow.framework.optimizers.Adamax
Generates the gradient update operations for the specific variable and gradient.
applyDense(Ops, Output<T>, Output<T>) - Method in class org.tensorflow.framework.optimizers.Ftrl
Generates the gradient update operations for the specific variable and gradient.
applyDense(Ops, Output<T>, Output<T>) - Method in class org.tensorflow.framework.optimizers.GradientDescent
Generates the gradient update operations for the specific variable and gradient.
applyDense(Ops, Output<T>, Output<T>) - Method in class org.tensorflow.framework.optimizers.Momentum
Generates the gradient update operations for the specific variable and gradient.
applyDense(Ops, Output<T>, Output<T>) - Method in class org.tensorflow.framework.optimizers.Nadam
Generates the gradient update operations for the specific variable and gradient.
applyDense(Ops, Output<T>, Output<T>) - Method in class org.tensorflow.framework.optimizers.Optimizer
Generates the gradient update operations for the specific variable and gradient.
applyDense(Ops, Output<T>, Output<T>) - Method in class org.tensorflow.framework.optimizers.RMSProp
Generates the gradient update operations for the specific variable and gradient.
applyGradients(List<Optimizer.GradAndVar<? extends TType>>, String) - Method in class org.tensorflow.framework.optimizers.Optimizer
Applies gradients to variables
asLoss() - Method in class org.tensorflow.framework.regularizers.AbstractRegularizer
Returns this AbstractRegularizer as a AbstractLoss This is a convenience to use regularize a loss.
AUC<T extends TNumber> - Class in org.tensorflow.framework.metrics
Metric that computes the approximate AUC (Area under the curve) via a Riemann sum.
AUC(float[], long, Class<T>) - Constructor for class org.tensorflow.framework.metrics.AUC
Creates an AUC (Area under the curve) metric using AUC.DEFAULT_NAME for the metric name, AUCCurve.ROC for the curve type, AUCSummationMethod.INTERPOLATION for the summation method, null for numThresholds, false for multiLabel, and null for labelWeights.
AUC(float[], AUCCurve, long, Class<T>) - Constructor for class org.tensorflow.framework.metrics.AUC
Creates an AUC (Area under the curve) metric using null for numThresholds, AUCSummationMethod.INTERPOLATION for the summation method, false for multiLabel, and null for labelWeights.
AUC(float[], AUCCurve, AUCSummationMethod, long, Class<T>) - Constructor for class org.tensorflow.framework.metrics.AUC
Creates an AUC (Area under the curve) metric using AUC.DEFAULT_NAME for the metric name, null for numThresholds, false for multiLabel, and null for labelWeights.
AUC(int, long, Class<T>) - Constructor for class org.tensorflow.framework.metrics.AUC
Creates an AUC (Area under the curve) metric using AUC.DEFAULT_NAME for the metric name, AUCCurve.ROC for the curve type, AUCSummationMethod.INTERPOLATION for the summation method, null for thresholds, false for multiLabel, and null for labelWeights.
AUC(int, AUCCurve, long, Class<T>) - Constructor for class org.tensorflow.framework.metrics.AUC
Creates an AUC (Area under the curve) metric using AUC.DEFAULT_NAME for the metric name, AUCSummationMethod.INTERPOLATION for the summation method, null for thresholds, false for multiLabel, and null for labelWeights.
AUC(int, AUCCurve, AUCSummationMethod, long, Class<T>) - Constructor for class org.tensorflow.framework.metrics.AUC
Creates an AUC (Area under the curve) metric.
AUC(long, Class<T>) - Constructor for class org.tensorflow.framework.metrics.AUC
Creates an AUC (Area under the curve) metric using AUC.DEFAULT_NAME for the metric name, AUC.DEFAULT_NUM_THRESHOLDS for the numThresholds, AUCCurve.ROC for the curve type, AUCSummationMethod.INTERPOLATION for the summation method, null for thresholds, false for multiLabel, and null for labelWeights.
AUC(String, float[], long, Class<T>) - Constructor for class org.tensorflow.framework.metrics.AUC
Creates an AUC (Area under the curve) metric using null for numThresholds, AUCCurve.ROC for the curve type, AUCSummationMethod.INTERPOLATION for the summation method, AUC.DEFAULT_NUM_THRESHOLDS num thresholds, false for multiLabel, and null for labelWeights.
AUC(String, float[], AUCCurve, long, Class<T>) - Constructor for class org.tensorflow.framework.metrics.AUC
Creates an AUC (Area under the curve) metric using null for numThresholds, AUCSummationMethod.INTERPOLATION for the summation method, AUC.DEFAULT_NUM_THRESHOLDS num thresholds, false for multiLabel, and null for labelWeights.
AUC(String, float[], AUCCurve, AUCSummationMethod, long, Class<T>) - Constructor for class org.tensorflow.framework.metrics.AUC
Creates an AUC (Area under the curve) metric.
AUC(String, int, long, Class<T>) - Constructor for class org.tensorflow.framework.metrics.AUC
Creates an AUC (Area under the curve) metric.
AUC(String, int, AUCCurve, long, Class<T>) - Constructor for class org.tensorflow.framework.metrics.AUC
Creates an AUC (Area under the curve) metric using AUCSummationMethod.INTERPOLATION for the summation method, null for thresholds, false for multiLabel, and null for labelWeights.
AUC(String, int, AUCCurve, AUCSummationMethod, float[], boolean, Operand<T>, long, Class<T>) - Constructor for class org.tensorflow.framework.metrics.AUC
Creates an AUC (Area under the curve) metric.
AUC(String, int, AUCCurve, AUCSummationMethod, long, Class<T>) - Constructor for class org.tensorflow.framework.metrics.AUC
Creates an AUC (Area under the curve) metric.
AUC(String, long, Class<T>) - Constructor for class org.tensorflow.framework.metrics.AUC
Creates an AUC (Area under the curve) metric using AUC.DEFAULT_NUM_THRESHOLDS for the numThresholds, AUCCurve.ROC for the curve type, AUCSummationMethod.INTERPOLATION for the summation method, null for thresholds, false for multiLabel, and null for labelWeights.
AUCCurve - Enum in org.tensorflow.framework.metrics
Specifies the type of the curve to be computed, AUCCurve.ROC for a Receiver Operator Characteristic curve [default] or AUCCurve.PR for a Precision-Recall-curve.
AUCSummationMethod - Enum in org.tensorflow.framework.metrics
Specifies the Riemann summation method used.
AUTO - org.tensorflow.framework.losses.Reduction
 
Axes - Class in org.tensorflow.framework.op.math
Axes Operations
Axes() - Constructor for class org.tensorflow.framework.op.math.Axes
 
AXIS_DEFAULT - Static variable in class org.tensorflow.framework.constraints.MaxNorm
 
AXIS_DEFAULT - Static variable in class org.tensorflow.framework.constraints.MinMaxNorm
 
AXIS_DEFAULT - Static variable in class org.tensorflow.framework.constraints.UnitNorm
 
AXIS_DEFAULT - Static variable in class org.tensorflow.framework.losses.SparseCategoricalCrossentropy
 

B

B_MINUS_A - org.tensorflow.framework.op.sets.Sets.Operation
 
BaseInitializer<T extends TType> - Class in org.tensorflow.framework.initializers
Abstract base class for all Initializers
BaseInitializer() - Constructor for class org.tensorflow.framework.initializers.BaseInitializer
Creates an Initializer
BaseMetric - Class in org.tensorflow.framework.metrics
Base class for Metrics
BaseMetric(long) - Constructor for class org.tensorflow.framework.metrics.BaseMetric
Creates a Metric with a name of Class.getSimpleName()
BaseMetric(String, long) - Constructor for class org.tensorflow.framework.metrics.BaseMetric
Creates a Metric
batch(long) - Method in class org.tensorflow.framework.data.Dataset
Groups elements of this dataset into batches.
batch(long, boolean) - Method in class org.tensorflow.framework.data.Dataset
Groups elements of this dataset into batches.
BETA_ONE_DEFAULT - Static variable in class org.tensorflow.framework.optimizers.Adam
 
BETA_ONE_DEFAULT - Static variable in class org.tensorflow.framework.optimizers.Adamax
 
BETA_ONE_DEFAULT - Static variable in class org.tensorflow.framework.optimizers.Nadam
 
BETA_TWO_DEFAULT - Static variable in class org.tensorflow.framework.optimizers.Adam
 
BETA_TWO_DEFAULT - Static variable in class org.tensorflow.framework.optimizers.Adamax
 
BETA_TWO_DEFAULT - Static variable in class org.tensorflow.framework.optimizers.Nadam
 
BinaryAccuracy<T extends TNumber> - Class in org.tensorflow.framework.metrics
Metric that calculates how often predictions matches binary labels.
BinaryAccuracy(float, long, Class<T>) - Constructor for class org.tensorflow.framework.metrics.BinaryAccuracy
Creates a BinaryAccuracy Metric using Class.getSimpleName() for the metric name
BinaryAccuracy(long, Class<T>) - Constructor for class org.tensorflow.framework.metrics.BinaryAccuracy
Creates a BinaryAccuracy Metric using Class.getSimpleName() for the metric name and BinaryAccuracy.DEFAULT_THRESHOLD for the threshold value.
BinaryAccuracy(String, float, long, Class<T>) - Constructor for class org.tensorflow.framework.metrics.BinaryAccuracy
Creates a BinaryAccuracy Metric
binaryCrossentropy(Ops, Operand<? extends TNumber>, Operand<T>, boolean, float) - Static method in class org.tensorflow.framework.losses.Losses
Computes the binary crossentropy loss between labels and predictions.
BinaryCrossentropy - Class in org.tensorflow.framework.losses
Computes the cross-entropy loss between true labels and predicted labels.
BinaryCrossentropy<T extends TNumber> - Class in org.tensorflow.framework.metrics
A Metric that computes the binary cross-entropy loss between true labels and predicted labels.
BinaryCrossentropy() - Constructor for class org.tensorflow.framework.losses.BinaryCrossentropy
Creates a Binary Crossentropy AbstractLoss using Class.getSimpleName() as the loss name, BinaryCrossentropy.FROM_LOGITS_DEFAULT for fromLogits, BinaryCrossentropy.LABEL_SMOOTHING_DEFAULT for labelSmoothing and a AbstractLoss Reduction of AbstractLoss.REDUCTION_DEFAULT
BinaryCrossentropy(boolean) - Constructor for class org.tensorflow.framework.losses.BinaryCrossentropy
Creates a Binary Crossentropy loss using using Class.getSimpleName() as the loss name, labelSmoothing of BinaryCrossentropy.LABEL_SMOOTHING_DEFAULT, a reduction of AbstractLoss.REDUCTION_DEFAULT,
BinaryCrossentropy(boolean, float) - Constructor for class org.tensorflow.framework.losses.BinaryCrossentropy
Creates a Binary Crossentropy loss using using Class.getSimpleName() as the loss name, and a reduction of AbstractLoss.REDUCTION_DEFAULT.
BinaryCrossentropy(boolean, float, long, Class<T>) - Constructor for class org.tensorflow.framework.metrics.BinaryCrossentropy
Creates a BinaryCrossentropy metric where name is Class.getSimpleName().
BinaryCrossentropy(boolean, float, Reduction) - Constructor for class org.tensorflow.framework.losses.BinaryCrossentropy
Creates a Binary Crossentropy loss
BinaryCrossentropy(String, boolean) - Constructor for class org.tensorflow.framework.losses.BinaryCrossentropy
Creates a Binary Crossentropy loss using labelSmoothing of BinaryCrossentropy.LABEL_SMOOTHING_DEFAULT a reduction of AbstractLoss.REDUCTION_DEFAULT.
BinaryCrossentropy(String, boolean, float) - Constructor for class org.tensorflow.framework.losses.BinaryCrossentropy
Creates a Binary Crossentropy loss using a reduction of AbstractLoss.REDUCTION_DEFAULT.
BinaryCrossentropy(String, boolean, float, long, Class<T>) - Constructor for class org.tensorflow.framework.metrics.BinaryCrossentropy
Creates a BinaryCrossentropy metric
BinaryCrossentropy(String, boolean, float, Reduction) - Constructor for class org.tensorflow.framework.losses.BinaryCrossentropy
Creates a Binary Crossentropy loss
BinaryCrossentropy(Reduction) - Constructor for class org.tensorflow.framework.losses.BinaryCrossentropy
Creates a Binary Crossentropy loss using Class.getSimpleName() as the loss name, BinaryCrossentropy.FROM_LOGITS_DEFAULT for fromLogits, and BinaryCrossentropy.LABEL_SMOOTHING_DEFAULT for labelSmoothing

C

call(Ops, Operand<? extends TNumber>, Operand<? extends TNumber>, Class<U>) - Method in class org.tensorflow.framework.metrics.Accuracy
Calculates how often predictions equals labels.
call(Ops, Operand<? extends TNumber>, Operand<? extends TNumber>, Class<U>) - Method in class org.tensorflow.framework.metrics.BinaryAccuracy
Calculates how often predictions match binary labels.
call(Ops, Operand<? extends TNumber>, Operand<? extends TNumber>, Class<U>) - Method in class org.tensorflow.framework.metrics.BinaryCrossentropy
Computes the binary crossentropy loss between labels and predictions.
call(Ops, Operand<? extends TNumber>, Operand<? extends TNumber>, Class<U>) - Method in class org.tensorflow.framework.metrics.CategoricalAccuracy
Computes the categorical crossentropy loss.
call(Ops, Operand<? extends TNumber>, Operand<? extends TNumber>, Class<U>) - Method in class org.tensorflow.framework.metrics.CategoricalCrossentropy
Computes the crossentropy loss between the labels and predictions.
call(Ops, Operand<? extends TNumber>, Operand<? extends TNumber>, Class<U>) - Method in class org.tensorflow.framework.metrics.CategoricalHinge
Computes the categorical hinge metric between labels and @{code predictions}.
call(Ops, Operand<? extends TNumber>, Operand<? extends TNumber>, Class<U>) - Method in class org.tensorflow.framework.metrics.CosineSimilarity
Computes the cosine similarity loss between labels and predictions.
call(Ops, Operand<? extends TNumber>, Operand<? extends TNumber>, Class<U>) - Method in class org.tensorflow.framework.metrics.Hinge
Computes the hinge loss between labels and predictions.
call(Ops, Operand<? extends TNumber>, Operand<? extends TNumber>, Class<U>) - Method in class org.tensorflow.framework.metrics.KLDivergence
Computes Kullback-Leibler divergence metric between labels and predictions.
call(Ops, Operand<? extends TNumber>, Operand<? extends TNumber>, Class<U>) - Method in class org.tensorflow.framework.metrics.LogCoshError
Calculates the Logarithm of the hyperbolic cosine of the prediction error.
call(Ops, Operand<? extends TNumber>, Operand<? extends TNumber>, Class<U>) - Method in class org.tensorflow.framework.metrics.MeanAbsoluteError
Computes the mean absolute error loss between labels and predictions.
call(Ops, Operand<? extends TNumber>, Operand<? extends TNumber>, Class<U>) - Method in class org.tensorflow.framework.metrics.MeanAbsolutePercentageError
Computes the mean absolute percentage error loss between labels and predictions.
call(Ops, Operand<? extends TNumber>, Operand<? extends TNumber>, Class<U>) - Method in class org.tensorflow.framework.metrics.MeanSquaredError
Computes the mean squared error between the labels and predictions.
call(Ops, Operand<? extends TNumber>, Operand<? extends TNumber>, Class<U>) - Method in class org.tensorflow.framework.metrics.MeanSquaredLogarithmicError
Computes the mean squared logarithmic error between labels and predictions.
call(Ops, Operand<? extends TNumber>, Operand<? extends TNumber>, Class<U>) - Method in class org.tensorflow.framework.metrics.Poisson
Computes the Poisson loss between labels and predictions.
call(Ops, Operand<? extends TNumber>, Operand<? extends TNumber>, Class<U>) - Method in class org.tensorflow.framework.metrics.SparseCategoricalAccuracy
Calculates how often predictions matches integer labels.
call(Ops, Operand<? extends TNumber>, Operand<? extends TNumber>, Class<U>) - Method in class org.tensorflow.framework.metrics.SparseCategoricalCrossentropy
Calculates how often predictions matches integer labels.
call(Ops, Operand<? extends TNumber>, Operand<? extends TNumber>, Class<U>) - Method in class org.tensorflow.framework.metrics.SparseTopKCategoricalAccuracy
Computes how often integer targets are in the top K predictions.
call(Ops, Operand<? extends TNumber>, Operand<? extends TNumber>, Class<U>) - Method in class org.tensorflow.framework.metrics.SquaredHinge
Computes the squared hinge loss between labels and predictions.
call(Ops, Operand<? extends TNumber>, Operand<? extends TNumber>, Class<U>) - Method in class org.tensorflow.framework.metrics.TopKCategoricalAccuracy
Computes how often targets are in the top K predictions.
call(Ops, Operand<? extends TNumber>, Operand<T>, Operand<T>) - Method in class org.tensorflow.framework.losses.BinaryCrossentropy
Generates an Operand that calculates the loss.
call(Ops, Operand<? extends TNumber>, Operand<T>, Operand<T>) - Method in class org.tensorflow.framework.losses.CategoricalCrossentropy
Generates an Operand that calculates the loss.
call(Ops, Operand<? extends TNumber>, Operand<T>, Operand<T>) - Method in class org.tensorflow.framework.losses.CategoricalHinge
Generates an Operand that calculates the loss.
call(Ops, Operand<? extends TNumber>, Operand<T>, Operand<T>) - Method in class org.tensorflow.framework.losses.CosineSimilarity
Generates an Operand that calculates the loss.
call(Ops, Operand<? extends TNumber>, Operand<T>, Operand<T>) - Method in class org.tensorflow.framework.losses.Hinge
Generates an Operand that calculates the loss.
call(Ops, Operand<? extends TNumber>, Operand<T>, Operand<T>) - Method in class org.tensorflow.framework.losses.Huber
Generates an Operand that calculates the loss.
call(Ops, Operand<? extends TNumber>, Operand<T>, Operand<T>) - Method in class org.tensorflow.framework.losses.KLDivergence
Generates an Operand that calculates the loss.
call(Ops, Operand<? extends TNumber>, Operand<T>, Operand<T>) - Method in class org.tensorflow.framework.losses.LogCosh
Generates an Operand that calculates the loss.
call(Ops, Operand<? extends TNumber>, Operand<T>, Operand<T>) - Method in interface org.tensorflow.framework.losses.Loss
Generates an Operand that calculates the loss.
call(Ops, Operand<? extends TNumber>, Operand<T>, Operand<T>) - Method in class org.tensorflow.framework.losses.MeanAbsoluteError
Generates an Operand that calculates the loss.
call(Ops, Operand<? extends TNumber>, Operand<T>, Operand<T>) - Method in class org.tensorflow.framework.losses.MeanAbsolutePercentageError
Generates an Operand that calculates the loss.
call(Ops, Operand<? extends TNumber>, Operand<T>, Operand<T>) - Method in class org.tensorflow.framework.losses.MeanSquaredError
Generates an Operand that calculates the loss.
call(Ops, Operand<? extends TNumber>, Operand<T>, Operand<T>) - Method in class org.tensorflow.framework.losses.MeanSquaredLogarithmicError
Generates an Operand that calculates the loss.
call(Ops, Operand<? extends TNumber>, Operand<T>, Operand<T>) - Method in class org.tensorflow.framework.losses.Poisson
Generates an Operand that calculates the loss.
call(Ops, Operand<? extends TNumber>, Operand<T>, Operand<T>) - Method in class org.tensorflow.framework.losses.SparseCategoricalCrossentropy
Generates an Operand the calculates the loss.
call(Ops, Operand<? extends TNumber>, Operand<T>, Operand<T>) - Method in class org.tensorflow.framework.losses.SquaredHinge
Generates an Operand that calculates the loss.
call(Ops, Operand<TInt64>, Class<T>) - Method in class org.tensorflow.framework.initializers.Constant
Generates the operation used to perform the initialization.
call(Ops, Operand<TInt64>, Class<T>) - Method in class org.tensorflow.framework.initializers.Identity
Generates the operation used to perform the initialization.
call(Ops, Operand<TInt64>, Class<T>) - Method in interface org.tensorflow.framework.initializers.Initializer
Generates the operation used to perform the initialization.
call(Ops, Operand<TInt64>, Class<T>) - Method in class org.tensorflow.framework.initializers.Ones
Generates the operation used to perform the initialization.
call(Ops, Operand<TInt64>, Class<T>) - Method in class org.tensorflow.framework.initializers.Orthogonal
Generates the operation used to perform the initialization.
call(Ops, Operand<TInt64>, Class<T>) - Method in class org.tensorflow.framework.initializers.RandomNormal
Generates the operation used to perform the initialization.
call(Ops, Operand<TInt64>, Class<T>) - Method in class org.tensorflow.framework.initializers.RandomUniform
Generates the operation used to perform the initialization.
call(Ops, Operand<TInt64>, Class<T>) - Method in class org.tensorflow.framework.initializers.TruncatedNormal
Generates the operation used to perform the initialization.
call(Ops, Operand<TInt64>, Class<T>) - Method in class org.tensorflow.framework.initializers.VarianceScaling
Generates the operation used to perform the initialization.
call(Ops, Operand<TInt64>, Class<T>) - Method in class org.tensorflow.framework.initializers.Zeros
 
call(Ops, Operand<R>) - Method in class org.tensorflow.framework.regularizers.L1L2
Computes a regularization penalty from an input.
call(Ops, Operand<R>) - Method in interface org.tensorflow.framework.regularizers.Regularizer
Computes a regularization penalty from an input.
call(Ops, Operand<T>) - Method in interface org.tensorflow.framework.activations.Activation
Gets the calculation operation for the activation.
call(Ops, Operand<T>) - Method in class org.tensorflow.framework.activations.ELU
Gets the calculation operation for the activation.
call(Ops, Operand<T>) - Method in class org.tensorflow.framework.activations.Exponential
Gets the calculation operation for the activation.
call(Ops, Operand<T>) - Method in class org.tensorflow.framework.activations.GELU
Gets the calculation operation for the activation.
call(Ops, Operand<T>) - Method in class org.tensorflow.framework.activations.HardSigmoid
Gets the calculation operation for the activation.
call(Ops, Operand<T>) - Method in class org.tensorflow.framework.activations.ReLU
Gets the calculation operation for the activation.
call(Ops, Operand<T>) - Method in class org.tensorflow.framework.activations.SELU
Gets the calculation operation for the activation.
call(Ops, Operand<T>) - Method in class org.tensorflow.framework.activations.Sigmoid
Gets the calculation operation for the activation.
call(Ops, Operand<T>) - Method in class org.tensorflow.framework.activations.Softmax
Gets the calculation operation for the activation.
call(Ops, Operand<T>) - Method in class org.tensorflow.framework.activations.Softplus
Gets the calculation operation for the activation.
call(Ops, Operand<T>) - Method in class org.tensorflow.framework.activations.Softsign
Gets the calculation operation for the activation.
call(Ops, Operand<T>) - Method in class org.tensorflow.framework.activations.Swish
Gets the calculation operation for the activation.
call(Ops, Operand<T>) - Method in class org.tensorflow.framework.activations.Tanh
Gets the calculation operation for the activation.
call(Ops, Operand<T>) - Method in interface org.tensorflow.framework.constraints.Constraint
Applies the constraint against the provided weights
call(Ops, Operand<T>) - Method in class org.tensorflow.framework.constraints.MaxNorm
Applies the constraint against the provided weights
call(Ops, Operand<T>) - Method in class org.tensorflow.framework.constraints.MinMaxNorm
Applies the constraint against the provided weights
call(Ops, Operand<T>) - Method in class org.tensorflow.framework.constraints.NonNeg
Applies the constraint against the provided weights
call(Ops, Operand<T>) - Method in class org.tensorflow.framework.constraints.UnitNorm
Applies the constraint against the provided weights
call(Ops, Operand<U>) - Method in class org.tensorflow.framework.activations.Linear
Gets the calculation operation for the activation.
callOnce(Ops, Operand<? extends TNumber>, Operand<? extends TNumber>, Class<T>) - Method in class org.tensorflow.framework.metrics.BaseMetric
Calls update state once, followed by a call to get the result
callOnce(Ops, Operand<? extends TNumber>, Operand<? extends TNumber>, Class<T>) - Method in interface org.tensorflow.framework.metrics.Metric
Calls update state once, followed by a call to get the result
cast(Ops, Operand<U>, Class<T>) - Static method in class org.tensorflow.framework.utils.CastHelper
Casts an operand to the desired type.
CastHelper - Class in org.tensorflow.framework.utils
A helper class for casting an Operand
CastHelper() - Constructor for class org.tensorflow.framework.utils.CastHelper
 
CategoricalAccuracy<T extends TNumber> - Class in org.tensorflow.framework.metrics
Metric that calculates how often predictions matches one-hot labels.
CategoricalAccuracy(long, Class<T>) - Constructor for class org.tensorflow.framework.metrics.CategoricalAccuracy
Creates a CategoricalAccuracy metric, using Class.getSimpleName() for the metric name
CategoricalAccuracy(String, long, Class<T>) - Constructor for class org.tensorflow.framework.metrics.CategoricalAccuracy
Creates a CategoricalAccuracy metric
categoricalCrossentropy(Ops, Operand<? extends TNumber>, Operand<T>, boolean, float, int) - Static method in class org.tensorflow.framework.losses.Losses
Computes the categorical crossentropy loss between labels and predictions.
CategoricalCrossentropy - Class in org.tensorflow.framework.losses
Computes the crossentropy loss between the labels and predictions.
CategoricalCrossentropy<T extends TNumber> - Class in org.tensorflow.framework.metrics
A Metric that computes the categorical cross-entropy loss between true labels and predicted labels.
CategoricalCrossentropy() - Constructor for class org.tensorflow.framework.losses.CategoricalCrossentropy
Creates a categorical cross entropy AbstractLoss using Class.getSimpleName() as the loss name, CategoricalCrossentropy.FROM_LOGITS_DEFAULT for fromLogits, CategoricalCrossentropy.LABEL_SMOOTHING_DEFAULT for labelSmoothing, a AbstractLoss Reduction of AbstractLoss.REDUCTION_DEFAULT, and an axis of CategoricalCrossentropy.DEFAULT_AXIS
CategoricalCrossentropy(boolean) - Constructor for class org.tensorflow.framework.losses.CategoricalCrossentropy
Creates a categorical cross entropy AbstractLoss using Class.getSimpleName() as the loss name, CategoricalCrossentropy.LABEL_SMOOTHING_DEFAULT for labelSmoothing, a AbstractLoss Reduction of AbstractLoss.REDUCTION_DEFAULT, and an axis of CategoricalCrossentropy.DEFAULT_AXIS
CategoricalCrossentropy(boolean, float) - Constructor for class org.tensorflow.framework.losses.CategoricalCrossentropy
Creates a categorical cross entropy AbstractLoss using Class.getSimpleName() as the loss name, a AbstractLoss Reduction of AbstractLoss.REDUCTION_DEFAULT, and a channel axis of CategoricalCrossentropy.DEFAULT_AXIS
CategoricalCrossentropy(boolean, float, int, long, Class<T>) - Constructor for class org.tensorflow.framework.metrics.CategoricalCrossentropy
Creates a CategoricalCrossentropy metric that computes the crossentropy metric between the labels and predictions using Class.getSimpleName() for the metric name.
CategoricalCrossentropy(boolean, float, long, Class<T>) - Constructor for class org.tensorflow.framework.metrics.CategoricalCrossentropy
Creates a CategoricalCrossentropy metric that computes the crossentropy metric between the labels and predictions using Class.getSimpleName() for the metric name
CategoricalCrossentropy(boolean, float, Reduction) - Constructor for class org.tensorflow.framework.losses.CategoricalCrossentropy
Creates a categorical cross entropy AbstractLoss using Class.getSimpleName() as the loss name and a channel axis of CategoricalCrossentropy.DEFAULT_AXIS
CategoricalCrossentropy(String) - Constructor for class org.tensorflow.framework.losses.CategoricalCrossentropy
Creates a categorical cross entropy AbstractLoss using CategoricalCrossentropy.FROM_LOGITS_DEFAULT for fromLogits, CategoricalCrossentropy.LABEL_SMOOTHING_DEFAULT for labelSmoothing, a AbstractLoss Reduction of AbstractLoss.REDUCTION_DEFAULT, and an axis of CategoricalCrossentropy.DEFAULT_AXIS
CategoricalCrossentropy(String, boolean) - Constructor for class org.tensorflow.framework.losses.CategoricalCrossentropy
Creates a categorical cross entropy AbstractLoss using CategoricalCrossentropy.LABEL_SMOOTHING_DEFAULT for labelSmoothing, a AbstractLoss Reduction of AbstractLoss.REDUCTION_DEFAULT, and a channel axis of CategoricalCrossentropy.DEFAULT_AXIS
CategoricalCrossentropy(String, boolean, float) - Constructor for class org.tensorflow.framework.losses.CategoricalCrossentropy
Creates a categorical cross entropy AbstractLoss using a AbstractLoss Reduction of AbstractLoss.REDUCTION_DEFAULT, and a channel axis of CategoricalCrossentropy.DEFAULT_AXIS
CategoricalCrossentropy(String, boolean, float, int, long, Class<T>) - Constructor for class org.tensorflow.framework.metrics.CategoricalCrossentropy
Creates a CategoricalCrossentropy metric that computes the crossentropy metric between the labels and predictions.
CategoricalCrossentropy(String, boolean, float, long, Class<T>) - Constructor for class org.tensorflow.framework.metrics.CategoricalCrossentropy
Creates a CategoricalCrossentropy metric that computes the crossentropy metric between the labels and predictions.
CategoricalCrossentropy(String, boolean, float, Reduction, int) - Constructor for class org.tensorflow.framework.losses.CategoricalCrossentropy
Creates a categorical cross entropy AbstractLoss
CategoricalCrossentropy(String, Reduction) - Constructor for class org.tensorflow.framework.losses.CategoricalCrossentropy
Creates a categorical cross entropy AbstractLoss CategoricalCrossentropy.FROM_LOGITS_DEFAULT for fromLogits, CategoricalCrossentropy.LABEL_SMOOTHING_DEFAULT for labelSmoothing, and an axis of CategoricalCrossentropy.DEFAULT_AXIS
CategoricalCrossentropy(Reduction) - Constructor for class org.tensorflow.framework.losses.CategoricalCrossentropy
Creates a categorical cross entropy AbstractLoss using Class.getSimpleName() as the loss name, CategoricalCrossentropy.FROM_LOGITS_DEFAULT for fromLogits, CategoricalCrossentropy.LABEL_SMOOTHING_DEFAULT for labelSmoothing and an axis of CategoricalCrossentropy.DEFAULT_AXIS
categoricalHinge(Ops, Operand<? extends TNumber>, Operand<T>) - Static method in class org.tensorflow.framework.losses.Losses
Computes the categorical hinge loss between labels and predictions.
CategoricalHinge - Class in org.tensorflow.framework.losses
Computes the categorical hinge loss between labels and predictions.
CategoricalHinge<T extends TNumber> - Class in org.tensorflow.framework.metrics
A Metric that computes the categorical hinge loss metric between labels and predictions.
CategoricalHinge() - Constructor for class org.tensorflow.framework.losses.CategoricalHinge
Creates a Categorical Hinge AbstractLoss using Class.getSimpleName() as the loss name and a AbstractLoss Reduction of AbstractLoss.REDUCTION_DEFAULT
CategoricalHinge(long, Class<T>) - Constructor for class org.tensorflow.framework.metrics.CategoricalHinge
Creates a CategoricalHinge metric using Class.getSimpleName() for the metric name.
CategoricalHinge(String, long, Class<T>) - Constructor for class org.tensorflow.framework.metrics.CategoricalHinge
Creates a CategoricalHinge metric
CategoricalHinge(String, Reduction) - Constructor for class org.tensorflow.framework.losses.CategoricalHinge
Creates a Categorical Hinge
CategoricalHinge(Reduction) - Constructor for class org.tensorflow.framework.losses.CategoricalHinge
Creates a Categorical Hinge AbstractLoss using Class.getSimpleName() as the loss name
CENTERED_DEFAULT - Static variable in class org.tensorflow.framework.optimizers.RMSProp
 
CHANNELS_FIRST - Static variable in class org.tensorflow.framework.losses.Losses
 
CHANNELS_LAST - Static variable in class org.tensorflow.framework.losses.Losses
 
checkClassName(Map<String, Object>) - Method in class org.tensorflow.framework.activations.AbstractActivation
Verifies that the configuration is for the same Activation class.
checkConfigKeys(Set<String>, Set<String>) - Method in class org.tensorflow.framework.activations.AbstractActivation
Verifies that any key in keysToCheck is also in the allowedKeys set.
checkIsGraph(Ops) - Method in class org.tensorflow.framework.metrics.BaseMetric
Checks if the TensorFlow Ops encapsulates a Graph environment.
clip(Ops, Operand<T>, double, double) - Method in class org.tensorflow.framework.constraints.AbstractConstraint
Gets the element-wise value clipping.
computeGradients(Operand<?>) - Method in class org.tensorflow.framework.optimizers.Optimizer
Computes the gradients based on a loss operand.
confusionMatrix(Scope, Operand<T>, Operand<T>) - Static method in class org.tensorflow.framework.op.math.ConfusionMatrix
Computes the confusion matrix from predictions and labels.
confusionMatrix(Scope, Operand<T>, Operand<T>, Operand<T>) - Static method in class org.tensorflow.framework.op.math.ConfusionMatrix
Computes the confusion matrix from predictions and labels.
confusionMatrix(Scope, Operand<T>, Operand<T>, Operand<T>, Operand<TInt64>) - Static method in class org.tensorflow.framework.op.math.ConfusionMatrix
Computes the confusion matrix from predictions and labels.
confusionMatrix(Operand<T>, Operand<T>) - Method in class org.tensorflow.framework.op.MathOps
Computes the confusion matrix from predictions and labels.
confusionMatrix(Operand<T>, Operand<T>, Operand<T>) - Method in class org.tensorflow.framework.op.MathOps
Computes the confusion matrix from predictions and labels.
confusionMatrix(Operand<T>, Operand<T>, Operand<T>, Operand<TInt64>) - Method in class org.tensorflow.framework.op.MathOps
Computes the confusion matrix from predictions and labels.
ConfusionMatrix - Class in org.tensorflow.framework.op.math
Confusion Matrix Operations
ConfusionMatrix() - Constructor for class org.tensorflow.framework.op.math.ConfusionMatrix
 
Constant<T extends TType> - Class in org.tensorflow.framework.initializers
Initializer that generates tensors with a constant value.
Constant(boolean) - Constructor for class org.tensorflow.framework.initializers.Constant
Creates an Initializer that generates tensors with a constant value.
Constant(double) - Constructor for class org.tensorflow.framework.initializers.Constant
Creates an Initializer that generates tensors with a constant value.
Constant(long) - Constructor for class org.tensorflow.framework.initializers.Constant
Creates an Initializer that generates tensors with a constant value.
Constraint - Interface in org.tensorflow.framework.constraints
 
core - Variable in class org.tensorflow.framework.op.FrameworkOps
 
cosineSimilarity(Ops, Operand<? extends TNumber>, Operand<T>, int[]) - Static method in class org.tensorflow.framework.losses.Losses
Computes the cosine similarity loss between labels and predictions.
CosineSimilarity - Class in org.tensorflow.framework.losses
Computes the cosine similarity between labels and predictions.
CosineSimilarity<T extends TNumber> - Class in org.tensorflow.framework.metrics
A metric that computes the cosine similarity metric between labels and predictions.
CosineSimilarity() - Constructor for class org.tensorflow.framework.losses.CosineSimilarity
Creates a Cosine Similarity AbstractLoss using Class.getSimpleName() as the loss name, an axis of CosineSimilarity.DEFAULT_AXIS, and a AbstractLoss Reduction of CosineSimilarity.DEFAULT_REDUCTION
CosineSimilarity(int) - Constructor for class org.tensorflow.framework.losses.CosineSimilarity
Creates a Cosine Similarity AbstractLoss using Class.getSimpleName() as the loss name, and a AbstractLoss Reduction of CosineSimilarity.DEFAULT_REDUCTION
CosineSimilarity(int[]) - Constructor for class org.tensorflow.framework.losses.CosineSimilarity
Creates a Cosine Similarity AbstractLoss using Class.getSimpleName() as the loss name, and a AbstractLoss Reduction of CosineSimilarity.DEFAULT_REDUCTION
CosineSimilarity(int[], long, Class<T>) - Constructor for class org.tensorflow.framework.metrics.CosineSimilarity
Creates a CosineSimilarity metric using Class.getSimpleName() for the metric name.
CosineSimilarity(int[], Reduction) - Constructor for class org.tensorflow.framework.losses.CosineSimilarity
Creates a Cosine Similarity AbstractLoss using Class.getSimpleName() as the loss name
CosineSimilarity(int, long, Class<T>) - Constructor for class org.tensorflow.framework.metrics.CosineSimilarity
Creates a metric that computes the cosine similarity metric between labels and predictions using Class.getSimpleName() for the metric name.
CosineSimilarity(int, Reduction) - Constructor for class org.tensorflow.framework.losses.CosineSimilarity
Creates a Cosine Similarity AbstractLoss using Class.getSimpleName() as the loss name
CosineSimilarity(long, Class<T>) - Constructor for class org.tensorflow.framework.metrics.CosineSimilarity
Creates a metric that computes the cosine similarity metric between labels and predictions with a default axis, CosineSimilarity.DEFAULT_AXIS and using Class.getSimpleName() for the metric name.
CosineSimilarity(String) - Constructor for class org.tensorflow.framework.losses.CosineSimilarity
Creates a Cosine Similarity AbstractLoss using an axis of CosineSimilarity.DEFAULT_AXIS, and a AbstractLoss Reduction of CosineSimilarity.DEFAULT_REDUCTION
CosineSimilarity(String, int) - Constructor for class org.tensorflow.framework.losses.CosineSimilarity
Creates a Cosine Similarity AbstractLoss using a AbstractLoss Reduction of CosineSimilarity.DEFAULT_REDUCTION
CosineSimilarity(String, int[]) - Constructor for class org.tensorflow.framework.losses.CosineSimilarity
Creates a Cosine Similarity AbstractLoss using a AbstractLoss Reduction of CosineSimilarity.DEFAULT_REDUCTION
CosineSimilarity(String, int[], long, Class<T>) - Constructor for class org.tensorflow.framework.metrics.CosineSimilarity
Creates a CosineSimilarity metric
CosineSimilarity(String, int[], Reduction) - Constructor for class org.tensorflow.framework.losses.CosineSimilarity
Creates a Cosine Similarity AbstractLoss
CosineSimilarity(String, int, long, Class<T>) - Constructor for class org.tensorflow.framework.metrics.CosineSimilarity
Creates a metric that computes the cosine similarity metric between labels and predictions.
CosineSimilarity(String, int, Reduction) - Constructor for class org.tensorflow.framework.losses.CosineSimilarity
Creates a Cosine Similarity AbstractLoss
CosineSimilarity(String, long, Class<T>) - Constructor for class org.tensorflow.framework.metrics.CosineSimilarity
Creates a metric that computes the cosine similarity metric between labels and predictions with a default axis, CosineSimilarity.DEFAULT_AXIS
CosineSimilarity(String, Reduction) - Constructor for class org.tensorflow.framework.losses.CosineSimilarity
Creates a Cosine Similarity AbstractLoss using an axis of CosineSimilarity.DEFAULT_AXIS
CosineSimilarity(Reduction) - Constructor for class org.tensorflow.framework.losses.CosineSimilarity
Creates a Cosine Similarity AbstractLoss using Class.getSimpleName() as the loss name and an axis of CosineSimilarity.DEFAULT_AXIS
COUNT - Static variable in class org.tensorflow.framework.metrics.MeanTensor
 
create() - Static method in class org.tensorflow.framework.op.FrameworkOps
Creates an API for building operations in the default eager execution environment
create(String) - Static method in interface org.tensorflow.framework.activations.Activation
Creates an Activation instance based on the name as known to the TensorFlow engine.
create(Map<String, Object>) - Static method in interface org.tensorflow.framework.activations.Activation
Creates an Activation getInstance based on a configuration as produced by TensorFlow.
create(ExecutionEnvironment) - Static method in class org.tensorflow.framework.op.FrameworkOps
Creates an API for building operations in the provided execution environment
create(Ops) - Static method in class org.tensorflow.framework.op.FrameworkOps
Creates an API for building operations in the default eager execution environment
createAdamMinimize(Scope, Operand<T>, float, float, float, float, Optimizer.Options...) - Static method in class org.tensorflow.framework.optimizers.Adam
Creates the Operation that minimizes the loss
createName(Output<? extends TType>, String) - Static method in class org.tensorflow.framework.optimizers.Optimizer
Creates a name by combining a variable name and a slot name
createOptimizer(Graph) - Method in enum org.tensorflow.framework.optimizers.Optimizers
Creates an Optimizer with default settings.
createSlot(Output<T>, String, Operand<T>) - Method in class org.tensorflow.framework.optimizers.Optimizer
Creates a slot in the graph for the specified variable with the specified name.
createSlots(List<Output<? extends TType>>) - Method in class org.tensorflow.framework.optimizers.AdaDelta
Performs a No-op slot creation method.
createSlots(List<Output<? extends TType>>) - Method in class org.tensorflow.framework.optimizers.AdaGrad
Performs a No-op slot creation method.
createSlots(List<Output<? extends TType>>) - Method in class org.tensorflow.framework.optimizers.AdaGradDA
Performs a No-op slot creation method.
createSlots(List<Output<? extends TType>>) - Method in class org.tensorflow.framework.optimizers.Adam
Performs a No-op slot creation method.
createSlots(List<Output<? extends TType>>) - Method in class org.tensorflow.framework.optimizers.Adamax
Performs a No-op slot creation method.
createSlots(List<Output<? extends TType>>) - Method in class org.tensorflow.framework.optimizers.Ftrl
Performs a No-op slot creation method.
createSlots(List<Output<? extends TType>>) - Method in class org.tensorflow.framework.optimizers.Momentum
Performs a No-op slot creation method.
createSlots(List<Output<? extends TType>>) - Method in class org.tensorflow.framework.optimizers.Nadam
Performs a No-op slot creation method.
createSlots(List<Output<? extends TType>>) - Method in class org.tensorflow.framework.optimizers.Optimizer
Performs a No-op slot creation method.
createSlots(List<Output<? extends TType>>) - Method in class org.tensorflow.framework.optimizers.RMSProp
Performs a No-op slot creation method.

D

Dataset - Class in org.tensorflow.framework.data
Represents a potentially large list of independent elements (samples), and allows iteration and transformations to be performed across these elements.
Dataset(Dataset) - Constructor for class org.tensorflow.framework.data.Dataset
Creates a Dataset that is a copy of another Dataset
Dataset(Ops, Operand<?>, List<Class<? extends TType>>, List<Shape>) - Constructor for class org.tensorflow.framework.data.Dataset
Creates a Dataset
DatasetIterator - Class in org.tensorflow.framework.data
Represents the state of an iteration through a tf.data Datset.
DatasetIterator(DatasetIterator) - Constructor for class org.tensorflow.framework.data.DatasetIterator
 
DatasetIterator(Ops, Operand<?>, List<Class<? extends TType>>, List<Shape>) - Constructor for class org.tensorflow.framework.data.DatasetIterator
 
DatasetIterator(Ops, Operand<?>, Op, List<Class<? extends TType>>, List<Shape>) - Constructor for class org.tensorflow.framework.data.DatasetIterator
 
DatasetOptional - Class in org.tensorflow.framework.data
An optional represents the result of a dataset getNext operation that may fail, when the end of the dataset has been reached.
DatasetOptional(DatasetOptional) - Constructor for class org.tensorflow.framework.data.DatasetOptional
Creates a Dataset that is a copy of another Dataset
DatasetOptional(Ops, Operand<?>, List<Class<? extends TType>>, List<Shape>) - Constructor for class org.tensorflow.framework.data.DatasetOptional
Creates a DatasetOptional dataset
DECAY_DEFAULT - Static variable in class org.tensorflow.framework.optimizers.RMSProp
 
DEFAULT_AXIS - Static variable in class org.tensorflow.framework.losses.CategoricalCrossentropy
 
DEFAULT_AXIS - Static variable in class org.tensorflow.framework.losses.CosineSimilarity
 
DEFAULT_AXIS - Static variable in class org.tensorflow.framework.metrics.CosineSimilarity
 
DEFAULT_K - Static variable in class org.tensorflow.framework.metrics.SparseTopKCategoricalAccuracy
 
DEFAULT_K - Static variable in class org.tensorflow.framework.metrics.TopKCategoricalAccuracy
 
DEFAULT_NAME - Static variable in class org.tensorflow.framework.metrics.AUC
 
DEFAULT_NUM_THRESHOLDS - Static variable in class org.tensorflow.framework.metrics.AUC
 
DEFAULT_REDUCTION - Static variable in class org.tensorflow.framework.losses.CosineSimilarity
 
DEFAULT_REGULARIZATION_PENALTY - Static variable in class org.tensorflow.framework.regularizers.AbstractRegularizer
 
DEFAULT_THRESHOLD - Static variable in class org.tensorflow.framework.metrics.BinaryAccuracy
the default threshold value for deciding whether prediction values are 1 or 0
DEFAULT_THRESHOLD - Static variable in class org.tensorflow.framework.metrics.Precision
 
DEFAULT_THRESHOLD - Static variable in class org.tensorflow.framework.metrics.Recall
 
DELTA_DEFAULT - Static variable in class org.tensorflow.framework.losses.Huber
 
difference(Scope, Operand<T>, Operand<T>) - Static method in class org.tensorflow.framework.op.sets.Sets
Computes set difference of elements in last dimension of a and b with aMinusB set to true.
difference(Scope, Operand<T>, Operand<T>, boolean) - Static method in class org.tensorflow.framework.op.sets.Sets
Computes set difference of elements in last dimension of a and b.
difference(Operand<T>, Operand<T>) - Method in class org.tensorflow.framework.op.SetOps
Computes set difference of elements in last dimension of a and b with aMinusB set to true.
difference(Operand<T>, Operand<T>, boolean) - Method in class org.tensorflow.framework.op.SetOps
Computes set difference of elements in last dimension of a and b.
DISTRIBUTION_DEFAULT - Static variable in class org.tensorflow.framework.initializers.VarianceScaling
 

E

elu(Ops, Operand<T>, double) - Static method in class org.tensorflow.framework.activations.ELU
Computes the Exponential linear unit.
ELU - Class in org.tensorflow.framework.activations
Exponential linear unit.
ELU - org.tensorflow.framework.activations.Activations
 
ELU() - Constructor for class org.tensorflow.framework.activations.ELU
Creates a new ELU with alpha=ELU.ALPHA_DEFAULT.
ELU(double) - Constructor for class org.tensorflow.framework.activations.ELU
Creates a new ELU
ELU(Map<String, Object>) - Constructor for class org.tensorflow.framework.activations.ELU
Creates a new ELU from a configuration Map
EMPTY_SHARED_NAME - Static variable in class org.tensorflow.framework.data.DatasetIterator
 
EPSILON - Static variable in class org.tensorflow.framework.constraints.AbstractConstraint
 
EPSILON - Static variable in class org.tensorflow.framework.losses.Losses
Default Fuzz factor.
EPSILON - Static variable in class org.tensorflow.framework.metrics.AUC
Default Fuzz factor.
EPSILON_DEFAULT - Static variable in class org.tensorflow.framework.optimizers.AdaDelta
 
EPSILON_DEFAULT - Static variable in class org.tensorflow.framework.optimizers.Adam
 
EPSILON_DEFAULT - Static variable in class org.tensorflow.framework.optimizers.Adamax
 
EPSILON_DEFAULT - Static variable in class org.tensorflow.framework.optimizers.Nadam
 
EPSILON_DEFAULT - Static variable in class org.tensorflow.framework.optimizers.RMSProp
 
exponential(Ops, Operand<T>) - Static method in class org.tensorflow.framework.activations.Exponential
Computes the Exponential activation function.
Exponential - Class in org.tensorflow.framework.activations
Exponential activation function.
Exponential() - Constructor for class org.tensorflow.framework.activations.Exponential
Creates an Exponential activation.
Exponential(Map<String, Object>) - Constructor for class org.tensorflow.framework.activations.Exponential
Creates a new Exponential from a configuration Map
EXPONENTIAL - org.tensorflow.framework.activations.Activations
 

F

FALSE_NEGATIVES - Static variable in class org.tensorflow.framework.metrics.AUC
 
FALSE_NEGATIVES - Static variable in class org.tensorflow.framework.metrics.Recall
 
FALSE_POSITIVES - Static variable in class org.tensorflow.framework.metrics.AUC
 
FALSE_POSITIVES - Static variable in class org.tensorflow.framework.metrics.Precision
 
FalseNegatives<T extends TNumber> - Class in org.tensorflow.framework.metrics
Metric that calculates the number of false negatives.
FalseNegatives(float[], long, Class<T>) - Constructor for class org.tensorflow.framework.metrics.FalseNegatives
Creates a FalseNegatives metric, using Class.getSimpleName() for the metric name
FalseNegatives(float, long, Class<T>) - Constructor for class org.tensorflow.framework.metrics.FalseNegatives
Creates a FalseNegatives metric, using Class.getSimpleName() for the metric name
FalseNegatives(long, Class<T>) - Constructor for class org.tensorflow.framework.metrics.FalseNegatives
Creates a FalseNegatives metric, using Class.getSimpleName() for the metric name and a default threshold of ConfusionMatrixConditionCount.DEFAULT_THRESHOLD.
FalseNegatives(String, float[], long, Class<T>) - Constructor for class org.tensorflow.framework.metrics.FalseNegatives
Creates a FalseNegatives metric
FalseNegatives(String, float, long, Class<T>) - Constructor for class org.tensorflow.framework.metrics.FalseNegatives
Creates a FalseNegatives metric
FalseNegatives(String, long, Class<T>) - Constructor for class org.tensorflow.framework.metrics.FalseNegatives
Creates a FalseNegatives metric, using a default threshold of ConfusionMatrixConditionCount.DEFAULT_THRESHOLD.
FalsePositives<T extends TNumber> - Class in org.tensorflow.framework.metrics
Metric that calculates the number of false positives.
FalsePositives(float[], long, Class<T>) - Constructor for class org.tensorflow.framework.metrics.FalsePositives
Creates a FalsePositives metric, using Class.getSimpleName() for the metric name
FalsePositives(float, long, Class<T>) - Constructor for class org.tensorflow.framework.metrics.FalsePositives
Creates a FalsePositives metric, using Class.getSimpleName() for the metric name
FalsePositives(long, Class<T>) - Constructor for class org.tensorflow.framework.metrics.FalsePositives
Creates a FalsePositives metric, using Class.getSimpleName() for the metric name and a default threshold of ConfusionMatrixConditionCount.DEFAULT_THRESHOLD.
FalsePositives(String, float[], long, Class<T>) - Constructor for class org.tensorflow.framework.metrics.FalsePositives
Creates a FalsePositives metric
FalsePositives(String, float, long, Class<T>) - Constructor for class org.tensorflow.framework.metrics.FalsePositives
Creates a FalsePositives metric
FalsePositives(String, long, Class<T>) - Constructor for class org.tensorflow.framework.metrics.FalsePositives
Creates a FalsePositives metric, using a default threshold of ConfusionMatrixConditionCount.DEFAULT_THRESHOLD.
FAN_AVG - org.tensorflow.framework.initializers.VarianceScaling.Mode
 
FAN_IN - org.tensorflow.framework.initializers.VarianceScaling.Mode
 
FAN_OUT - org.tensorflow.framework.initializers.VarianceScaling.Mode
 
finish(List<Op>, String) - Method in class org.tensorflow.framework.optimizers.AdaGradDA
Gathers up the update operations into a single op that can be used as a run target.
finish(List<Op>, String) - Method in class org.tensorflow.framework.optimizers.Adam
Gathers up the update operations into a single op that can be used as a run target.
finish(List<Op>, String) - Method in class org.tensorflow.framework.optimizers.Adamax
Gathers up the update operations into a single op that can be used as a run target.
finish(List<Op>, String) - Method in class org.tensorflow.framework.optimizers.Nadam
Gathers up the update operations into a single op that can be used as a run target.
finish(List<Op>, String) - Method in class org.tensorflow.framework.optimizers.Optimizer
Gathers up the update operations into a single op that can be used as a run target.
FIRST_MOMENT - Static variable in class org.tensorflow.framework.optimizers.Adam
 
FIRST_MOMENT - Static variable in class org.tensorflow.framework.optimizers.Adamax
 
FIRST_MOMENT - Static variable in class org.tensorflow.framework.optimizers.Nadam
 
FrameworkOps - Class in org.tensorflow.framework.op
An API for building framework operations as Ops
FROM_LOGITS_DEFAULT - Static variable in class org.tensorflow.framework.losses.BinaryCrossentropy
 
FROM_LOGITS_DEFAULT - Static variable in class org.tensorflow.framework.losses.CategoricalCrossentropy
 
FROM_LOGITS_DEFAULT - Static variable in class org.tensorflow.framework.losses.SparseCategoricalCrossentropy
 
fromComponents(Ops, List<Operand<?>>, List<Class<? extends TType>>, List<Shape>) - Static method in class org.tensorflow.framework.data.DatasetOptional
Creates a DatasetOptional from components.
fromStructure(Ops, List<Class<? extends TType>>, List<Shape>) - Static method in class org.tensorflow.framework.data.DatasetIterator
Creates a new iterator from a "structure" defined by `outputShapes` and `outputTypes`.
fromTensorSlices(Ops, List<Operand<?>>, List<Class<? extends TType>>) - Static method in class org.tensorflow.framework.data.Dataset
Creates an in-memory `Dataset` whose elements are slices of the given tensors.
Ftrl - Class in org.tensorflow.framework.optimizers
Optimizer that implements the FTRL algorithm.
Ftrl(Graph) - Constructor for class org.tensorflow.framework.optimizers.Ftrl
Creates a Ftrl Optimizer
Ftrl(Graph, float) - Constructor for class org.tensorflow.framework.optimizers.Ftrl
Creates a Ftrl Optimizer
Ftrl(Graph, float, float, float, float, float, float) - Constructor for class org.tensorflow.framework.optimizers.Ftrl
Creates a Ftrl Optimizer
Ftrl(Graph, String) - Constructor for class org.tensorflow.framework.optimizers.Ftrl
Creates a Ftrl Optimizer
Ftrl(Graph, String, float) - Constructor for class org.tensorflow.framework.optimizers.Ftrl
Creates a Ftrl Optimizer
Ftrl(Graph, String, float, float, float, float, float, float) - Constructor for class org.tensorflow.framework.optimizers.Ftrl
Creates a Ftrl Optimizer
FTRL - org.tensorflow.framework.optimizers.Optimizers
 

G

GAIN_DEFAULT - Static variable in class org.tensorflow.framework.initializers.Identity
 
GAIN_DEFAULT - Static variable in class org.tensorflow.framework.initializers.Orthogonal
 
gelu(Ops, Operand<T>) - Static method in class org.tensorflow.framework.activations.GELU
Applies the Gaussian error linear unit (GELU) activation function with approximate set to false.
gelu(Ops, Operand<T>, boolean) - Static method in class org.tensorflow.framework.activations.GELU
Applies the Gaussian error linear unit (GELU) activation function.
gelu(Scope, Operand<T>) - Static method in class org.tensorflow.framework.op.nn.GELU
Compute the Gaussian Error Linear Unit (GELU) activation function without approximation.
gelu(Scope, Operand<T>, boolean) - Static method in class org.tensorflow.framework.op.nn.GELU
Compute the Gaussian Error Linear Unit (GELU) activation function.
gelu(Operand<T>) - Method in class org.tensorflow.framework.op.NnOps
Compute the Gaussian Error Linear Unit (GELU) activation function without approximation.
gelu(Operand<T>, boolean) - Method in class org.tensorflow.framework.op.NnOps
Compute the Gaussian Error Linear Unit (GELU) activation function.
GELU - Class in org.tensorflow.framework.activations
Applies the Gaussian error linear unit (GELU) activation function.
GELU - Class in org.tensorflow.framework.op.nn
The Gaussian Error Linear Unit (GELU) activation function.
GELU - org.tensorflow.framework.activations.Activations
 
GELU() - Constructor for class org.tensorflow.framework.activations.GELU
Creates a Gaussian error linear unit (GELU) activation.
GELU() - Constructor for class org.tensorflow.framework.op.nn.GELU
 
GELU(boolean) - Constructor for class org.tensorflow.framework.activations.GELU
Creates a Gaussian error linear unit (GELU) activation.
GELU(Map<String, Object>) - Constructor for class org.tensorflow.framework.activations.GELU
Creates a GELU activation from a config map.
get(String) - Method in enum org.tensorflow.framework.metrics.AUCCurve
Gets the AUCCurve enum value by name, regardless of case
get(String) - Method in enum org.tensorflow.framework.metrics.AUCSummationMethod
Gets the AUCSummationMethod enum value by name, regardless of case
getAlpha() - Method in class org.tensorflow.framework.activations.ELU
Gets the slope of negative section.
getAlpha() - Method in class org.tensorflow.framework.activations.ReLU
Gets the value that governs the slope for values lower than the threshold.
getAxes() - Method in class org.tensorflow.framework.constraints.MaxNorm
Gets the axes
getAxes() - Method in class org.tensorflow.framework.constraints.MinMaxNorm
Gets the axes
getAxes() - Method in class org.tensorflow.framework.constraints.UnitNorm
Gets the axes
getAxis() - Method in class org.tensorflow.framework.activations.Softmax
Gets the axis along which the softmax normalization is applied.
getClassId() - Method in class org.tensorflow.framework.metrics.Precision
Gets the classId, may be null
getClassId() - Method in class org.tensorflow.framework.metrics.Recall
Gets the class id
getConfig() - Method in class org.tensorflow.framework.activations.AbstractActivation
Gets a configuration map
getConfig() - Method in class org.tensorflow.framework.activations.ELU
Gets a configuration map
getConfig() - Method in class org.tensorflow.framework.activations.Exponential
Gets a configuration map
getConfig() - Method in class org.tensorflow.framework.activations.GELU
Gets a configuration map with entries approximate and value set with GELU.approximate.
getConfig() - Method in class org.tensorflow.framework.activations.HardSigmoid
Gets a configuration map
getConfig() - Method in class org.tensorflow.framework.activations.Linear
Gets a configuration map
getConfig() - Method in class org.tensorflow.framework.activations.ReLU
Gets a configuration map with entries alpha and value set with ReLU.alpha.
getConfig() - Method in class org.tensorflow.framework.activations.SELU
Gets a configuration map
getConfig() - Method in class org.tensorflow.framework.activations.Sigmoid
Gets a configuration map
getConfig() - Method in class org.tensorflow.framework.activations.Softmax
Gets a configuration map with entries axis and value set with Softmax.axis.
getConfig() - Method in class org.tensorflow.framework.activations.Softplus
Gets a configuration map
getConfig() - Method in class org.tensorflow.framework.activations.Softsign
Gets a configuration map
getConfig() - Method in class org.tensorflow.framework.activations.Swish
Gets a configuration map
getConfig() - Method in class org.tensorflow.framework.activations.Tanh
Gets a configuration map
getCount() - Method in class org.tensorflow.framework.metrics.MeanTensor
 
getCurve() - Method in class org.tensorflow.framework.metrics.AUC
 
getDefaultConfig(String) - Method in class org.tensorflow.framework.activations.AbstractActivation
Gets a configuration map, this default implementation returns a singleton Map, with AbstractActivation.NAME_KEY as the key, and the name parameter as its value;
getDenseShape() - Method in class org.tensorflow.framework.utils.SparseTensor
Gets the dense shape for the Sparse Tensor
getFalseNegatives() - Method in class org.tensorflow.framework.metrics.AUC
 
getFalseNegatives() - Method in class org.tensorflow.framework.metrics.Recall
Gets the falseNegatives variable
getFalseNegativesName() - Method in class org.tensorflow.framework.metrics.AUC
 
getFalseNegativesName() - Method in class org.tensorflow.framework.metrics.Recall
Gets the falseNegatives variable name
getFalsePositives() - Method in class org.tensorflow.framework.metrics.AUC
 
getFalsePositives() - Method in class org.tensorflow.framework.metrics.Precision
Gets the falsePositives variable
getFalsePositivesName() - Method in class org.tensorflow.framework.metrics.AUC
 
getFalsePositivesName() - Method in class org.tensorflow.framework.metrics.Precision
Gets the name of the falsePositives variable
getGradient() - Method in class org.tensorflow.framework.optimizers.Optimizer.GradAndVar
Gets the gradient
getIndices() - Method in class org.tensorflow.framework.utils.SparseTensor
Gets the indices for the Sparse Tensor
getInitializer() - Method in class org.tensorflow.framework.data.DatasetIterator
 
getInstance() - Method in enum org.tensorflow.framework.activations.Activations
Gets an Activation Instance
getInstance(Map<String, Object>) - Method in enum org.tensorflow.framework.activations.Activations
Gets an Activation Instance
getIntArray(Scope, Operand<TInt32>) - Static method in class org.tensorflow.framework.utils.ShapeUtils
Converts a TInt32 type Operand to a Java int array
getIteratorResource() - Method in class org.tensorflow.framework.data.DatasetIterator
 
getL1() - Method in class org.tensorflow.framework.regularizers.L1L2
Gets the L1 regularization factor
getL2() - Method in class org.tensorflow.framework.regularizers.L1L2
Gets the L2 regularization factor
getLabelWeights() - Method in class org.tensorflow.framework.metrics.AUC
 
getLongArray(Scope, Operand<T>) - Static method in class org.tensorflow.framework.utils.ShapeUtils
Converts a TInt32 or TInt64 Operand to a java long array
getLongArray(T) - Static method in class org.tensorflow.framework.utils.ShapeUtils
Converts a TInt32 or TInt64 to a java long array
getMaxValue() - Method in class org.tensorflow.framework.activations.ReLU
Gets the saturation threshold (the largest value the function will return).
getMaxValue() - Method in class org.tensorflow.framework.constraints.MaxNorm
Gets the max value
getMaxValue() - Method in class org.tensorflow.framework.constraints.MinMaxNorm
Gets the maxValue
getMinValue() - Method in class org.tensorflow.framework.constraints.MinMaxNorm
Gets the minValue
getName() - Method in class org.tensorflow.framework.activations.AbstractActivation
Get the name of the activation as known by the TensorFlow Engine
getName() - Method in class org.tensorflow.framework.activations.ELU
Get the name of the activation as known by the TensorFlow Engine
getName() - Method in class org.tensorflow.framework.activations.Exponential
Get the name of the activation as known by the TensorFlow Engine
getName() - Method in class org.tensorflow.framework.activations.GELU
Get the name of the activation as known by the TensorFlow Engine
getName() - Method in class org.tensorflow.framework.activations.HardSigmoid
Get the name of the activation as known by the TensorFlow Engine
getName() - Method in class org.tensorflow.framework.activations.Linear
Get the name of the activation as known by the TensorFlow Engine
getName() - Method in class org.tensorflow.framework.activations.ReLU
Get the name of the activation as known by the TensorFlow Engine
getName() - Method in class org.tensorflow.framework.activations.SELU
Get the name of the activation as known by the TensorFlow Engine
getName() - Method in class org.tensorflow.framework.activations.Sigmoid
Get the name of the activation as known by the TensorFlow Engine
getName() - Method in class org.tensorflow.framework.activations.Softmax
Get the name of the activation as known by the TensorFlow Engine
getName() - Method in class org.tensorflow.framework.activations.Softplus
Get the name of the activation as known by the TensorFlow Engine
getName() - Method in class org.tensorflow.framework.activations.Softsign
Get the name of the activation as known by the TensorFlow Engine
getName() - Method in class org.tensorflow.framework.activations.Swish
Get the name of the activation as known by the TensorFlow Engine
getName() - Method in class org.tensorflow.framework.activations.Tanh
Get the name of the activation as known by the TensorFlow Engine
getName() - Method in class org.tensorflow.framework.initializers.BaseInitializer
Gets the name for this initializer
getName() - Method in class org.tensorflow.framework.metrics.BaseMetric
The name for this metric.
getName() - Method in class org.tensorflow.framework.regularizers.AbstractRegularizer
Gets the name for this regularizer
getNext() - Method in class org.tensorflow.framework.data.DatasetIterator
Returns a list of Operand<?> representing the components of the next dataset element.
getNextAsOptional() - Method in class org.tensorflow.framework.data.DatasetIterator
Returns a `DatasetOptional` representing the components of the next dataset element.
getNormalizer() - Method in class org.tensorflow.framework.metrics.MeanRelativeError
Gets the normalizer Operand
getNumLabels() - Method in class org.tensorflow.framework.metrics.AUC
 
getNumThresholds() - Method in class org.tensorflow.framework.metrics.AUC
 
getOpsInstance() - Method in class org.tensorflow.framework.data.Dataset
Gets the TensorFlow Ops instance for this dataset
getOpsInstance() - Method in class org.tensorflow.framework.data.DatasetIterator
 
getOpsInstance() - Method in class org.tensorflow.framework.data.DatasetOptional
Gets the TensorFlow Ops instance for this dataset
getOptimizerName() - Method in class org.tensorflow.framework.optimizers.AdaDelta
Get the Name of the optimizer.
getOptimizerName() - Method in class org.tensorflow.framework.optimizers.AdaGrad
Get the Name of the optimizer.
getOptimizerName() - Method in class org.tensorflow.framework.optimizers.AdaGradDA
Get the Name of the optimizer.
getOptimizerName() - Method in class org.tensorflow.framework.optimizers.Adam
Get the Name of the optimizer.
getOptimizerName() - Method in class org.tensorflow.framework.optimizers.Adamax
Get the Name of the optimizer.
getOptimizerName() - Method in class org.tensorflow.framework.optimizers.Ftrl
Get the Name of the optimizer.
getOptimizerName() - Method in class org.tensorflow.framework.optimizers.GradientDescent
Get the Name of the optimizer.
getOptimizerName() - Method in class org.tensorflow.framework.optimizers.Momentum
Get the Name of the optimizer.
getOptimizerName() - Method in class org.tensorflow.framework.optimizers.Nadam
Get the Name of the optimizer.
getOptimizerName() - Method in class org.tensorflow.framework.optimizers.Optimizer
Get the Name of the optimizer.
getOptimizerName() - Method in class org.tensorflow.framework.optimizers.RMSProp
Get the Name of the optimizer.
getOptionalVariant() - Method in class org.tensorflow.framework.data.DatasetOptional
Gets the optional variant for this Dataset
getOutputShapes() - Method in class org.tensorflow.framework.data.Dataset
Gets a list of shapes for each component of this dataset.
getOutputTypes() - Method in class org.tensorflow.framework.data.Dataset
Gets a list of output types for each component of this dataset.
getPrecision() - Method in class org.tensorflow.framework.metrics.RecallAtPrecision
Gets the precision
getRate() - Method in class org.tensorflow.framework.constraints.MinMaxNorm
Gets the rate
getRecall() - Method in class org.tensorflow.framework.metrics.PrecisionAtRecall
Gets the recall value
getSeed() - Method in class org.tensorflow.framework.metrics.BaseMetric
Gets the random number generator seed value
getSensitivity() - Method in class org.tensorflow.framework.metrics.SpecificityAtSensitivity
Gets the sensitivity
getSetOperation() - Method in enum org.tensorflow.framework.op.sets.Sets.Operation
getSlot(Output<T>, String) - Method in class org.tensorflow.framework.optimizers.Optimizer
Gets the slot associated with the specified variable and slot name.
getSpecificity() - Method in class org.tensorflow.framework.metrics.SensitivityAtSpecificity
Gets the specificity
getSummationMethod() - Method in class org.tensorflow.framework.metrics.AUC
 
getTensorFlowName() - Method in enum org.tensorflow.framework.activations.Activations
Gets the activation name as known to the TensorFlow engine.
getTF() - Method in class org.tensorflow.framework.activations.AbstractActivation
Gets the TensorFlow Ops
getTF() - Method in class org.tensorflow.framework.metrics.BaseMetric
Gets the TensorFlow Ops for this metric
getTF() - Method in class org.tensorflow.framework.optimizers.Optimizer
Gets the Optimizer's Ops instance
getThreshold() - Method in class org.tensorflow.framework.activations.ReLU
Gets the saturation threshold (the largest value the function will return).
getThresholds() - Method in class org.tensorflow.framework.metrics.AUC
 
getThresholds() - Method in class org.tensorflow.framework.metrics.Precision
Gets the thresholds
getThresholds() - Method in class org.tensorflow.framework.metrics.Recall
Gets the thresholds
getTopK() - Method in class org.tensorflow.framework.metrics.Precision
Gets the topK value, may be null
getTopK() - Method in class org.tensorflow.framework.metrics.Recall
Gets the topK value
getTotal() - Method in class org.tensorflow.framework.metrics.MeanTensor
 
getTrueNegatives() - Method in class org.tensorflow.framework.metrics.AUC
 
getTrueNegativesName() - Method in class org.tensorflow.framework.metrics.AUC
 
getTruePositives() - Method in class org.tensorflow.framework.metrics.AUC
 
getTruePositives() - Method in class org.tensorflow.framework.metrics.Precision
Gets the truePositives variable
getTruePositives() - Method in class org.tensorflow.framework.metrics.Recall
Gets the truePositives variable
getTruePositivesName() - Method in class org.tensorflow.framework.metrics.AUC
 
getTruePositivesName() - Method in class org.tensorflow.framework.metrics.Precision
Gets the name of the truePositives variable
getTruePositivesName() - Method in class org.tensorflow.framework.metrics.Recall
Gets the truePositives variable name
getValue() - Method in class org.tensorflow.framework.data.DatasetOptional
Returns the value of the dataset element represented by this optional, if it exists.
getValues() - Method in class org.tensorflow.framework.utils.SparseTensor
Get the values for the Sparse Tensor
getVariable() - Method in class org.tensorflow.framework.optimizers.Optimizer.GradAndVar
Gets the variable
getVariableName(String) - Method in class org.tensorflow.framework.metrics.BaseMetric
Gets a formatted name for a variable, in the form BaseMetric.name + "_" + varName.
getVariant() - Method in class org.tensorflow.framework.data.Dataset
Gets the variant tensor representing this dataset.
globals - Variable in class org.tensorflow.framework.optimizers.Optimizer
Global state variables
Glorot<T extends TFloating> - Class in org.tensorflow.framework.initializers
The Glorot initializer, also called Xavier initializer.
Glorot(VarianceScaling.Distribution, long) - Constructor for class org.tensorflow.framework.initializers.Glorot
Creates a Glorot initializer
GradAndVar(Output<T>, Output<T>) - Constructor for class org.tensorflow.framework.optimizers.Optimizer.GradAndVar
Creates a Gradient and Variable pair
GRADIENT_DESCENT - org.tensorflow.framework.optimizers.Optimizers
 
GradientDescent - Class in org.tensorflow.framework.optimizers
Basic Stochastic gradient descent optimizer.
GradientDescent(Graph) - Constructor for class org.tensorflow.framework.optimizers.GradientDescent
Creates a GradientDescent Optimizer
GradientDescent(Graph, float) - Constructor for class org.tensorflow.framework.optimizers.GradientDescent
Creates a GradientDescent Optimizer
GradientDescent(Graph, String, float) - Constructor for class org.tensorflow.framework.optimizers.GradientDescent
Creates a GradientDescent Optimizer
graph - Variable in class org.tensorflow.framework.optimizers.Optimizer
The Graph this optimizer is operating on.

H

HARD_SIGMOID - org.tensorflow.framework.activations.Activations
 
hardSigmoid(Ops, Operand<T>) - Static method in class org.tensorflow.framework.activations.HardSigmoid
Computes the hard sigmoid activation function.
HardSigmoid - Class in org.tensorflow.framework.activations
Hard sigmoid activation.
HardSigmoid() - Constructor for class org.tensorflow.framework.activations.HardSigmoid
Creates Hard sigmoid activation.
HardSigmoid(Map<String, Object>) - Constructor for class org.tensorflow.framework.activations.HardSigmoid
Creates a new Exponential from a configuration Map
hasValue() - Method in class org.tensorflow.framework.data.DatasetOptional
Gets the indicator of whether this optional has a value.
He<T extends TFloating> - Class in org.tensorflow.framework.initializers
He initializer.
He(VarianceScaling.Distribution, long) - Constructor for class org.tensorflow.framework.initializers.He
Creates an He Initializer
hinge(Ops, Operand<? extends TNumber>, Operand<T>) - Static method in class org.tensorflow.framework.losses.Losses
Computes the hinge loss between labels and predictions
Hinge - Class in org.tensorflow.framework.losses
Computes the hinge loss between labels and predictions.
Hinge<T extends TNumber> - Class in org.tensorflow.framework.metrics
A metric that computes the hinge loss metric between labels and predictions.
Hinge() - Constructor for class org.tensorflow.framework.losses.Hinge
Creates a Hinge AbstractLoss using Class.getSimpleName() as the loss name and a AbstractLoss Reduction of AbstractLoss.REDUCTION_DEFAULT
Hinge(long, Class<T>) - Constructor for class org.tensorflow.framework.metrics.Hinge
Creates a Hinge metric using Class.getSimpleName() for the metric name.
Hinge(String, long, Class<T>) - Constructor for class org.tensorflow.framework.metrics.Hinge
Creates a Hinge metric
Hinge(String, Reduction) - Constructor for class org.tensorflow.framework.losses.Hinge
Creates a Hinge
Hinge(Reduction) - Constructor for class org.tensorflow.framework.losses.Hinge
Creates a Hinge AbstractLoss using Class.getSimpleName() as the loss name
huber(Ops, Operand<? extends TNumber>, Operand<T>, float) - Static method in class org.tensorflow.framework.losses.Losses
Computes the Huber loss between labels and predictions.
Huber - Class in org.tensorflow.framework.losses
Computes the Huber loss between labels and predictions.
Huber() - Constructor for class org.tensorflow.framework.losses.Huber
Creates a Huber AbstractLoss using Class.getSimpleName() as the loss name, Huber.DELTA_DEFAULT as the delta and a AbstractLoss Reduction of AbstractLoss.REDUCTION_DEFAULT
Huber(String) - Constructor for class org.tensorflow.framework.losses.Huber
Creates a Huber AbstractLoss using Huber.DELTA_DEFAULT as the delta and a AbstractLoss Reduction of AbstractLoss.REDUCTION_DEFAULT
Huber(String, float, Reduction) - Constructor for class org.tensorflow.framework.losses.Huber
Creates a Huber AbstractLoss
Huber(String, Reduction) - Constructor for class org.tensorflow.framework.losses.Huber
Creates a Huber AbstractLoss using Huber.DELTA_DEFAULT as the delta
Huber(Reduction) - Constructor for class org.tensorflow.framework.losses.Huber
Creates a Huber AbstractLoss using Class.getSimpleName() as the loss name and and Huber.DELTA_DEFAULT as the delta

I

Identity<T extends TFloating> - Class in org.tensorflow.framework.initializers
Initializer that generates the identity matrix.
Identity() - Constructor for class org.tensorflow.framework.initializers.Identity
Creates an Initializer that generates the identity matrix.
Identity(double) - Constructor for class org.tensorflow.framework.initializers.Identity
Creates an Initializer that generates the identity matrix.
init(Ops) - Method in class org.tensorflow.framework.metrics.AUC
Initialize the TensorFlow Ops
init(Ops) - Method in class org.tensorflow.framework.metrics.BaseMetric
Initialize the TensorFlow Ops
init(Ops) - Method in class org.tensorflow.framework.metrics.MeanIoU
Initialize the TensorFlow Ops
init(Ops) - Method in class org.tensorflow.framework.metrics.MeanRelativeError
Initialize the TensorFlow Ops
init(Ops) - Method in class org.tensorflow.framework.metrics.MeanTensor
Initialize the TensorFlow Ops
init(Ops) - Method in class org.tensorflow.framework.metrics.Precision
Initialize the TensorFlow Ops
init(Ops) - Method in class org.tensorflow.framework.metrics.Recall
Initialize the TensorFlow Ops
INITIAL_ACCUMULATOR_DEFAULT - Static variable in class org.tensorflow.framework.optimizers.AdaGrad
 
INITIAL_ACCUMULATOR_DEFAULT - Static variable in class org.tensorflow.framework.optimizers.AdaGradDA
 
INITIAL_ACCUMULATOR_VALUE_DEFAULT - Static variable in class org.tensorflow.framework.optimizers.Ftrl
 
Initializer<T extends TType> - Interface in org.tensorflow.framework.initializers
An interface for Initializers
INTERPOLATION - org.tensorflow.framework.metrics.AUCSummationMethod
Apply mid-point summation scheme for AUCCurve.ROC.
intersection(Scope, Operand<T>, Operand<T>) - Static method in class org.tensorflow.framework.op.sets.Sets
Computes set intersection of elements in last dimension of a and b.
intersection(Operand<T>, Operand<T>) - Method in class org.tensorflow.framework.op.SetOps
Computes set intersection of elements in last dimension of a and b.
INTERSECTION - org.tensorflow.framework.op.sets.Sets.Operation
 
isApproximate() - Method in class org.tensorflow.framework.activations.GELU
Gets the flag whether to enable approximation.
isInitialized() - Method in class org.tensorflow.framework.metrics.BaseMetric
Checks whether the Metric is initialized or not.
isMultiLabel() - Method in class org.tensorflow.framework.metrics.AUC
 
iterator() - Method in class org.tensorflow.framework.data.Dataset
Creates an iterator which iterates through all batches of this Dataset in an eager fashion.
iterator() - Method in class org.tensorflow.framework.data.DatasetIterator
 

K

KLDivergence - Class in org.tensorflow.framework.losses
Computes Kullback-Leibler divergence loss between labels and predictions.
KLDivergence<T extends TNumber> - Class in org.tensorflow.framework.metrics
A metric that computes the Kullback-Leibler divergence loss metric between labels and predictions.
KLDivergence() - Constructor for class org.tensorflow.framework.losses.KLDivergence
Creates a Kullback Leibler Divergence AbstractLoss using Class.getSimpleName() as the loss name and a AbstractLoss Reduction of AbstractLoss.REDUCTION_DEFAULT
KLDivergence(long, Class<T>) - Constructor for class org.tensorflow.framework.metrics.KLDivergence
Creates a KLDivergence metric using Class.getSimpleName() for the metric name.
KLDivergence(String, long, Class<T>) - Constructor for class org.tensorflow.framework.metrics.KLDivergence
Creates a KLDivergence metric
KLDivergence(String, Reduction) - Constructor for class org.tensorflow.framework.losses.KLDivergence
Creates a Kullback Leibler Divergence AbstractLoss
KLDivergence(Reduction) - Constructor for class org.tensorflow.framework.losses.KLDivergence
Creates a Kullback Leibler Divergence AbstractLoss AbstractLoss using Class.getSimpleName() as the loss name
kullbackLeiblerDivergence(Ops, Operand<? extends TNumber>, Operand<T>) - Static method in class org.tensorflow.framework.losses.Losses
Computes the Kullback-Leibler divergence loss between labels and predictions.

L

L1 - Class in org.tensorflow.framework.regularizers
A regularizer that applies an L1 or Lasso(least absolute shrinkage and selection operator) Regression, regularization penalty.
L1() - Constructor for class org.tensorflow.framework.regularizers.L1
Create a regularizer that applies an L1 regularization penalty of AbstractRegularizer.DEFAULT_REGULARIZATION_PENALTY and a name based on the class name.
L1(float) - Constructor for class org.tensorflow.framework.regularizers.L1
Create a regularizer that applies an L1 regularization penalty and a name based on the class name.
L1(String) - Constructor for class org.tensorflow.framework.regularizers.L1
Create a regularizer that applies an L1 regularization penalty of AbstractRegularizer.DEFAULT_REGULARIZATION_PENALTY
L1(String, float) - Constructor for class org.tensorflow.framework.regularizers.L1
Create a regularizer that applies an L1 regularization penalty
L1_STRENGTH_DEFAULT - Static variable in class org.tensorflow.framework.optimizers.AdaGradDA
 
L1L2 - Class in org.tensorflow.framework.regularizers
A regularizer that applies both L1 and L2 regularization penalties.
L1L2() - Constructor for class org.tensorflow.framework.regularizers.L1L2
Creates an L1L2 regularizer with no l1 or l2 penalty with zero penalty
L1L2(float, float) - Constructor for class org.tensorflow.framework.regularizers.L1L2
Creates an L1L2 regularizer
L1L2(String, float, float) - Constructor for class org.tensorflow.framework.regularizers.L1L2
Creates an L1L2 regularizer
L1STRENGTH_DEFAULT - Static variable in class org.tensorflow.framework.optimizers.Ftrl
 
L2 - Class in org.tensorflow.framework.regularizers
A regularizer that applies a L2 (Ridge Regression) regularization penalty.
L2() - Constructor for class org.tensorflow.framework.regularizers.L2
Create a regularizer that applies an L2 regularization penalty of AbstractRegularizer.DEFAULT_REGULARIZATION_PENALTY and a name based on the class name.
L2(float) - Constructor for class org.tensorflow.framework.regularizers.L2
Create a regularizer that applies an L1 regularization penalty and a name based on the class name.
L2(String) - Constructor for class org.tensorflow.framework.regularizers.L2
Create a regularizer that applies an L2 regularization penalty of AbstractRegularizer.DEFAULT_REGULARIZATION_PENALTY
L2(String, float) - Constructor for class org.tensorflow.framework.regularizers.L2
Create a regularizer that applies an L1 regularization penalty
L2_SHRINKAGE_REGULARIZATION_STRENGTH_DEFAULT - Static variable in class org.tensorflow.framework.optimizers.Ftrl
 
L2_STRENGTH_DEFAULT - Static variable in class org.tensorflow.framework.optimizers.AdaGradDA
 
l2Normalize(Ops, Operand<T>, int[]) - Static method in class org.tensorflow.framework.losses.Losses
Normalizes along dimension axis using an L2 norm.
l2Normalize(Scope, Operand<T>, int[]) - Static method in class org.tensorflow.framework.op.math.L2Normalize
Normalizes along dimension axis using an L2 norm.
l2Normalize(Operand<T>, int[]) - Method in class org.tensorflow.framework.op.MathOps
Normalizes along dimension axis using an L2 norm.
L2Normalize - Class in org.tensorflow.framework.op.math
L2 Normalization Operations
L2Normalize() - Constructor for class org.tensorflow.framework.op.math.L2Normalize
 
L2STRENGTH_DEFAULT - Static variable in class org.tensorflow.framework.optimizers.Ftrl
 
LABEL_SMOOTHING_DEFAULT - Static variable in class org.tensorflow.framework.losses.BinaryCrossentropy
 
LABEL_SMOOTHING_DEFAULT - Static variable in class org.tensorflow.framework.losses.CategoricalCrossentropy
 
LEARNING_RATE_DEFAULT - Static variable in class org.tensorflow.framework.optimizers.AdaDelta
 
LEARNING_RATE_DEFAULT - Static variable in class org.tensorflow.framework.optimizers.AdaGrad
 
LEARNING_RATE_DEFAULT - Static variable in class org.tensorflow.framework.optimizers.AdaGradDA
 
LEARNING_RATE_DEFAULT - Static variable in class org.tensorflow.framework.optimizers.Adam
 
LEARNING_RATE_DEFAULT - Static variable in class org.tensorflow.framework.optimizers.Adamax
 
LEARNING_RATE_DEFAULT - Static variable in class org.tensorflow.framework.optimizers.Ftrl
 
LEARNING_RATE_DEFAULT - Static variable in class org.tensorflow.framework.optimizers.GradientDescent
 
LEARNING_RATE_DEFAULT - Static variable in class org.tensorflow.framework.optimizers.Momentum
 
LEARNING_RATE_DEFAULT - Static variable in class org.tensorflow.framework.optimizers.Nadam
 
LEARNING_RATE_DEFAULT - Static variable in class org.tensorflow.framework.optimizers.RMSProp
 
LEARNING_RATE_POWER_DEFAULT - Static variable in class org.tensorflow.framework.optimizers.Ftrl
 
LeCun<T extends TFloating> - Class in org.tensorflow.framework.initializers
LeCun normal initializer.
LeCun(VarianceScaling.Distribution, long) - Constructor for class org.tensorflow.framework.initializers.LeCun
Creates a LeCunNormal Initializer
linalg - Variable in class org.tensorflow.framework.op.FrameworkOps
 
LinalgOps - Class in org.tensorflow.framework.op
 
linear(Ops, Operand<T>) - Static method in class org.tensorflow.framework.activations.Linear
Computes the linear activation function (pass-through).
Linear - Class in org.tensorflow.framework.activations
Linear activation function (pass-through).
Linear() - Constructor for class org.tensorflow.framework.activations.Linear
Creates a linear activation.
Linear(Map<String, Object>) - Constructor for class org.tensorflow.framework.activations.Linear
Creates a new Exponential from a configuration Map
LINEAR - org.tensorflow.framework.activations.Activations
 
LINEAR_ACCUMULATOR - Static variable in class org.tensorflow.framework.optimizers.Ftrl
 
logCosh(Ops, Operand<? extends TNumber>, Operand<T>) - Static method in class org.tensorflow.framework.losses.Losses
Computes the hyperbolic cosine loss between labels and predictions.
LogCosh - Class in org.tensorflow.framework.losses
Computes Computes the logarithm of the hyperbolic cosine of the prediction error.
LogCosh() - Constructor for class org.tensorflow.framework.losses.LogCosh
Creates a LogCosh AbstractLoss using Class.getSimpleName() as the loss name and a AbstractLoss Reduction of AbstractLoss.REDUCTION_DEFAULT
LogCosh(String) - Constructor for class org.tensorflow.framework.losses.LogCosh
Creates a LogCosh AbstractLoss using a AbstractLoss Reduction of AbstractLoss.REDUCTION_DEFAULT
LogCosh(String, Reduction) - Constructor for class org.tensorflow.framework.losses.LogCosh
Creates a LogCosh AbstractLoss
LogCosh(Reduction) - Constructor for class org.tensorflow.framework.losses.LogCosh
Creates a LogCosh AbstractLoss using Class.getSimpleName() as the loss name
LogCoshError<T extends TNumber> - Class in org.tensorflow.framework.metrics
A metric that computes the logarithm of the hyperbolic cosine of the prediction error metric between labels and predictions.
LogCoshError(long, Class<T>) - Constructor for class org.tensorflow.framework.metrics.LogCoshError
Creates a LogCoshError metric using Class.getSimpleName() for the metric name.
LogCoshError(String, long, Class<T>) - Constructor for class org.tensorflow.framework.metrics.LogCoshError
Creates a LogCoshError metric
Loss - Interface in org.tensorflow.framework.losses
Interface for loss calc ulation
Losses - Class in org.tensorflow.framework.losses
Built-in loss functions.
Losses() - Constructor for class org.tensorflow.framework.losses.Losses
 

M

MAJORING - org.tensorflow.framework.metrics.AUCSummationMethod
Apply right summation for increasing intervals and left summation for decreasing intervals
makeInitializeableIterator() - Method in class org.tensorflow.framework.data.Dataset
Creates a `DatasetIterator` that can be used to iterate over elements of this dataset.
makeInitializer(Dataset) - Method in class org.tensorflow.framework.data.DatasetIterator
Creates and returns a TF `Op` that can be run to initialize this iterator on a dataset.
makeOneShotIterator() - Method in class org.tensorflow.framework.data.Dataset
Creates a `DatasetIterator` that can be used to iterate over elements of this dataset.
map(Function<List<Operand<?>>, List<Operand<?>>>) - Method in class org.tensorflow.framework.data.Dataset
Returns a new Dataset which maps a function over all elements returned by this dataset.
mapAllComponents(Function<Operand<?>, Operand<?>>) - Method in class org.tensorflow.framework.data.Dataset
Returns a new Dataset which maps a function across all elements from this dataset, on all components of each element.
mapOneComponent(int, Function<Operand<?>, Operand<?>>) - Method in class org.tensorflow.framework.data.Dataset
Returns a new Dataset which maps a function across all elements from this dataset, on a single component of each element.
math - Variable in class org.tensorflow.framework.op.FrameworkOps
 
MathOps - Class in org.tensorflow.framework.op
 
matmul(Scope, Operand<T>, Operand<T>) - Static method in class org.tensorflow.framework.op.linalg.MatMul
Multiplies matrix a by matrix b, producing a * b .
matmul(Scope, Operand<T>, Operand<T>, boolean, boolean) - Static method in class org.tensorflow.framework.op.linalg.MatMul
Multiplies matrix a by matrix b, producing a * b .
matmul(Scope, Operand<T>, Operand<T>, boolean, boolean, boolean, boolean, boolean, boolean) - Static method in class org.tensorflow.framework.op.linalg.MatMul
Multiplies matrix a by matrix b, producing a * b .
matmul(Operand<T>, Operand<T>) - Method in class org.tensorflow.framework.op.LinalgOps
Multiplies matrix a by matrix b, producing a * b .
matmul(Operand<T>, Operand<T>, boolean, boolean) - Method in class org.tensorflow.framework.op.LinalgOps
Multiplies matrix a by matrix b, producing a * b .
matmul(Operand<T>, Operand<T>, boolean, boolean, boolean, boolean, boolean, boolean) - Method in class org.tensorflow.framework.op.LinalgOps
Multiplies matrix a by matrix b, producing a * b .
MatMul - Class in org.tensorflow.framework.op.linalg
Multiplication matrix operations
MatMul() - Constructor for class org.tensorflow.framework.op.linalg.MatMul
 
MAX_VALUE_DEFAULT - Static variable in class org.tensorflow.framework.activations.ReLU
 
MAX_VALUE_DEFAULT - Static variable in class org.tensorflow.framework.constraints.MaxNorm
 
MAX_VALUE_DEFAULT - Static variable in class org.tensorflow.framework.constraints.MinMaxNorm
 
MaxNorm - Class in org.tensorflow.framework.constraints
Constrains the weights incident to each hidden unit to have a norm less than or equal to a desired value.
MaxNorm() - Constructor for class org.tensorflow.framework.constraints.MaxNorm
Create a MaxNorm constraint using MaxNorm.MAX_VALUE_DEFAULT for the max value and MaxNorm.AXIS_DEFAULT for the axis.
MaxNorm(double) - Constructor for class org.tensorflow.framework.constraints.MaxNorm
Create a MaxNorm constraint using MaxNorm.AXIS_DEFAULT for the axis.
MaxNorm(double, int) - Constructor for class org.tensorflow.framework.constraints.MaxNorm
Create a MaxNorm constraint
MaxNorm(double, int[]) - Constructor for class org.tensorflow.framework.constraints.MaxNorm
Create a MaxNorm constraint
MAXVAL_DEFAULT - Static variable in class org.tensorflow.framework.initializers.RandomUniform
 
Mean<T extends TNumber> - Class in org.tensorflow.framework.metrics
A metric that that implements a weighted mean MetricReduction.WEIGHTED_MEAN
Mean(long, Class<T>) - Constructor for class org.tensorflow.framework.metrics.Mean
Creates a Reducible Metric with a metric reductions of MetricReduction.SUM and using Class.getSimpleName() for the metric name.
Mean(String, long, Class<T>) - Constructor for class org.tensorflow.framework.metrics.Mean
Creates a Reducible Metric with a metric reductions of MetricReduction.SUM
MEAN_DEFAULT - Static variable in class org.tensorflow.framework.initializers.RandomNormal
 
MEAN_DEFAULT - Static variable in class org.tensorflow.framework.initializers.TruncatedNormal
 
meanAbsoluteError(Ops, Operand<? extends TNumber>, Operand<T>) - Static method in class org.tensorflow.framework.losses.Losses
Calculates the mean absolute error between labels and predictions.
MeanAbsoluteError - Class in org.tensorflow.framework.losses
Computes the mean of absolute difference between labels and predictions.
MeanAbsoluteError<T extends TNumber> - Class in org.tensorflow.framework.metrics
A metric that computes the mean of absolute difference between labels and predictions.
MeanAbsoluteError() - Constructor for class org.tensorflow.framework.losses.MeanAbsoluteError
Creates a MeanAbsoluteError AbstractLoss using Class.getSimpleName() as the loss name and a AbstractLoss Reduction of AbstractLoss.REDUCTION_DEFAULT
MeanAbsoluteError(long, Class<T>) - Constructor for class org.tensorflow.framework.metrics.MeanAbsoluteError
Creates a Mean Absolute Error metric using Class.getSimpleName() for the metric name.
MeanAbsoluteError(String, long, Class<T>) - Constructor for class org.tensorflow.framework.metrics.MeanAbsoluteError
Creates a Mean Absolute Error metric
MeanAbsoluteError(String, Reduction) - Constructor for class org.tensorflow.framework.losses.MeanAbsoluteError
Creates a MeanAbsoluteError
MeanAbsoluteError(Reduction) - Constructor for class org.tensorflow.framework.losses.MeanAbsoluteError
Creates a MeanAbsoluteError AbstractLoss using Class.getSimpleName() as the loss name
meanAbsolutePercentageError(Ops, Operand<? extends TNumber>, Operand<T>) - Static method in class org.tensorflow.framework.losses.Losses
Calculates the mean absolute percentage error between labels and predictions.
MeanAbsolutePercentageError - Class in org.tensorflow.framework.losses
Computes the mean absolute percentage error between labels and predictions.
MeanAbsolutePercentageError<T extends TNumber> - Class in org.tensorflow.framework.metrics
A metric that computes the mean of absolute difference between labels and predictions.
MeanAbsolutePercentageError() - Constructor for class org.tensorflow.framework.losses.MeanAbsolutePercentageError
Creates a MeanAbsolutePercentageError AbstractLoss using Class.getSimpleName() as the loss name and a AbstractLoss Reduction of AbstractLoss.REDUCTION_DEFAULT
MeanAbsolutePercentageError(long, Class<T>) - Constructor for class org.tensorflow.framework.metrics.MeanAbsolutePercentageError
Creates a Mean Absolute Error metric using Class.getSimpleName() for the metric name.
MeanAbsolutePercentageError(String, long, Class<T>) - Constructor for class org.tensorflow.framework.metrics.MeanAbsolutePercentageError
Creates a Mean Absolute Error metric
MeanAbsolutePercentageError(String, Reduction) - Constructor for class org.tensorflow.framework.losses.MeanAbsolutePercentageError
Creates a MeanAbsolutePercentageError
MeanAbsolutePercentageError(Reduction) - Constructor for class org.tensorflow.framework.losses.MeanAbsolutePercentageError
Creates a MeanAbsolutePercentageError AbstractLoss using Class.getSimpleName() as the loss name
MeanIoU<T extends TNumber> - Class in org.tensorflow.framework.metrics
Computes the mean Intersection-Over-Union metric.
MeanIoU(long, long, Class<T>) - Constructor for class org.tensorflow.framework.metrics.MeanIoU
Creates a metric MeanIoU, using name as Class.getSimpleName()
MeanIoU(String, long, long, Class<T>) - Constructor for class org.tensorflow.framework.metrics.MeanIoU
Creates a MeanIoU metric
MeanRelativeError<T extends TNumber> - Class in org.tensorflow.framework.metrics
Computes the mean relative error by normalizing with the given values.
MeanRelativeError(double[], long, Class<T>) - Constructor for class org.tensorflow.framework.metrics.MeanRelativeError
Creates a MeanRelativeError metric using Class.getSimpleName() as the name
MeanRelativeError(float[], long, Class<T>) - Constructor for class org.tensorflow.framework.metrics.MeanRelativeError
Creates a MeanRelativeError metric using Class.getSimpleName() as the name
MeanRelativeError(String, double[], long, Class<T>) - Constructor for class org.tensorflow.framework.metrics.MeanRelativeError
Creates a MeanRelativeError metric
MeanRelativeError(String, float[], long, Class<T>) - Constructor for class org.tensorflow.framework.metrics.MeanRelativeError
Creates a MeanRelativeError metric
MeanRelativeError(String, Operand<T>, long, Class<T>) - Constructor for class org.tensorflow.framework.metrics.MeanRelativeError
Creates a MeanRelativeError metric
MeanRelativeError(Operand<T>, long, Class<T>) - Constructor for class org.tensorflow.framework.metrics.MeanRelativeError
Creates a MeanRelativeError metric using Class.getSimpleName() as the name
meanSquaredError(Ops, Operand<? extends TNumber>, Operand<T>) - Static method in class org.tensorflow.framework.losses.Losses
Computes the mean squared error between labels and predictions.
MeanSquaredError - Class in org.tensorflow.framework.losses
Computes the mean of squares of errors between labels and predictions.
MeanSquaredError<T extends TNumber> - Class in org.tensorflow.framework.metrics
A metric that computes the mean of absolute difference between labels and predictions.
MeanSquaredError() - Constructor for class org.tensorflow.framework.losses.MeanSquaredError
Creates a MeanSquaredError AbstractLoss using Class.getSimpleName() as the loss name and a AbstractLoss Reduction of AbstractLoss.REDUCTION_DEFAULT
MeanSquaredError(long, Class<T>) - Constructor for class org.tensorflow.framework.metrics.MeanSquaredError
Creates a Mean Absolute Error metric using Class.getSimpleName() for the metric name.
MeanSquaredError(String, long, Class<T>) - Constructor for class org.tensorflow.framework.metrics.MeanSquaredError
Creates a Mean Absolute Error metric
MeanSquaredError(String, Reduction) - Constructor for class org.tensorflow.framework.losses.MeanSquaredError
Creates a MeanSquaredError
MeanSquaredError(Reduction) - Constructor for class org.tensorflow.framework.losses.MeanSquaredError
Creates a MeanSquaredError AbstractLoss using Class.getSimpleName() as the loss name
meanSquaredLogarithmicError(Ops, Operand<? extends TNumber>, Operand<T>) - Static method in class org.tensorflow.framework.losses.Losses
Calculates the mean squared logarithmic error between labels and predictions.
MeanSquaredLogarithmicError - Class in org.tensorflow.framework.losses
Computes the mean squared logarithmic errors between labels and predictions.
MeanSquaredLogarithmicError<T extends TNumber> - Class in org.tensorflow.framework.metrics
A metric that computes the mean of absolute difference between labels and predictions.
MeanSquaredLogarithmicError() - Constructor for class org.tensorflow.framework.losses.MeanSquaredLogarithmicError
Creates a MeanSquaredError AbstractLoss using Class.getSimpleName() as the loss name and a AbstractLoss Reduction of AbstractLoss.REDUCTION_DEFAULT
MeanSquaredLogarithmicError(long, Class<T>) - Constructor for class org.tensorflow.framework.metrics.MeanSquaredLogarithmicError
Creates a Mean Absolute Error metric using Class.getSimpleName() for the metric name.
MeanSquaredLogarithmicError(String, long, Class<T>) - Constructor for class org.tensorflow.framework.metrics.MeanSquaredLogarithmicError
Creates a Mean Absolute Error metric
MeanSquaredLogarithmicError(String, Reduction) - Constructor for class org.tensorflow.framework.losses.MeanSquaredLogarithmicError
Creates a MeanSquaredError
MeanSquaredLogarithmicError(Reduction) - Constructor for class org.tensorflow.framework.losses.MeanSquaredLogarithmicError
Creates a MeanSquaredError AbstractLoss using Class.getSimpleName() as the loss name
MeanTensor<T extends TNumber> - Class in org.tensorflow.framework.metrics
Metric that computes the element-wise (weighted) mean of the given tensors.
MeanTensor(long, Class<T>) - Constructor for class org.tensorflow.framework.metrics.MeanTensor
Creates a MeanTensor metric, using Class.getSimpleName() as the name
MeanTensor(String, long, Class<T>) - Constructor for class org.tensorflow.framework.metrics.MeanTensor
Creates a MeanTensor metric
Metric - Interface in org.tensorflow.framework.metrics
Interface for metrics
MetricReduction - Enum in org.tensorflow.framework.metrics
Defines the different types of metric reductions
Metrics - Class in org.tensorflow.framework.metrics
Static methods for computing metrics.
Metrics() - Constructor for class org.tensorflow.framework.metrics.Metrics
 
MG - Static variable in class org.tensorflow.framework.optimizers.RMSProp
 
MIN_VALUE_DEFAULT - Static variable in class org.tensorflow.framework.constraints.MinMaxNorm
 
minimize(Operand<?>) - Method in class org.tensorflow.framework.optimizers.Optimizer
Minimizes the loss by updating the variables
minimize(Operand<?>, String) - Method in class org.tensorflow.framework.optimizers.Optimizer
Minimizes the loss by updating the variables
MinMaxNorm - Class in org.tensorflow.framework.constraints
Constrains the weights to have the norm between a lower bound and an upper bound.
MinMaxNorm() - Constructor for class org.tensorflow.framework.constraints.MinMaxNorm
Create a MinMaxNorm constraint using MinMaxNorm.MIN_VALUE_DEFAULT for the min value, MinMaxNorm.MAX_VALUE_DEFAULT for the max value, MinMaxNorm.RATE_DEFAULT for the rate and MinMaxNorm.AXIS_DEFAULT for the axis
MinMaxNorm(double, double) - Constructor for class org.tensorflow.framework.constraints.MinMaxNorm
Create a MinMaxNorm constraint using MinMaxNorm.RATE_DEFAULT for the rate and MinMaxNorm.AXIS_DEFAULT for the axis
MinMaxNorm(double, double, double, int) - Constructor for class org.tensorflow.framework.constraints.MinMaxNorm
Create a MinMaxNorm constraint
MinMaxNorm(double, double, double, int[]) - Constructor for class org.tensorflow.framework.constraints.MinMaxNorm
Create a MinMaxNorm constraint
MINORING - org.tensorflow.framework.metrics.AUCSummationMethod
Apply left summation for increasing intervals and right summation for decreasing intervals
MINVAL_DEFAULT - Static variable in class org.tensorflow.framework.initializers.RandomUniform
 
MODE_DEFAULT - Static variable in class org.tensorflow.framework.initializers.VarianceScaling
 
Momentum - Class in org.tensorflow.framework.optimizers
Stochastic gradient descent plus momentum, either nesterov or traditional.
Momentum(Graph) - Constructor for class org.tensorflow.framework.optimizers.Momentum
Creates a Momentum Optimizer
Momentum(Graph, float) - Constructor for class org.tensorflow.framework.optimizers.Momentum
Creates a Momentum Optimizer
Momentum(Graph, float, float) - Constructor for class org.tensorflow.framework.optimizers.Momentum
Creates a Momentum Optimizer
Momentum(Graph, float, float, boolean) - Constructor for class org.tensorflow.framework.optimizers.Momentum
Creates a Momentum Optimizer
Momentum(Graph, String, float, float, boolean) - Constructor for class org.tensorflow.framework.optimizers.Momentum
Creates a Momentum Optimizer
MOMENTUM - org.tensorflow.framework.optimizers.Optimizers
 
MOMENTUM - Static variable in class org.tensorflow.framework.optimizers.Momentum
 
MOMENTUM - Static variable in class org.tensorflow.framework.optimizers.Nadam
 
MOMENTUM - Static variable in class org.tensorflow.framework.optimizers.RMSProp
 
MOMENTUM_DEFAULT - Static variable in class org.tensorflow.framework.optimizers.Momentum
 
MOMENTUM_DEFAULT - Static variable in class org.tensorflow.framework.optimizers.RMSProp
 

N

Nadam - Class in org.tensorflow.framework.optimizers
Nadam Optimizer that implements the NAdam algorithm.
Nadam(Graph) - Constructor for class org.tensorflow.framework.optimizers.Nadam
Creates a Nadam Optimizer
Nadam(Graph, float) - Constructor for class org.tensorflow.framework.optimizers.Nadam
Creates a Nadam Optimizer
Nadam(Graph, float, float, float, float) - Constructor for class org.tensorflow.framework.optimizers.Nadam
Creates a Nadam Optimizer
Nadam(Graph, String, float) - Constructor for class org.tensorflow.framework.optimizers.Nadam
Creates a Nadam Optimizer
Nadam(Graph, String, float, float, float, float) - Constructor for class org.tensorflow.framework.optimizers.Nadam
Creates a Nadam Optimizer
NADAM - org.tensorflow.framework.optimizers.Optimizers
 
NAME - Static variable in class org.tensorflow.framework.activations.ELU
The activation name as known by TensorFlow
NAME - Static variable in class org.tensorflow.framework.activations.Exponential
The activation name as known by TensorFlow
NAME - Static variable in class org.tensorflow.framework.activations.GELU
The activation name as known by TensorFlow
NAME - Static variable in class org.tensorflow.framework.activations.HardSigmoid
The activation name as known by TensorFlow
NAME - Static variable in class org.tensorflow.framework.activations.Linear
The activation name as known by TensorFlow
NAME - Static variable in class org.tensorflow.framework.activations.ReLU
The activation name as known by TensorFlow
NAME - Static variable in class org.tensorflow.framework.activations.SELU
The activation name as known by TensorFlow
NAME - Static variable in class org.tensorflow.framework.activations.Sigmoid
The activation name as known by TensorFlow
NAME - Static variable in class org.tensorflow.framework.activations.Softmax
The activation name as known by TensorFlow
NAME - Static variable in class org.tensorflow.framework.activations.Softplus
The activation name as known by TensorFlow
NAME - Static variable in class org.tensorflow.framework.activations.Softsign
The activation name as known by TensorFlow
NAME - Static variable in class org.tensorflow.framework.activations.Swish
The activation name as known by TensorFlow
NAME - Static variable in class org.tensorflow.framework.activations.Tanh
The activation name as known by TensorFlow
NAME_KEY - Static variable in class org.tensorflow.framework.activations.AbstractActivation
 
NESTEROV_DEFAULT - Static variable in class org.tensorflow.framework.optimizers.Momentum
 
nn - Variable in class org.tensorflow.framework.op.FrameworkOps
 
NnOps - Class in org.tensorflow.framework.op
Creates Framework nerual network Operations
NONE - org.tensorflow.framework.losses.Reduction
 
NonNeg - Class in org.tensorflow.framework.constraints
Constrains the weights to be non-negative.
NonNeg() - Constructor for class org.tensorflow.framework.constraints.NonNeg
Create a NonNeg constraint
norm(Ops, Operand<T>, int[]) - Method in class org.tensorflow.framework.constraints.AbstractConstraint
Calculates the norm of the weights along the axes
NORMAL - org.tensorflow.framework.initializers.VarianceScaling.Distribution
 
NotBroadcastableException - Exception in org.tensorflow.framework.metrics.exceptions
Exception that indicates that static shapes are not able to broadcast among each other during arithmetic operations.
NotBroadcastableException(String) - Constructor for exception org.tensorflow.framework.metrics.exceptions.NotBroadcastableException
Creates a new NotBroadcastableException exception with the specified detail message
NotBroadcastableException(String, Throwable) - Constructor for exception org.tensorflow.framework.metrics.exceptions.NotBroadcastableException
Creates a new NotBroadcastableException exception with the specified detail message

O

of(String) - Static method in enum org.tensorflow.framework.activations.Activations
Gets the ActivationType based on the TensorFlow name for the activation
ofName(String) - Static method in enum org.tensorflow.framework.losses.Reduction
Get the Reduction based on name
Ones<T extends TType> - Class in org.tensorflow.framework.initializers
Initializer that generates tensors initialized to 1.
Ones() - Constructor for class org.tensorflow.framework.initializers.Ones
Creates an Initializer that sets all values to one.
Optimizer - Class in org.tensorflow.framework.optimizers
Base class for gradient optimizers.
Optimizer(Graph) - Constructor for class org.tensorflow.framework.optimizers.Optimizer
Builds an optimizer for the supplied graph.
Optimizer(Graph, String) - Constructor for class org.tensorflow.framework.optimizers.Optimizer
Builds an optimizer for the supplied graph.
Optimizer.GradAndVar<T extends TType> - Class in org.tensorflow.framework.optimizers
A class that holds a paired gradient and variable.
Optimizer.Options - Class in org.tensorflow.framework.optimizers
Optional attributes for Optimizer
Optimizers - Enum in org.tensorflow.framework.optimizers
Enumerator used to create a new Optimizer with default parameters.
org.tensorflow.framework.activations - package org.tensorflow.framework.activations
 
org.tensorflow.framework.constraints - package org.tensorflow.framework.constraints
 
org.tensorflow.framework.data - package org.tensorflow.framework.data
 
org.tensorflow.framework.initializers - package org.tensorflow.framework.initializers
 
org.tensorflow.framework.losses - package org.tensorflow.framework.losses
 
org.tensorflow.framework.metrics - package org.tensorflow.framework.metrics
 
org.tensorflow.framework.metrics.exceptions - package org.tensorflow.framework.metrics.exceptions
 
org.tensorflow.framework.op - package org.tensorflow.framework.op
 
org.tensorflow.framework.op.linalg - package org.tensorflow.framework.op.linalg
 
org.tensorflow.framework.op.math - package org.tensorflow.framework.op.math
 
org.tensorflow.framework.op.nn - package org.tensorflow.framework.op.nn
 
org.tensorflow.framework.op.sets - package org.tensorflow.framework.op.sets
 
org.tensorflow.framework.optimizers - package org.tensorflow.framework.optimizers
 
org.tensorflow.framework.regularizers - package org.tensorflow.framework.regularizers
 
org.tensorflow.framework.utils - package org.tensorflow.framework.utils
 
Orthogonal<T extends TFloating> - Class in org.tensorflow.framework.initializers
Initializer that generates an orthogonal matrix.
Orthogonal(double, long) - Constructor for class org.tensorflow.framework.initializers.Orthogonal
Creates an Orthogonal Initializer
Orthogonal(long) - Constructor for class org.tensorflow.framework.initializers.Orthogonal
Creates an Orthogonal Initializer using Orthogonal.GAIN_DEFAULT for the gain.
outputShapes - Variable in class org.tensorflow.framework.data.DatasetIterator
 
outputTypes - Variable in class org.tensorflow.framework.data.DatasetIterator
 

P

poisson(Ops, Operand<? extends TNumber>, Operand<T>) - Static method in class org.tensorflow.framework.losses.Losses
Computes the Poisson loss between labels and predictions.
Poisson - Class in org.tensorflow.framework.losses
Computes the Poisson loss between labels and predictions.
Poisson<T extends TNumber> - Class in org.tensorflow.framework.metrics
A metric that computes the poisson loss metric between labels and predictions.
Poisson() - Constructor for class org.tensorflow.framework.losses.Poisson
Creates a Poisson AbstractLoss using Class.getSimpleName() as the loss name and a AbstractLoss Reduction of AbstractLoss.REDUCTION_DEFAULT
Poisson(long, Class<T>) - Constructor for class org.tensorflow.framework.metrics.Poisson
Creates a Poisson metric using Class.getSimpleName() for the metric name.
Poisson(String) - Constructor for class org.tensorflow.framework.losses.Poisson
Creates a Poisson AbstractLoss using a AbstractLoss Reduction of AbstractLoss.REDUCTION_DEFAULT
Poisson(String, long, Class<T>) - Constructor for class org.tensorflow.framework.metrics.Poisson
Creates a Poisson metric
Poisson(String, Reduction) - Constructor for class org.tensorflow.framework.losses.Poisson
Creates a Poisson AbstractLoss
Poisson(Reduction) - Constructor for class org.tensorflow.framework.losses.Poisson
Creates a Poisson AbstractLoss using Class.getSimpleName() as the loss name
PR - org.tensorflow.framework.metrics.AUCCurve
Precision-Recall-curve
Precision<T extends TNumber> - Class in org.tensorflow.framework.metrics
Computes the precision of the predictions with respect to the labels.
Precision(float[], long, Class<T>) - Constructor for class org.tensorflow.framework.metrics.Precision
Creates a Precision Metric with a name of Class.getSimpleName() and no topK or classId values.
Precision(float[], Integer, Integer, long, Class<T>) - Constructor for class org.tensorflow.framework.metrics.Precision
Creates a Precision Metric with a name of Class.getSimpleName()
Precision(float, long, Class<T>) - Constructor for class org.tensorflow.framework.metrics.Precision
Creates a Precision Metric with a name of Class.getSimpleName() and no topK or classId values.
Precision(float, Integer, Integer, long, Class<T>) - Constructor for class org.tensorflow.framework.metrics.Precision
Creates a Precision Metric with a name of Class.getSimpleName()
Precision(long, Class<T>) - Constructor for class org.tensorflow.framework.metrics.Precision
Creates a Precision Metric with a name of Class.getSimpleName() and no topK or classId values and with a threshold of Precision.DEFAULT_THRESHOLD.
Precision(String, float[], long, Class<T>) - Constructor for class org.tensorflow.framework.metrics.Precision
Creates a Precision Metric with no topK or classId values.
Precision(String, float[], Integer, Integer, long, Class<T>) - Constructor for class org.tensorflow.framework.metrics.Precision
Creates a Precision Metric.
Precision(String, float, long, Class<T>) - Constructor for class org.tensorflow.framework.metrics.Precision
Creates a Precision Metric with no topK or classId values.
Precision(String, float, Integer, Integer, long, Class<T>) - Constructor for class org.tensorflow.framework.metrics.Precision
Creates a Precision Metric.
Precision(String, long, Class<T>) - Constructor for class org.tensorflow.framework.metrics.Precision
Creates a Precision Metric with no topK or classId values with a threshold of Precision.DEFAULT_THRESHOLD.
PrecisionAtRecall<T extends TNumber> - Class in org.tensorflow.framework.metrics
Computes best precision where recall is >= specified value.
PrecisionAtRecall(float, int, long, Class<T>) - Constructor for class org.tensorflow.framework.metrics.PrecisionAtRecall
Creates a PrecisionRecall metric with a name of Class.getSimpleName().
PrecisionAtRecall(float, long, Class<T>) - Constructor for class org.tensorflow.framework.metrics.PrecisionAtRecall
Creates a PrecisionRecall metric with a name of Class.getSimpleName() and SensitivitySpecificityBase.DEFAULT_NUM_THRESHOLDS for the number of thresholds
PrecisionAtRecall(String, float, int, long, Class<T>) - Constructor for class org.tensorflow.framework.metrics.PrecisionAtRecall
Creates a PrecisionRecall metric.
PrecisionAtRecall(String, float, long, Class<T>) - Constructor for class org.tensorflow.framework.metrics.PrecisionAtRecall
Creates a PrecisionRecall metric with SensitivitySpecificityBase.DEFAULT_NUM_THRESHOLDS for the number of thresholds
prepare(String) - Method in class org.tensorflow.framework.optimizers.AdaGradDA
Returns a No-op prepare.
prepare(String) - Method in class org.tensorflow.framework.optimizers.Adam
Returns a No-op prepare.
prepare(String) - Method in class org.tensorflow.framework.optimizers.Adamax
Returns a No-op prepare.
prepare(String) - Method in class org.tensorflow.framework.optimizers.Nadam
Returns a No-op prepare.
prepare(String) - Method in class org.tensorflow.framework.optimizers.Optimizer
Returns a No-op prepare.

R

RandomNormal<T extends TFloating> - Class in org.tensorflow.framework.initializers
Initializer that generates tensors with a normal distribution.
RandomNormal(double, double, long) - Constructor for class org.tensorflow.framework.initializers.RandomNormal
creates the RandomUniform initializer
RandomNormal(double, long) - Constructor for class org.tensorflow.framework.initializers.RandomNormal
Creates the RandomUniform initializer using RandomNormal.STDDEV_DEFAULT for the standard deviation.
RandomNormal(long) - Constructor for class org.tensorflow.framework.initializers.RandomNormal
Creates the RandomUniform initializer using RandomNormal.MEAN_DEFAULT for the mean and RandomNormal.STDDEV_DEFAULT for the standard deviation.
RandomUniform<T extends TNumber> - Class in org.tensorflow.framework.initializers
Initializer that generates tensors with a uniform distribution.
RandomUniform(double, double, long) - Constructor for class org.tensorflow.framework.initializers.RandomUniform
Creates a RandomUniform initializer
RandomUniform(long) - Constructor for class org.tensorflow.framework.initializers.RandomUniform
Creates a RandomUniform initializer using RandomUniform.MINVAL_DEFAULT for the minval and RandomUniform.MAXVAL_DEFAULT for the maxval
RATE_DEFAULT - Static variable in class org.tensorflow.framework.constraints.MinMaxNorm
 
Recall<T extends TNumber> - Class in org.tensorflow.framework.metrics
Computes the recall of the predictions with respect to the labels.
Recall(float[], long, Class<T>) - Constructor for class org.tensorflow.framework.metrics.Recall
Creates a Recall metric with a name of Class.getSimpleName(), and topK and classId set to null.
Recall(float[], Integer, Integer, long, Class<T>) - Constructor for class org.tensorflow.framework.metrics.Recall
Creates a Recall metric with a name of Class.getSimpleName()
Recall(float, long, Class<T>) - Constructor for class org.tensorflow.framework.metrics.Recall
Creates a Recall metric with a name of Class.getSimpleName(), and topK and classId set to null.
Recall(float, Integer, Integer, long, Class<T>) - Constructor for class org.tensorflow.framework.metrics.Recall
Creates a Recall metric with a name of Class.getSimpleName()
Recall(long, Class<T>) - Constructor for class org.tensorflow.framework.metrics.Recall
Creates a Recall metric with a name of Class.getSimpleName(), and topK and classId set to null, and thresholds set to Recall.DEFAULT_THRESHOLD
Recall(Integer, Integer, long, Class<T>) - Constructor for class org.tensorflow.framework.metrics.Recall
Creates a Recall metric with a name of Class.getSimpleName() and using a threshold value of Recall.DEFAULT_THRESHOLD.
Recall(String, float[], long, Class<T>) - Constructor for class org.tensorflow.framework.metrics.Recall
Creates a Recall metric with topK and classId set to null.
Recall(String, float[], Integer, Integer, long, Class<T>) - Constructor for class org.tensorflow.framework.metrics.Recall
Creates a Recall metric.
Recall(String, float, long, Class<T>) - Constructor for class org.tensorflow.framework.metrics.Recall
Creates a Recall metric with topK and classId set to null.
Recall(String, float, Integer, Integer, long, Class<T>) - Constructor for class org.tensorflow.framework.metrics.Recall
Creates a Recall metric.
Recall(String, long, Class<T>) - Constructor for class org.tensorflow.framework.metrics.Recall
Creates a Recall metric with topK and classId set to null and thresholds set to Recall.DEFAULT_THRESHOLD.
Recall(String, Integer, Integer, long, Class<T>) - Constructor for class org.tensorflow.framework.metrics.Recall
Creates a Recall metric using a threshold value of Recall.DEFAULT_THRESHOLD.
RecallAtPrecision<T extends TNumber> - Class in org.tensorflow.framework.metrics
Computes best recall where precision is >= specified value.
RecallAtPrecision(float, int, long, Class<T>) - Constructor for class org.tensorflow.framework.metrics.RecallAtPrecision
Creates a PrecisionRecall metric with a name of Class.getSimpleName().
RecallAtPrecision(float, long, Class<T>) - Constructor for class org.tensorflow.framework.metrics.RecallAtPrecision
Creates a PrecisionRecall metric with a name of Class.getSimpleName() and SensitivitySpecificityBase.DEFAULT_NUM_THRESHOLDS for the number of thresholds
RecallAtPrecision(String, float, int, long, Class<T>) - Constructor for class org.tensorflow.framework.metrics.RecallAtPrecision
Creates a PrecisionRecall metric.
RecallAtPrecision(String, float, long, Class<T>) - Constructor for class org.tensorflow.framework.metrics.RecallAtPrecision
Creates a PrecisionRecall metric with SensitivitySpecificityBase.DEFAULT_NUM_THRESHOLDS for the number of thresholds
reduce(Shape, int) - Static method in class org.tensorflow.framework.utils.ShapeUtils
Reduces the shape by eliminating trailing Dimensions.
reduceLogSumExp(Scope, Operand<T>, int[], boolean) - Static method in class org.tensorflow.framework.op.math.ReduceLogSumExp
Computes log(sum(exp(elements across dimensions of a tensor))).
reduceLogSumExp(Operand<T>, int[], boolean) - Method in class org.tensorflow.framework.op.MathOps
Computes log(sum(exp(elements across dimensions of a tensor))).
ReduceLogSumExp - Class in org.tensorflow.framework.op.math
Reduce Log Sum Exp Operations
ReduceLogSumExp() - Constructor for class org.tensorflow.framework.op.math.ReduceLogSumExp
 
Reduction - Enum in org.tensorflow.framework.losses
Type of AbstractLoss Reduction
Regularizer - Interface in org.tensorflow.framework.regularizers
 
relu(Ops, Operand<T>) - Static method in class org.tensorflow.framework.activations.ReLU
Applies the rectified linear unit activation function with default values.
relu(Ops, Operand<T>, float, float, float) - Static method in class org.tensorflow.framework.activations.ReLU
Applies the rectified linear unit activation function.
ReLU - Class in org.tensorflow.framework.activations
Rectified Linear Unit(ReLU) activation.
ReLU() - Constructor for class org.tensorflow.framework.activations.ReLU
Creates a new ReLU with alpha=ReLU.ALPHA_DEFAULT, maxValue=ReLU.MAX_VALUE_DEFAULT, threshold=ReLU.THRESHOLD_DEFAULT,
ReLU(float, float, float) - Constructor for class org.tensorflow.framework.activations.ReLU
Creates a new ReLU
ReLU(Map<String, Object>) - Constructor for class org.tensorflow.framework.activations.ReLU
Creates a ReLU activation from a config map.
RELU - org.tensorflow.framework.activations.Activations
 
resetStates(Ops) - Method in class org.tensorflow.framework.metrics.AUC
Resets any state variables to their initial values
resetStates(Ops) - Method in class org.tensorflow.framework.metrics.MeanIoU
Resets any state variables to their initial values
resetStates(Ops) - Method in class org.tensorflow.framework.metrics.MeanTensor
Resets any state variables to their initial values
resetStates(Ops) - Method in interface org.tensorflow.framework.metrics.Metric
Resets any state variables to their initial values
resetStates(Ops) - Method in class org.tensorflow.framework.metrics.Precision
Resets any state variables to their initial values
resetStates(Ops) - Method in class org.tensorflow.framework.metrics.Recall
Resets any state variables to their initial values
result(Ops, Class<T>) - Method in interface org.tensorflow.framework.metrics.Metric
Gets the current result of the metric
result(Ops, Class<U>) - Method in class org.tensorflow.framework.metrics.AUC
Gets the current result of the metric
result(Ops, Class<U>) - Method in class org.tensorflow.framework.metrics.MeanIoU
Gets the current result of the metric
result(Ops, Class<U>) - Method in class org.tensorflow.framework.metrics.MeanTensor
Gets the current result of the metric
result(Ops, Class<U>) - Method in class org.tensorflow.framework.metrics.Precision
Gets the current result of the metric
result(Ops, Class<U>) - Method in class org.tensorflow.framework.metrics.PrecisionAtRecall
Gets the current result of the metric
result(Ops, Class<U>) - Method in class org.tensorflow.framework.metrics.Recall
 
result(Ops, Class<U>) - Method in class org.tensorflow.framework.metrics.RecallAtPrecision
Gets the current result of the metric
result(Ops, Class<U>) - Method in class org.tensorflow.framework.metrics.RootMeanSquaredError
Gets the current result of the metric
result(Ops, Class<U>) - Method in class org.tensorflow.framework.metrics.SensitivityAtSpecificity
Gets the current result of the metric
result(Ops, Class<U>) - Method in class org.tensorflow.framework.metrics.SpecificityAtSensitivity
Gets the current result of the metric
RHO_DEFAULT - Static variable in class org.tensorflow.framework.optimizers.AdaDelta
 
RMS - Static variable in class org.tensorflow.framework.optimizers.RMSProp
 
RMSProp - Class in org.tensorflow.framework.optimizers
Optimizer that implements the RMSProp algorithm.
RMSProp(Graph) - Constructor for class org.tensorflow.framework.optimizers.RMSProp
Creates an RMSPRrop Optimizer
RMSProp(Graph, float) - Constructor for class org.tensorflow.framework.optimizers.RMSProp
Creates an RMSPRrop Optimizer
RMSProp(Graph, float, float, float, float, boolean) - Constructor for class org.tensorflow.framework.optimizers.RMSProp
Creates an RMSPRrop Optimizer
RMSProp(Graph, String, float) - Constructor for class org.tensorflow.framework.optimizers.RMSProp
Creates an RMSPRrop Optimizer
RMSProp(Graph, String, float, float, float, float, boolean) - Constructor for class org.tensorflow.framework.optimizers.RMSProp
Creates an RMSPRrop Optimizer
RMSPROP - org.tensorflow.framework.optimizers.Optimizers
 
ROC - org.tensorflow.framework.metrics.AUCCurve
Receiver Operator Characteristic curve
RootMeanSquaredError<T extends TNumber> - Class in org.tensorflow.framework.metrics
Computes root mean squared error metric between labels and predictions .
RootMeanSquaredError(long, Class<T>) - Constructor for class org.tensorflow.framework.metrics.RootMeanSquaredError
Creates a RootMeanSquaredError metric with a name of Class.getSimpleName()
RootMeanSquaredError(String, long, Class<T>) - Constructor for class org.tensorflow.framework.metrics.RootMeanSquaredError
Creates a RootMeanSquaredError metric

S

SCALE - Static variable in class org.tensorflow.framework.initializers.Glorot
 
SCALE - Static variable in class org.tensorflow.framework.initializers.He
 
SCALE_DEFAULT - Static variable in class org.tensorflow.framework.initializers.VarianceScaling
 
scope() - Method in class org.tensorflow.framework.op.FrameworkOps
Returns the current scope of this API
SECOND_MOMENT - Static variable in class org.tensorflow.framework.optimizers.Adam
 
SECOND_MOMENT - Static variable in class org.tensorflow.framework.optimizers.Adamax
 
SECOND_MOMENT - Static variable in class org.tensorflow.framework.optimizers.Nadam
 
selu(Ops, Operand<T>) - Static method in class org.tensorflow.framework.activations.SELU
Applies Scaled Exponential Linear Unit (SELU) activation function
SELU - Class in org.tensorflow.framework.activations
Scaled Exponential Linear Unit (SELU).
SELU - org.tensorflow.framework.activations.Activations
 
SELU() - Constructor for class org.tensorflow.framework.activations.SELU
Creates a Scaled Exponential Linear Unit (SELU) activation.
SELU(Map<String, Object>) - Constructor for class org.tensorflow.framework.activations.SELU
Creates a new Exponential from a configuration Map
SensitivityAtSpecificity<T extends TNumber> - Class in org.tensorflow.framework.metrics
Computes best sensitivity where sensitivity is >= specified value.
SensitivityAtSpecificity(float, int, long, Class<T>) - Constructor for class org.tensorflow.framework.metrics.SensitivityAtSpecificity
Creates a PrecisionRecall metric with a name of Class.getSimpleName().
SensitivityAtSpecificity(float, long, Class<T>) - Constructor for class org.tensorflow.framework.metrics.SensitivityAtSpecificity
Creates a SpecificityAtSensitivity metric with a name of Class.getSimpleName() and SensitivitySpecificityBase.DEFAULT_NUM_THRESHOLDS for the number of thresholds
SensitivityAtSpecificity(String, float, int, long, Class<T>) - Constructor for class org.tensorflow.framework.metrics.SensitivityAtSpecificity
Creates a PrecisionRecall metric.
SensitivityAtSpecificity(String, float, long, Class<T>) - Constructor for class org.tensorflow.framework.metrics.SensitivityAtSpecificity
Creates a SpecificityAtSensitivity metric with SensitivitySpecificityBase.DEFAULT_NUM_THRESHOLDS for the number of thresholds
setInitialized(boolean) - Method in class org.tensorflow.framework.metrics.BaseMetric
Sets the initialized indicator
setName(String) - Method in class org.tensorflow.framework.metrics.BaseMetric
Sets the metric name
setNumLabels(Integer) - Method in class org.tensorflow.framework.metrics.AUC
 
setOperation(Scope, Operand<T>, Operand<T>, Sets.Operation) - Static method in class org.tensorflow.framework.op.sets.Sets
Compute set operation of elements in last dimension of a and b.
SetOps - Class in org.tensorflow.framework.op
Creates Framework set Operations
sets - Variable in class org.tensorflow.framework.op.FrameworkOps
 
Sets - Class in org.tensorflow.framework.op.sets
 
Sets() - Constructor for class org.tensorflow.framework.op.sets.Sets
 
Sets.Operation - Enum in org.tensorflow.framework.op.sets
setTF(Ops) - Method in class org.tensorflow.framework.activations.AbstractActivation
Sets the TensorFlow Ops
setTF(Ops) - Method in class org.tensorflow.framework.metrics.BaseMetric
Sets the TensorFlow Ops for this metric.
ShapeUtils - Class in org.tensorflow.framework.utils
Various methods for processing with Shapes and Operands
ShapeUtils() - Constructor for class org.tensorflow.framework.utils.ShapeUtils
 
sharedName - Variable in class org.tensorflow.framework.optimizers.Optimizer.Options
 
sharedName(String) - Method in class org.tensorflow.framework.optimizers.Optimizer.Options
Sets the shared name
sigmoid(Ops, Operand<T>) - Static method in class org.tensorflow.framework.activations.Sigmoid
Applies the Sigmoid activation function, sigmoid(x) = 1 / (1 + exp(-x)).
Sigmoid - Class in org.tensorflow.framework.activations
Sigmoid activation.
Sigmoid() - Constructor for class org.tensorflow.framework.activations.Sigmoid
Creates a Sigmoid activation.
Sigmoid(Map<String, Object>) - Constructor for class org.tensorflow.framework.activations.Sigmoid
Creates a new Exponential from a configuration Map
SIGMOID - org.tensorflow.framework.activations.Activations
 
sigmoidCrossEntropyWithLogits(Scope, Operand<T>, Operand<T>) - Static method in class org.tensorflow.framework.op.nn.SigmoidCrossEntropyWithLogits
Computes sigmoid cross entropy given logits.
sigmoidCrossEntropyWithLogits(Operand<T>, Operand<T>) - Method in class org.tensorflow.framework.op.NnOps
Computes sigmoid cross entropy given logits.
SigmoidCrossEntropyWithLogits - Class in org.tensorflow.framework.op.nn
 
SigmoidCrossEntropyWithLogits() - Constructor for class org.tensorflow.framework.op.nn.SigmoidCrossEntropyWithLogits
 
skip(long) - Method in class org.tensorflow.framework.data.Dataset
Returns a new `Dataset` which skips `count` initial elements from this dataset
softmax(Ops, Operand<T>) - Static method in class org.tensorflow.framework.activations.Softmax
Converts a vector of values to a probability distribution along the last axis.
softmax(Ops, Operand<T>, Operand<TInt32>) - Static method in class org.tensorflow.framework.activations.Softmax
Converts a vector of values to a probability distribution.
Softmax - Class in org.tensorflow.framework.activations
Softmax converts a real vector to a vector of categorical probabilities.
Softmax() - Constructor for class org.tensorflow.framework.activations.Softmax
Creates a softmax activation where the default axis is Softmax.AXIS_DEFAULT which indicates the last dimension.
Softmax(int) - Constructor for class org.tensorflow.framework.activations.Softmax
Creates a Softmax activation
Softmax(Map<String, Object>) - Constructor for class org.tensorflow.framework.activations.Softmax
Creates a Softmax activation from a config map.
SOFTMAX - org.tensorflow.framework.activations.Activations
 
softmaxCrossEntropyWithLogits(Scope, Operand<U>, Operand<T>, int) - Static method in class org.tensorflow.framework.op.nn.SoftmaxCrossEntropyWithLogits
Computes softmax cross entropy between logits and labels.
softmaxCrossEntropyWithLogits(Operand<U>, Operand<T>, int) - Method in class org.tensorflow.framework.op.NnOps
Computes softmax cross entropy between logits and labels.
SoftmaxCrossEntropyWithLogits - Class in org.tensorflow.framework.op.nn
 
SoftmaxCrossEntropyWithLogits() - Constructor for class org.tensorflow.framework.op.nn.SoftmaxCrossEntropyWithLogits
 
softplus(Ops, Operand<T>) - Static method in class org.tensorflow.framework.activations.Softplus
Applies the Softplus activation function, softplus(x) = log(exp(x) + 1).
Softplus - Class in org.tensorflow.framework.activations
Softplus activation function, softplus(x) = log(exp(x) + 1).
Softplus() - Constructor for class org.tensorflow.framework.activations.Softplus
Creates a Softplus activation function.
Softplus(Map<String, Object>) - Constructor for class org.tensorflow.framework.activations.Softplus
Creates a new Softplus from a configuration Map
SOFTPLUS - org.tensorflow.framework.activations.Activations
 
softsign(Ops, Operand<T>) - Static method in class org.tensorflow.framework.activations.Softsign
Applies the Softsign activation function, softsign(x) = x / (abs(x) + 1).
Softsign - Class in org.tensorflow.framework.activations
Softsign activation function, softsign(x) = x / (abs(x) + 1).
Softsign() - Constructor for class org.tensorflow.framework.activations.Softsign
Creates a Softsign activation.
Softsign(Map<String, Object>) - Constructor for class org.tensorflow.framework.activations.Softsign
Creates a new Softsign from a configuration Map
SOFTSIGN - org.tensorflow.framework.activations.Activations
 
SparseCategoricalAccuracy<T extends TNumber> - Class in org.tensorflow.framework.metrics
Calculates how often predictions matches integer labels.
SparseCategoricalAccuracy(long, Class<T>) - Constructor for class org.tensorflow.framework.metrics.SparseCategoricalAccuracy
Creates a SparseCategoricalAccuracy metric, using name of Class.getSimpleName().
SparseCategoricalAccuracy(String, long, Class<T>) - Constructor for class org.tensorflow.framework.metrics.SparseCategoricalAccuracy
Creates a SparseCategoricalAccuracy metric.
sparseCategoricalCrossentropy(Ops, Operand<? extends TNumber>, Operand<T>, boolean, int) - Static method in class org.tensorflow.framework.losses.Losses
Computes the sparse categorical crossentropy loss between labels and predictions.
SparseCategoricalCrossentropy - Class in org.tensorflow.framework.losses
Computes the crossentropy loss between labels and predictions.
SparseCategoricalCrossentropy<T extends TNumber> - Class in org.tensorflow.framework.metrics
A metric that computes the sparse categorical cross-entropy loss between true labels and predicted labels.
SparseCategoricalCrossentropy() - Constructor for class org.tensorflow.framework.losses.SparseCategoricalCrossentropy
Creates a SparseCategoricalCrossentropy loss using Class.getSimpleName() as the loss name, a AbstractLoss Reduction of AbstractLoss.REDUCTION_DEFAULT, and fromLogits=SparseCategoricalCrossentropy.FROM_LOGITS_DEFAULT.
SparseCategoricalCrossentropy(boolean) - Constructor for class org.tensorflow.framework.losses.SparseCategoricalCrossentropy
Creates a SparseCategoricalCrossentropy loss using Class.getSimpleName() as the loss name, a AbstractLoss Reduction of AbstractLoss.REDUCTION_DEFAULT and fromLogits=SparseCategoricalCrossentropy.FROM_LOGITS_DEFAULT.
SparseCategoricalCrossentropy(boolean, int, long, Class<T>) - Constructor for class org.tensorflow.framework.metrics.SparseCategoricalCrossentropy
Creates a SparseCategoricalCrossentropy metric using Class.getSimpleName() for the metric name.
SparseCategoricalCrossentropy(boolean, Reduction) - Constructor for class org.tensorflow.framework.losses.SparseCategoricalCrossentropy
Creates a SparseCategoricalCrossentropy loss using Class.getSimpleName() as the loss name,
SparseCategoricalCrossentropy(String) - Constructor for class org.tensorflow.framework.losses.SparseCategoricalCrossentropy
Creates a SparseCategoricalCrossentropy loss using a AbstractLoss Reduction of AbstractLoss.REDUCTION_DEFAULT, and fromLogits=SparseCategoricalCrossentropy.FROM_LOGITS_DEFAULT.
SparseCategoricalCrossentropy(String, boolean) - Constructor for class org.tensorflow.framework.losses.SparseCategoricalCrossentropy
Creates a SparseCategoricalCrossentropy using a AbstractLoss Reduction of AbstractLoss.REDUCTION_DEFAULT, and fromLogits=SparseCategoricalCrossentropy.FROM_LOGITS_DEFAULT.
SparseCategoricalCrossentropy(String, boolean, int, long, Class<T>) - Constructor for class org.tensorflow.framework.metrics.SparseCategoricalCrossentropy
Creates a SparseCategoricalCrossentropy metric
SparseCategoricalCrossentropy(String, boolean, Reduction, int) - Constructor for class org.tensorflow.framework.losses.SparseCategoricalCrossentropy
Creates a SparseCategoricalCrossentropy
SparseCategoricalCrossentropy(String, Reduction) - Constructor for class org.tensorflow.framework.losses.SparseCategoricalCrossentropy
Creates a SparseCategoricalCrossentropy loss with Reduction.AUTO and fromLogits=SparseCategoricalCrossentropy.FROM_LOGITS_DEFAULT.
SparseCategoricalCrossentropy(Reduction) - Constructor for class org.tensorflow.framework.losses.SparseCategoricalCrossentropy
Creates a SparseCategoricalCrossentropy loss using Class.getSimpleName() as the loss name, with Reduction.AUTO and fromLogits=SparseCategoricalCrossentropy.FROM_LOGITS_DEFAULT.
sparseSoftmaxCrossEntropyWithLogits(Scope, Operand<U>, Operand<T>) - Static method in class org.tensorflow.framework.op.nn.SparseSoftmaxCrossEntropyWithLogits
Computes sparse softmax cross entropy between logits and labels.
sparseSoftmaxCrossEntropyWithLogits(Operand<U>, Operand<T>) - Method in class org.tensorflow.framework.op.NnOps
Computes sparse softmax cross entropy between logits and labels.
SparseSoftmaxCrossEntropyWithLogits - Class in org.tensorflow.framework.op.nn
 
SparseSoftmaxCrossEntropyWithLogits() - Constructor for class org.tensorflow.framework.op.nn.SparseSoftmaxCrossEntropyWithLogits
 
SparseTensor<T extends TType> - Class in org.tensorflow.framework.utils
This is a helper class that represents a sparse tensor who's attributes may be passed to SparseOps methods.
SparseTensor(Operand<TInt64>, Operand<T>, Operand<TInt64>) - Constructor for class org.tensorflow.framework.utils.SparseTensor
Creates a SparseTensor
sparseTopKCategoricalAccuracy(Ops, Operand<U>, Operand<T>, int) - Static method in class org.tensorflow.framework.metrics.Metrics
Computes how often integer targets are in the top K predictions.
SparseTopKCategoricalAccuracy<T extends TNumber> - Class in org.tensorflow.framework.metrics
Computes how often integer targets are in the top `K` predictions.
SparseTopKCategoricalAccuracy(int, long, Class<T>) - Constructor for class org.tensorflow.framework.metrics.SparseTopKCategoricalAccuracy
Creates a SparseTopKCategoricalAccuracy metric using Class.getSimpleName() for the metric name.
SparseTopKCategoricalAccuracy(long, Class<T>) - Constructor for class org.tensorflow.framework.metrics.SparseTopKCategoricalAccuracy
Creates a SparseTopKCategoricalAccuracy metric using SparseTopKCategoricalAccuracy.DEFAULT_K for the number of top elements using Class.getSimpleName() for the metric name.
SparseTopKCategoricalAccuracy(String, int, long, Class<T>) - Constructor for class org.tensorflow.framework.metrics.SparseTopKCategoricalAccuracy
Creates a SparseTopKCategoricalAccuracy metric.
SparseTopKCategoricalAccuracy(String, long, Class<T>) - Constructor for class org.tensorflow.framework.metrics.SparseTopKCategoricalAccuracy
Creates a SparseTopKCategoricalAccuracy metric using SparseTopKCategoricalAccuracy.DEFAULT_K for the number of top elements.
SpecificityAtSensitivity<T extends TNumber> - Class in org.tensorflow.framework.metrics
Computes best specificity where sensitivity is >= specified value.
SpecificityAtSensitivity(float, int, long, Class<T>) - Constructor for class org.tensorflow.framework.metrics.SpecificityAtSensitivity
Creates a PrecisionRecall metric with a name of Class.getSimpleName().
SpecificityAtSensitivity(float, long, Class<T>) - Constructor for class org.tensorflow.framework.metrics.SpecificityAtSensitivity
Creates a SpecificityAtSensitivity metric with a name of Class.getSimpleName() and SensitivitySpecificityBase.DEFAULT_NUM_THRESHOLDS for the number of thresholds
SpecificityAtSensitivity(String, float, int, long, Class<T>) - Constructor for class org.tensorflow.framework.metrics.SpecificityAtSensitivity
Creates a PrecisionRecall metric.
SpecificityAtSensitivity(String, float, long, Class<T>) - Constructor for class org.tensorflow.framework.metrics.SpecificityAtSensitivity
Creates a SpecificityAtSensitivity metric with SensitivitySpecificityBase.DEFAULT_NUM_THRESHOLDS for the number of thresholds
sqrt(Ops, Operand<T>) - Method in class org.tensorflow.framework.constraints.AbstractConstraint
Gets the element-wise square root.
SQUARED_ACCUMULATOR - Static variable in class org.tensorflow.framework.optimizers.AdaGradDA
 
squaredHinge(Ops, Operand<? extends TNumber>, Operand<T>) - Static method in class org.tensorflow.framework.losses.Losses
Computes the squared hinge loss between labels and predictions.
SquaredHinge - Class in org.tensorflow.framework.losses
Computes the squared hinge loss between labels and predictions.
SquaredHinge<T extends TNumber> - Class in org.tensorflow.framework.metrics
A metric that computes the squared hinge loss metric between labels and predictions.
SquaredHinge() - Constructor for class org.tensorflow.framework.losses.SquaredHinge
Creates a Squared Hinge AbstractLoss using Class.getSimpleName() as the loss name and a AbstractLoss Reduction of AbstractLoss.REDUCTION_DEFAULT
SquaredHinge(long, Class<T>) - Constructor for class org.tensorflow.framework.metrics.SquaredHinge
Creates a SquaredHinge metric using Class.getSimpleName() for the metric name.
SquaredHinge(String, long, Class<T>) - Constructor for class org.tensorflow.framework.metrics.SquaredHinge
Creates a SquaredHinge metric
SquaredHinge(String, Reduction) - Constructor for class org.tensorflow.framework.losses.SquaredHinge
Creates a Squared Hinge
SquaredHinge(Reduction) - Constructor for class org.tensorflow.framework.losses.SquaredHinge
Creates a Squared Hinge AbstractLoss using Class.getSimpleName() as the loss name
STDDEV_DEFAULT - Static variable in class org.tensorflow.framework.initializers.RandomNormal
 
STDDEV_DEFAULT - Static variable in class org.tensorflow.framework.initializers.TruncatedNormal
 
Sum<T extends TNumber> - Class in org.tensorflow.framework.metrics
Computes the (weighted) sum of the given values.
Sum(long, Class<T>) - Constructor for class org.tensorflow.framework.metrics.Sum
Creates a Sum metric with a name of Class.getSimpleName()
Sum(String, long, Class<T>) - Constructor for class org.tensorflow.framework.metrics.Sum
Creates a Sum metric.
SUM - org.tensorflow.framework.losses.Reduction
 
SUM - org.tensorflow.framework.metrics.MetricReduction
Scalar sum of weighted values.
SUM_OVER_BATCH_SIZE - org.tensorflow.framework.losses.Reduction
 
SUM_OVER_BATCH_SIZE - org.tensorflow.framework.metrics.MetricReduction
Scalar sum of weighted values divided by number of elements.
swish(Ops, Operand<T>) - Static method in class org.tensorflow.framework.activations.Swish
Applies the Swish activation function, swish(x) = x * sigmoid(x).
Swish - Class in org.tensorflow.framework.activations
Swish activation function.
Swish() - Constructor for class org.tensorflow.framework.activations.Swish
Creates a Swish activation, swish(x) = x * sigmoid(x).
Swish(Map<String, Object>) - Constructor for class org.tensorflow.framework.activations.Swish
Creates a new Swish from a configuration Map
SWISH - org.tensorflow.framework.activations.Activations
 

T

take(long) - Method in class org.tensorflow.framework.data.Dataset
Returns a new `Dataset` with only the first `count` elements from this dataset.
tanh(Ops, Operand<T>) - Static method in class org.tensorflow.framework.activations.Tanh
Applies the Hyperbolic tangent activation function, tanh(x) = sinh(x)/cosh(x) = ((exp(x) - exp(-x))/(exp(x) + exp(-x))).
Tanh - Class in org.tensorflow.framework.activations
Hyperbolic tangent activation function.
Tanh() - Constructor for class org.tensorflow.framework.activations.Tanh
Creates a Hyperbolic tangent activation.
Tanh(Map<String, Object>) - Constructor for class org.tensorflow.framework.activations.Tanh
Creates a new Tanh from a configuration Map
TANH - org.tensorflow.framework.activations.Activations
 
tensordot(Scope, Operand<T>, Operand<T>, int) - Static method in class org.tensorflow.framework.op.math.TensorDot
Tensor contraction of a and b along specified axes and outer product.
tensordot(Scope, Operand<T>, Operand<T>, int[]) - Static method in class org.tensorflow.framework.op.math.TensorDot
Tensor contraction of a and b along specified axes and outer product.
tensordot(Scope, Operand<T>, Operand<T>, int[][]) - Static method in class org.tensorflow.framework.op.math.TensorDot
Tensor contraction of a and b along specified axes and outer product.
tensordot(Scope, Operand<T>, Operand<T>, Operand<TInt32>) - Static method in class org.tensorflow.framework.op.math.TensorDot
Tensor contraction of a and b along specified axes and outer product.
tensordot(Scope, Operand<T>, Operand<T>, Operand<TInt32>, Operand<TInt32>) - Static method in class org.tensorflow.framework.op.math.TensorDot
Tensor contraction of a and b along specified axes and outer product.
tensordot(Operand<T>, Operand<T>, int) - Method in class org.tensorflow.framework.op.MathOps
Tensor contraction of a and b along specified axes and outer product.
tensordot(Operand<T>, Operand<T>, int[]) - Method in class org.tensorflow.framework.op.MathOps
Tensor contraction of a and b along specified axes and outer product.
tensordot(Operand<T>, Operand<T>, int[][]) - Method in class org.tensorflow.framework.op.MathOps
Tensor contraction of a and b along specified axes and outer product.
tensordot(Operand<T>, Operand<T>, Operand<TInt32>) - Method in class org.tensorflow.framework.op.MathOps
Tensor contraction of a and b along specified axes and outer product.
tensordot(Operand<T>, Operand<T>, Operand<TInt32>, Operand<TInt32>) - Method in class org.tensorflow.framework.op.MathOps
Tensor contraction of a and b along specified axes and outer product.
TensorDot - Class in org.tensorflow.framework.op.math
tensor contraction Operations
TensorDot() - Constructor for class org.tensorflow.framework.op.math.TensorDot
 
tensorflow.framework - module tensorflow.framework
 
textLineDataset(Ops, String, String, long) - Static method in class org.tensorflow.framework.data.Dataset
Creates a TextLineDataset from a file containing one recored per ling.
tf - Variable in class org.tensorflow.framework.activations.AbstractActivation
The TensorFlow Ops
tf - Variable in class org.tensorflow.framework.data.Dataset
 
tf - Variable in class org.tensorflow.framework.data.DatasetIterator
 
tf - Variable in class org.tensorflow.framework.data.DatasetOptional
 
tf - Variable in class org.tensorflow.framework.optimizers.Optimizer
The ops builder for the graph.
tfRecordDataset(Ops, String, String, long) - Static method in class org.tensorflow.framework.data.Dataset
Creates a TFRecordDataset from a file containing TFRecords
THRESHOLD_DEFAULT - Static variable in class org.tensorflow.framework.activations.ReLU
 
topKCategoricalAccuracy(Ops, Operand<? extends TNumber>, Operand<T>, long) - Static method in class org.tensorflow.framework.metrics.Metrics
Computes how often targets are in the top K predictions.
TopKCategoricalAccuracy<T extends TNumber> - Class in org.tensorflow.framework.metrics
Computes the poisson loss metric between labels and predictions.
TopKCategoricalAccuracy(int, long, Class<T>) - Constructor for class org.tensorflow.framework.metrics.TopKCategoricalAccuracy
Creates a TopKCategoricalAccuracy metric using Class.getSimpleName() for the metric name.
TopKCategoricalAccuracy(long, Class<T>) - Constructor for class org.tensorflow.framework.metrics.TopKCategoricalAccuracy
Creates a TopKCategoricalAccuracy metric using TopKCategoricalAccuracy.DEFAULT_K for k, Number of top elements to look at for computing accuracy and using Class.getSimpleName() for the metric name.
TopKCategoricalAccuracy(String, int, long, Class<T>) - Constructor for class org.tensorflow.framework.metrics.TopKCategoricalAccuracy
Creates a TopKCategoricalAccuracy metric
TopKCategoricalAccuracy(String, long, Class<T>) - Constructor for class org.tensorflow.framework.metrics.TopKCategoricalAccuracy
Creates a TopKCategoricalAccuracy metric using TopKCategoricalAccuracy.DEFAULT_K for k, Number of top elements to look at for computing accuracy.
toShape(Scope, Operand<T>) - Static method in class org.tensorflow.framework.utils.ShapeUtils
Converts a shape operand to a Shape object
toString() - Method in class org.tensorflow.framework.data.Dataset
toString() - Method in class org.tensorflow.framework.optimizers.AdaDelta
toString() - Method in class org.tensorflow.framework.optimizers.AdaGrad
toString() - Method in class org.tensorflow.framework.optimizers.AdaGradDA
toString() - Method in class org.tensorflow.framework.optimizers.Adam
toString() - Method in class org.tensorflow.framework.optimizers.GradientDescent
toString() - Method in class org.tensorflow.framework.optimizers.Momentum
toString() - Method in class org.tensorflow.framework.optimizers.RMSProp
TOTAL - Static variable in class org.tensorflow.framework.metrics.MeanTensor
 
TOTAL_CONFUSION_MATRIX - Static variable in class org.tensorflow.framework.metrics.MeanIoU
 
TRUE_NEGATIVES - Static variable in class org.tensorflow.framework.metrics.AUC
 
TRUE_POSITIVES - Static variable in class org.tensorflow.framework.metrics.AUC
 
TRUE_POSITIVES - Static variable in class org.tensorflow.framework.metrics.Precision
 
TRUE_POSITIVES - Static variable in class org.tensorflow.framework.metrics.Recall
 
TrueNegatives<T extends TNumber> - Class in org.tensorflow.framework.metrics
Metric that calculates the number of true negatives.
TrueNegatives(float[], long, Class<T>) - Constructor for class org.tensorflow.framework.metrics.TrueNegatives
Creates a TrueNegatives metric, using Class.getSimpleName() for the metric name
TrueNegatives(float, long, Class<T>) - Constructor for class org.tensorflow.framework.metrics.TrueNegatives
Creates a TrueNegatives metric, using Class.getSimpleName() for the metric name
TrueNegatives(long, Class<T>) - Constructor for class org.tensorflow.framework.metrics.TrueNegatives
Creates a TrueNegatives metric, using Class.getSimpleName() for the metric name and a default threshold of ConfusionMatrixConditionCount.DEFAULT_THRESHOLD.
TrueNegatives(String, float[], long, Class<T>) - Constructor for class org.tensorflow.framework.metrics.TrueNegatives
Creates a TrueNegatives metric
TrueNegatives(String, float, long, Class<T>) - Constructor for class org.tensorflow.framework.metrics.TrueNegatives
Creates a TrueNegatives metric
TrueNegatives(String, long, Class<T>) - Constructor for class org.tensorflow.framework.metrics.TrueNegatives
Creates a TrueNegatives metric, using a default threshold of ConfusionMatrixConditionCount.DEFAULT_THRESHOLD.
TruePositives<T extends TNumber> - Class in org.tensorflow.framework.metrics
Metric that calculates the number of true positives.
TruePositives(float[], long, Class<T>) - Constructor for class org.tensorflow.framework.metrics.TruePositives
Creates a TruePositives metric, using Class.getSimpleName() for the metric name
TruePositives(float, long, Class<T>) - Constructor for class org.tensorflow.framework.metrics.TruePositives
Creates a TruePositives metric, using Class.getSimpleName() for the metric name
TruePositives(long, Class<T>) - Constructor for class org.tensorflow.framework.metrics.TruePositives
Creates a TruePositives metric, using Class.getSimpleName() for the metric name and a default threshold of ConfusionMatrixConditionCount.DEFAULT_THRESHOLD.
TruePositives(String, float[], long, Class<T>) - Constructor for class org.tensorflow.framework.metrics.TruePositives
Creates a TruePositives metric
TruePositives(String, float, long, Class<T>) - Constructor for class org.tensorflow.framework.metrics.TruePositives
Creates a TruePositives metric
TruePositives(String, long, Class<T>) - Constructor for class org.tensorflow.framework.metrics.TruePositives
Creates a TruePositives metric, using a default threshold of ConfusionMatrixConditionCount.DEFAULT_THRESHOLD.
TRUNCATED_NORMAL - org.tensorflow.framework.initializers.VarianceScaling.Distribution
 
TruncatedNormal<T extends TFloating> - Class in org.tensorflow.framework.initializers
Initializer that generates a truncated normal distribution.
TruncatedNormal(double, double, long) - Constructor for class org.tensorflow.framework.initializers.TruncatedNormal
Creates a TruncatedNormal Initializer.
TruncatedNormal(long) - Constructor for class org.tensorflow.framework.initializers.TruncatedNormal
Creates a TruncatedNormal Initializer using TruncatedNormal.MEAN_DEFAULT for the mean and TruncatedNormal.STDDEV_DEFAULT for the standard deviation.

U

UNIFORM - org.tensorflow.framework.initializers.VarianceScaling.Distribution
 
union(Scope, Operand<T>, Operand<T>) - Static method in class org.tensorflow.framework.op.sets.Sets
Computes set union of elements in last dimension of a and b.
union(Operand<T>, Operand<T>) - Method in class org.tensorflow.framework.op.SetOps
Computes set union of elements in last dimension of a and b.
UNION - org.tensorflow.framework.op.sets.Sets.Operation
 
UnitNorm - Class in org.tensorflow.framework.constraints
Constrains the weights to have unit norm.
UnitNorm() - Constructor for class org.tensorflow.framework.constraints.UnitNorm
Create a UnitNorm AbstractConstraint with the axis set to UnitNorm.AXIS_DEFAULT
UnitNorm(int) - Constructor for class org.tensorflow.framework.constraints.UnitNorm
Create a UnitNorm AbstractConstraint
UnitNorm(int[]) - Constructor for class org.tensorflow.framework.constraints.UnitNorm
Create a UnitNorm AbstractConstraint
updateState(Ops, Operand<? extends TNumber>, Operand<? extends TNumber>) - Method in class org.tensorflow.framework.metrics.BaseMetric
Creates a NoOp Operation with control dependencies to update the metric state
updateState(Ops, Operand<? extends TNumber>, Operand<? extends TNumber>) - Method in interface org.tensorflow.framework.metrics.Metric
Creates a NoOp Operation with control dependencies to update the metric state
updateState(Ops, Operand<? extends TNumber>, Operand<? extends TNumber>, Operand<? extends TNumber>) - Method in class org.tensorflow.framework.metrics.BaseMetric
Creates a NoOp Operation with control dependencies to update the metric state
updateState(Ops, Operand<? extends TNumber>, Operand<? extends TNumber>, Operand<? extends TNumber>) - Method in interface org.tensorflow.framework.metrics.Metric
Creates a NoOp Operation with control dependencies to update the metric state
updateStateList(Ops, Operand<? extends TNumber>, Operand<? extends TNumber>) - Method in class org.tensorflow.framework.metrics.BaseMetric
Creates a List of Operations to update the metric state based on input values.
updateStateList(Ops, Operand<? extends TNumber>, Operand<? extends TNumber>) - Method in class org.tensorflow.framework.metrics.MeanTensor
Accumulates statistics for computing the element-wise mean.
updateStateList(Ops, Operand<? extends TNumber>, Operand<? extends TNumber>) - Method in interface org.tensorflow.framework.metrics.Metric
Creates a List of Operations to update the metric state based on input values.
updateStateList(Ops, Operand<? extends TNumber>, Operand<? extends TNumber>, Operand<? extends TNumber>) - Method in class org.tensorflow.framework.metrics.AUC
Creates a List of Operations to update the metric state based on labels and predictions.
updateStateList(Ops, Operand<? extends TNumber>, Operand<? extends TNumber>, Operand<? extends TNumber>) - Method in class org.tensorflow.framework.metrics.BaseMetric
Creates a List of Operations to update the metric state based on labels and predictions.
updateStateList(Ops, Operand<? extends TNumber>, Operand<? extends TNumber>, Operand<? extends TNumber>) - Method in class org.tensorflow.framework.metrics.MeanIoU
Accumulates the confusion matrix statistics.
updateStateList(Ops, Operand<? extends TNumber>, Operand<? extends TNumber>, Operand<? extends TNumber>) - Method in class org.tensorflow.framework.metrics.MeanRelativeError
Accumulates metric statistics.
updateStateList(Ops, Operand<? extends TNumber>, Operand<? extends TNumber>, Operand<? extends TNumber>) - Method in interface org.tensorflow.framework.metrics.Metric
Creates a List of Operations to update the metric state based on labels and predictions.
updateStateList(Ops, Operand<? extends TNumber>, Operand<? extends TNumber>, Operand<? extends TNumber>) - Method in class org.tensorflow.framework.metrics.Precision
Accumulates true positive and false positive statistics.
updateStateList(Ops, Operand<? extends TNumber>, Operand<? extends TNumber>, Operand<? extends TNumber>) - Method in class org.tensorflow.framework.metrics.Recall
Accumulates true positive and false negative statistics.
updateStateList(Ops, Operand<? extends TNumber>, Operand<? extends TNumber>, Operand<? extends TNumber>) - Method in class org.tensorflow.framework.metrics.RootMeanSquaredError
Accumulates root mean squared error statistics.

V

valueOf(String) - Static method in enum org.tensorflow.framework.activations.Activations
Returns the enum constant of this type with the specified name.
valueOf(String) - Static method in enum org.tensorflow.framework.initializers.VarianceScaling.Distribution
Returns the enum constant of this type with the specified name.
valueOf(String) - Static method in enum org.tensorflow.framework.initializers.VarianceScaling.Mode
Returns the enum constant of this type with the specified name.
valueOf(String) - Static method in enum org.tensorflow.framework.losses.Reduction
Returns the enum constant of this type with the specified name.
valueOf(String) - Static method in enum org.tensorflow.framework.metrics.AUCCurve
Returns the enum constant of this type with the specified name.
valueOf(String) - Static method in enum org.tensorflow.framework.metrics.AUCSummationMethod
Returns the enum constant of this type with the specified name.
valueOf(String) - Static method in enum org.tensorflow.framework.metrics.MetricReduction
Returns the enum constant of this type with the specified name.
valueOf(String) - Static method in enum org.tensorflow.framework.op.sets.Sets.Operation
Returns the enum constant of this type with the specified name.
valueOf(String) - Static method in enum org.tensorflow.framework.optimizers.Optimizers
Returns the enum constant of this type with the specified name.
values() - Static method in enum org.tensorflow.framework.activations.Activations
Returns an array containing the constants of this enum type, in the order they are declared.
values() - Static method in enum org.tensorflow.framework.initializers.VarianceScaling.Distribution
Returns an array containing the constants of this enum type, in the order they are declared.
values() - Static method in enum org.tensorflow.framework.initializers.VarianceScaling.Mode
Returns an array containing the constants of this enum type, in the order they are declared.
values() - Static method in enum org.tensorflow.framework.losses.Reduction
Returns an array containing the constants of this enum type, in the order they are declared.
values() - Static method in enum org.tensorflow.framework.metrics.AUCCurve
Returns an array containing the constants of this enum type, in the order they are declared.
values() - Static method in enum org.tensorflow.framework.metrics.AUCSummationMethod
Returns an array containing the constants of this enum type, in the order they are declared.
values() - Static method in enum org.tensorflow.framework.metrics.MetricReduction
Returns an array containing the constants of this enum type, in the order they are declared.
values() - Static method in enum org.tensorflow.framework.op.sets.Sets.Operation
Returns an array containing the constants of this enum type, in the order they are declared.
values() - Static method in enum org.tensorflow.framework.optimizers.Optimizers
Returns an array containing the constants of this enum type, in the order they are declared.
VARIABLE_V2 - Static variable in class org.tensorflow.framework.optimizers.Optimizer
 
VarianceScaling<T extends TFloating> - Class in org.tensorflow.framework.initializers
Initializer capable of adapting its scale to the shape of weights tensors.
VarianceScaling(double, VarianceScaling.Mode, VarianceScaling.Distribution, long) - Constructor for class org.tensorflow.framework.initializers.VarianceScaling
Creates a VarianceScaling Initializer
VarianceScaling(long) - Constructor for class org.tensorflow.framework.initializers.VarianceScaling
Creates a VarianceScaling Initializer
VarianceScaling.Distribution - Enum in org.tensorflow.framework.initializers
The random distribution to use when initializing the values.
VarianceScaling.Mode - Enum in org.tensorflow.framework.initializers
The mode to use for calculating the fan values.

W

WEIGHTED_MEAN - org.tensorflow.framework.metrics.MetricReduction
Scalar sum of weighted values divided by sum of weights.
withControlDependencies(Iterable<Op>) - Method in class org.tensorflow.framework.op.FrameworkOps
Returns an API that adds operations to the graph with the provided control dependencies.
withDevice(DeviceSpec) - Method in class org.tensorflow.framework.op.FrameworkOps
Returns an API that places the created operations on the device(s) matching the provided spec.
withInitScope() - Method in class org.tensorflow.framework.op.FrameworkOps
Returns an FrameworkOps that builds init operations.
withName(String) - Method in class org.tensorflow.framework.op.FrameworkOps
Returns an API that uses the provided name for an op.
withSubScope(String) - Method in class org.tensorflow.framework.op.FrameworkOps
Returns an API that builds operations with the provided name prefix.

Z

Zeros<T extends TType> - Class in org.tensorflow.framework.initializers
Creates an Initializer that sets all values to zero.
Zeros() - Constructor for class org.tensorflow.framework.initializers.Zeros
Creates an Initializer that sets all values to one.
A B C D E F G H I K L M N O P R S T U V W Z 
All Classes All Packages