A B C D E F G H I K L M N O P R S T U V W Z
All Classes All Packages
All Classes All Packages
All Classes All Packages
A
- A_MINUS_B - org.tensorflow.framework.op.sets.Sets.Operation
- AbstractActivation - Class in org.tensorflow.framework.activations
-
Abstract base class for Activations
- AbstractActivation() - Constructor for class org.tensorflow.framework.activations.AbstractActivation
-
Creates the abstract class for an AbstractActivation
- AbstractConstraint - Class in org.tensorflow.framework.constraints
-
Base class for Constraints.
- AbstractConstraint() - Constructor for class org.tensorflow.framework.constraints.AbstractConstraint
-
Creates a AbstractConstraint
- AbstractRegularizer - Class in org.tensorflow.framework.regularizers
-
Base class for Regularizers
- AbstractRegularizer() - Constructor for class org.tensorflow.framework.regularizers.AbstractRegularizer
-
Creates a AbstractRegularizer, using
Class.getSimpleName()
for the name - AbstractRegularizer(String) - Constructor for class org.tensorflow.framework.regularizers.AbstractRegularizer
-
Creates a AbstractRegularizer
- ACCUMULATOR - Static variable in class org.tensorflow.framework.optimizers.AdaDelta
- ACCUMULATOR - Static variable in class org.tensorflow.framework.optimizers.AdaGrad
- ACCUMULATOR - Static variable in class org.tensorflow.framework.optimizers.AdaGradDA
- ACCUMULATOR - Static variable in class org.tensorflow.framework.optimizers.Ftrl
- ACCUMULATOR_UPDATE - Static variable in class org.tensorflow.framework.optimizers.AdaDelta
- Accuracy<T extends TNumber> - Class in org.tensorflow.framework.metrics
-
Metric that calculates how often predictions equals labels.
- Accuracy(long, Class<T>) - Constructor for class org.tensorflow.framework.metrics.Accuracy
-
Creates an Accuracy Metric using
Class.getSimpleName()
for the metric name - Accuracy(String, long, Class<T>) - Constructor for class org.tensorflow.framework.metrics.Accuracy
-
Creates an Accuracy Metric
- Activation - Interface in org.tensorflow.framework.activations
-
Interface for Activations
- Activations - Enum in org.tensorflow.framework.activations
-
The Enumerations for creating Activations based an activation name, with either an empty constructor or a constructor that takes a Map object that contains the Activation's state.
- AdaDelta - Class in org.tensorflow.framework.optimizers
-
Optimizer that implements the Adadelta algorithm.
- AdaDelta(Graph) - Constructor for class org.tensorflow.framework.optimizers.AdaDelta
- AdaDelta(Graph, float) - Constructor for class org.tensorflow.framework.optimizers.AdaDelta
-
Creates an AdaDelta Optimizer
- AdaDelta(Graph, float, float, float) - Constructor for class org.tensorflow.framework.optimizers.AdaDelta
-
Creates an AdaDelta Optimizer
- AdaDelta(Graph, String, float) - Constructor for class org.tensorflow.framework.optimizers.AdaDelta
-
Creates an AdaDelta Optimizer
- AdaDelta(Graph, String, float, float, float) - Constructor for class org.tensorflow.framework.optimizers.AdaDelta
-
Creates an AdaDelta Optimizer
- ADADELTA - org.tensorflow.framework.optimizers.Optimizers
- AdaGrad - Class in org.tensorflow.framework.optimizers
-
Optimizer that implements the Adagrad algorithm.
- AdaGrad(Graph) - Constructor for class org.tensorflow.framework.optimizers.AdaGrad
-
Creates an AdaGrad Optimizer
- AdaGrad(Graph, float) - Constructor for class org.tensorflow.framework.optimizers.AdaGrad
-
Creates an AdaGrad Optimizer
- AdaGrad(Graph, float, float) - Constructor for class org.tensorflow.framework.optimizers.AdaGrad
-
Creates an AdaGrad Optimizer
- AdaGrad(Graph, String, float) - Constructor for class org.tensorflow.framework.optimizers.AdaGrad
-
Creates an AdaGrad Optimizer
- AdaGrad(Graph, String, float, float) - Constructor for class org.tensorflow.framework.optimizers.AdaGrad
-
Creates an AdaGrad Optimizer
- ADAGRAD - org.tensorflow.framework.optimizers.Optimizers
- ADAGRAD_DA - org.tensorflow.framework.optimizers.Optimizers
- AdaGradDA - Class in org.tensorflow.framework.optimizers
-
Optimizer that implements the Adagrad Dual-Averaging algorithm.
- AdaGradDA(Graph) - Constructor for class org.tensorflow.framework.optimizers.AdaGradDA
-
Creates an AdaGradDA Optimizer
- AdaGradDA(Graph, float) - Constructor for class org.tensorflow.framework.optimizers.AdaGradDA
-
Creates an AdaGradDA Optimizer
- AdaGradDA(Graph, float, float, float, float) - Constructor for class org.tensorflow.framework.optimizers.AdaGradDA
-
Creates an AdaGradDA Optimizer
- AdaGradDA(Graph, String, float) - Constructor for class org.tensorflow.framework.optimizers.AdaGradDA
-
Creates an AdaGradDA Optimizer
- AdaGradDA(Graph, String, float, float, float, float) - Constructor for class org.tensorflow.framework.optimizers.AdaGradDA
-
Creates an AdaGradDA Optimizer
- Adam - Class in org.tensorflow.framework.optimizers
-
Optimizer that implements the Adam algorithm.
- Adam(Graph) - Constructor for class org.tensorflow.framework.optimizers.Adam
-
Creates an Adam optimizer
- Adam(Graph, float) - Constructor for class org.tensorflow.framework.optimizers.Adam
-
Creates an Adam optimizer
- Adam(Graph, float, float, float, float) - Constructor for class org.tensorflow.framework.optimizers.Adam
-
Creates an Adam optimizer
- Adam(Graph, String, float) - Constructor for class org.tensorflow.framework.optimizers.Adam
-
Creates an Adam optimizer
- Adam(Graph, String, float, float, float, float) - Constructor for class org.tensorflow.framework.optimizers.Adam
-
Creates an Adam optimizer
- ADAM - org.tensorflow.framework.optimizers.Optimizers
- Adamax - Class in org.tensorflow.framework.optimizers
-
Optimizer that implements the Adamax algorithm.
- Adamax(Graph) - Constructor for class org.tensorflow.framework.optimizers.Adamax
-
Creates an Optimizer that implements the Adamax algorithm.
- Adamax(Graph, float) - Constructor for class org.tensorflow.framework.optimizers.Adamax
-
Creates an Optimizer that implements the Adamax algorithm.
- Adamax(Graph, float, float, float, float) - Constructor for class org.tensorflow.framework.optimizers.Adamax
-
Creates an Optimizer that implements the Adamax algorithm.
- Adamax(Graph, String) - Constructor for class org.tensorflow.framework.optimizers.Adamax
-
Creates an Optimizer that implements the Adamax algorithm.
- Adamax(Graph, String, float) - Constructor for class org.tensorflow.framework.optimizers.Adamax
-
Creates an Optimizer that implements the Adamax algorithm.
- Adamax(Graph, String, float, float, float, float) - Constructor for class org.tensorflow.framework.optimizers.Adamax
-
Creates an Optimizer that implements the Adamax algorithm.
- ADAMAX - org.tensorflow.framework.optimizers.Optimizers
- allAxes(Scope, Operand<? extends TType>) - Static method in class org.tensorflow.framework.op.math.Axes
-
Creates an Operand that has all axes contained in the Operand's shape.
- allAxes(Operand<? extends TType>) - Method in class org.tensorflow.framework.op.MathOps
-
Creates an Operand that has all axes contained in the Operand's shape.
- ALPHA_DEFAULT - Static variable in class org.tensorflow.framework.activations.ReLU
- applyDense(Ops, Output<T>, Output<T>) - Method in class org.tensorflow.framework.optimizers.AdaDelta
-
Generates the gradient update operations for the specific variable and gradient.
- applyDense(Ops, Output<T>, Output<T>) - Method in class org.tensorflow.framework.optimizers.AdaGrad
-
Generates the gradient update operations for the specific variable and gradient.
- applyDense(Ops, Output<T>, Output<T>) - Method in class org.tensorflow.framework.optimizers.AdaGradDA
-
Generates the gradient update operations for the specific variable and gradient.
- applyDense(Ops, Output<T>, Output<T>) - Method in class org.tensorflow.framework.optimizers.Adam
-
Generates the gradient update operations for the specific variable and gradient.
- applyDense(Ops, Output<T>, Output<T>) - Method in class org.tensorflow.framework.optimizers.Adamax
-
Generates the gradient update operations for the specific variable and gradient.
- applyDense(Ops, Output<T>, Output<T>) - Method in class org.tensorflow.framework.optimizers.Ftrl
-
Generates the gradient update operations for the specific variable and gradient.
- applyDense(Ops, Output<T>, Output<T>) - Method in class org.tensorflow.framework.optimizers.GradientDescent
-
Generates the gradient update operations for the specific variable and gradient.
- applyDense(Ops, Output<T>, Output<T>) - Method in class org.tensorflow.framework.optimizers.Momentum
-
Generates the gradient update operations for the specific variable and gradient.
- applyDense(Ops, Output<T>, Output<T>) - Method in class org.tensorflow.framework.optimizers.Nadam
-
Generates the gradient update operations for the specific variable and gradient.
- applyDense(Ops, Output<T>, Output<T>) - Method in class org.tensorflow.framework.optimizers.Optimizer
-
Generates the gradient update operations for the specific variable and gradient.
- applyDense(Ops, Output<T>, Output<T>) - Method in class org.tensorflow.framework.optimizers.RMSProp
-
Generates the gradient update operations for the specific variable and gradient.
- applyGradients(List<Optimizer.GradAndVar<? extends TType>>, String) - Method in class org.tensorflow.framework.optimizers.Optimizer
-
Applies gradients to variables
- asLoss() - Method in class org.tensorflow.framework.regularizers.AbstractRegularizer
-
Returns this AbstractRegularizer as a AbstractLoss This is a convenience to use regularize a loss.
- AUC<T extends TNumber> - Class in org.tensorflow.framework.metrics
-
Metric that computes the approximate AUC (Area under the curve) via a Riemann sum.
- AUC(float[], long, Class<T>) - Constructor for class org.tensorflow.framework.metrics.AUC
-
Creates an AUC (Area under the curve) metric using
AUC.DEFAULT_NAME
for the metric name,AUCCurve.ROC
for the curve type,AUCSummationMethod.INTERPOLATION
for the summation method,null
for numThresholds,false
for multiLabel, andnull
for labelWeights. - AUC(float[], AUCCurve, long, Class<T>) - Constructor for class org.tensorflow.framework.metrics.AUC
-
Creates an AUC (Area under the curve) metric using
null
for numThresholds,AUCSummationMethod.INTERPOLATION
for the summation method,false
for multiLabel, andnull
for labelWeights. - AUC(float[], AUCCurve, AUCSummationMethod, long, Class<T>) - Constructor for class org.tensorflow.framework.metrics.AUC
-
Creates an AUC (Area under the curve) metric using
AUC.DEFAULT_NAME
for the metric name,null
for numThresholds,false
for multiLabel, andnull
for labelWeights. - AUC(int, long, Class<T>) - Constructor for class org.tensorflow.framework.metrics.AUC
-
Creates an AUC (Area under the curve) metric using
AUC.DEFAULT_NAME
for the metric name,AUCCurve.ROC
for the curve type,AUCSummationMethod.INTERPOLATION
for the summation method,null
for thresholds,false
for multiLabel, andnull
for labelWeights. - AUC(int, AUCCurve, long, Class<T>) - Constructor for class org.tensorflow.framework.metrics.AUC
-
Creates an AUC (Area under the curve) metric using
AUC.DEFAULT_NAME
for the metric name,AUCSummationMethod.INTERPOLATION
for the summation method,null
for thresholds,false
for multiLabel, andnull
for labelWeights. - AUC(int, AUCCurve, AUCSummationMethod, long, Class<T>) - Constructor for class org.tensorflow.framework.metrics.AUC
-
Creates an AUC (Area under the curve) metric.
- AUC(long, Class<T>) - Constructor for class org.tensorflow.framework.metrics.AUC
-
Creates an AUC (Area under the curve) metric using
AUC.DEFAULT_NAME
for the metric name,AUC.DEFAULT_NUM_THRESHOLDS
for the numThresholds,AUCCurve.ROC
for the curve type,AUCSummationMethod.INTERPOLATION
for the summation method,null
for thresholds,false
for multiLabel, andnull
for labelWeights. - AUC(String, float[], long, Class<T>) - Constructor for class org.tensorflow.framework.metrics.AUC
-
Creates an AUC (Area under the curve) metric using
null
for numThresholds,AUCCurve.ROC
for the curve type,AUCSummationMethod.INTERPOLATION
for the summation method,AUC.DEFAULT_NUM_THRESHOLDS
num thresholds,false
for multiLabel, andnull
for labelWeights. - AUC(String, float[], AUCCurve, long, Class<T>) - Constructor for class org.tensorflow.framework.metrics.AUC
-
Creates an AUC (Area under the curve) metric using
null
for numThresholds,AUCSummationMethod.INTERPOLATION
for the summation method,AUC.DEFAULT_NUM_THRESHOLDS
num thresholds,false
for multiLabel, andnull
for labelWeights. - AUC(String, float[], AUCCurve, AUCSummationMethod, long, Class<T>) - Constructor for class org.tensorflow.framework.metrics.AUC
-
Creates an AUC (Area under the curve) metric.
- AUC(String, int, long, Class<T>) - Constructor for class org.tensorflow.framework.metrics.AUC
-
Creates an AUC (Area under the curve) metric.
- AUC(String, int, AUCCurve, long, Class<T>) - Constructor for class org.tensorflow.framework.metrics.AUC
-
Creates an AUC (Area under the curve) metric using
AUCSummationMethod.INTERPOLATION
for the summation method,null
for thresholds,false
for multiLabel, andnull
for labelWeights. - AUC(String, int, AUCCurve, AUCSummationMethod, float[], boolean, Operand<T>, long, Class<T>) - Constructor for class org.tensorflow.framework.metrics.AUC
-
Creates an AUC (Area under the curve) metric.
- AUC(String, int, AUCCurve, AUCSummationMethod, long, Class<T>) - Constructor for class org.tensorflow.framework.metrics.AUC
-
Creates an AUC (Area under the curve) metric.
- AUC(String, long, Class<T>) - Constructor for class org.tensorflow.framework.metrics.AUC
-
Creates an AUC (Area under the curve) metric using
AUC.DEFAULT_NUM_THRESHOLDS
for the numThresholds,AUCCurve.ROC
for the curve type,AUCSummationMethod.INTERPOLATION
for the summation method,null
for thresholds,false
for multiLabel, andnull
for labelWeights. - AUCCurve - Enum in org.tensorflow.framework.metrics
-
Specifies the type of the curve to be computed,
AUCCurve.ROC
for a Receiver Operator Characteristic curve [default] orAUCCurve.PR
for a Precision-Recall-curve. - AUCSummationMethod - Enum in org.tensorflow.framework.metrics
-
Specifies the Riemann summation method used.
- AUTO - org.tensorflow.framework.losses.Reduction
- Axes - Class in org.tensorflow.framework.op.math
-
Axes Operations
- Axes() - Constructor for class org.tensorflow.framework.op.math.Axes
- AXIS_DEFAULT - Static variable in class org.tensorflow.framework.constraints.MaxNorm
- AXIS_DEFAULT - Static variable in class org.tensorflow.framework.constraints.MinMaxNorm
- AXIS_DEFAULT - Static variable in class org.tensorflow.framework.constraints.UnitNorm
- AXIS_DEFAULT - Static variable in class org.tensorflow.framework.losses.SparseCategoricalCrossentropy
B
- B_MINUS_A - org.tensorflow.framework.op.sets.Sets.Operation
- BaseInitializer<T extends TType> - Class in org.tensorflow.framework.initializers
-
Abstract base class for all Initializers
- BaseInitializer() - Constructor for class org.tensorflow.framework.initializers.BaseInitializer
-
Creates an Initializer
- BaseMetric - Class in org.tensorflow.framework.metrics
-
Base class for Metrics
- BaseMetric(long) - Constructor for class org.tensorflow.framework.metrics.BaseMetric
-
Creates a Metric with a name of
Class.getSimpleName()
- BaseMetric(String, long) - Constructor for class org.tensorflow.framework.metrics.BaseMetric
-
Creates a Metric
- batch(long) - Method in class org.tensorflow.framework.data.Dataset
-
Groups elements of this dataset into batches.
- batch(long, boolean) - Method in class org.tensorflow.framework.data.Dataset
-
Groups elements of this dataset into batches.
- BETA_ONE_DEFAULT - Static variable in class org.tensorflow.framework.optimizers.Adam
- BETA_ONE_DEFAULT - Static variable in class org.tensorflow.framework.optimizers.Adamax
- BETA_ONE_DEFAULT - Static variable in class org.tensorflow.framework.optimizers.Nadam
- BETA_TWO_DEFAULT - Static variable in class org.tensorflow.framework.optimizers.Adam
- BETA_TWO_DEFAULT - Static variable in class org.tensorflow.framework.optimizers.Adamax
- BETA_TWO_DEFAULT - Static variable in class org.tensorflow.framework.optimizers.Nadam
- BinaryAccuracy<T extends TNumber> - Class in org.tensorflow.framework.metrics
-
Metric that calculates how often predictions matches binary labels.
- BinaryAccuracy(float, long, Class<T>) - Constructor for class org.tensorflow.framework.metrics.BinaryAccuracy
-
Creates a BinaryAccuracy Metric using
Class.getSimpleName()
for the metric name - BinaryAccuracy(long, Class<T>) - Constructor for class org.tensorflow.framework.metrics.BinaryAccuracy
-
Creates a BinaryAccuracy Metric using
Class.getSimpleName()
for the metric name andBinaryAccuracy.DEFAULT_THRESHOLD
for the threshold value. - BinaryAccuracy(String, float, long, Class<T>) - Constructor for class org.tensorflow.framework.metrics.BinaryAccuracy
-
Creates a BinaryAccuracy Metric
- binaryCrossentropy(Ops, Operand<? extends TNumber>, Operand<T>, boolean, float) - Static method in class org.tensorflow.framework.losses.Losses
-
Computes the binary crossentropy loss between labels and predictions.
- BinaryCrossentropy - Class in org.tensorflow.framework.losses
-
Computes the cross-entropy loss between true labels and predicted labels.
- BinaryCrossentropy<T extends TNumber> - Class in org.tensorflow.framework.metrics
-
A Metric that computes the binary cross-entropy loss between true labels and predicted labels.
- BinaryCrossentropy() - Constructor for class org.tensorflow.framework.losses.BinaryCrossentropy
-
Creates a Binary Crossentropy AbstractLoss using
Class.getSimpleName()
as the loss name,BinaryCrossentropy.FROM_LOGITS_DEFAULT
for fromLogits,BinaryCrossentropy.LABEL_SMOOTHING_DEFAULT
for labelSmoothing and a AbstractLoss Reduction ofAbstractLoss.REDUCTION_DEFAULT
- BinaryCrossentropy(boolean) - Constructor for class org.tensorflow.framework.losses.BinaryCrossentropy
-
Creates a Binary Crossentropy loss using using
Class.getSimpleName()
as the loss name, labelSmoothing ofBinaryCrossentropy.LABEL_SMOOTHING_DEFAULT
, a reduction ofAbstractLoss.REDUCTION_DEFAULT
, - BinaryCrossentropy(boolean, float) - Constructor for class org.tensorflow.framework.losses.BinaryCrossentropy
-
Creates a Binary Crossentropy loss using using
Class.getSimpleName()
as the loss name, and a reduction ofAbstractLoss.REDUCTION_DEFAULT
. - BinaryCrossentropy(boolean, float, long, Class<T>) - Constructor for class org.tensorflow.framework.metrics.BinaryCrossentropy
-
Creates a BinaryCrossentropy metric where name is
Class.getSimpleName()
. - BinaryCrossentropy(boolean, float, Reduction) - Constructor for class org.tensorflow.framework.losses.BinaryCrossentropy
-
Creates a Binary Crossentropy loss
- BinaryCrossentropy(String, boolean) - Constructor for class org.tensorflow.framework.losses.BinaryCrossentropy
-
Creates a Binary Crossentropy loss using labelSmoothing of
BinaryCrossentropy.LABEL_SMOOTHING_DEFAULT
a reduction ofAbstractLoss.REDUCTION_DEFAULT
. - BinaryCrossentropy(String, boolean, float) - Constructor for class org.tensorflow.framework.losses.BinaryCrossentropy
-
Creates a Binary Crossentropy loss using a reduction of
AbstractLoss.REDUCTION_DEFAULT
. - BinaryCrossentropy(String, boolean, float, long, Class<T>) - Constructor for class org.tensorflow.framework.metrics.BinaryCrossentropy
-
Creates a BinaryCrossentropy metric
- BinaryCrossentropy(String, boolean, float, Reduction) - Constructor for class org.tensorflow.framework.losses.BinaryCrossentropy
-
Creates a Binary Crossentropy loss
- BinaryCrossentropy(Reduction) - Constructor for class org.tensorflow.framework.losses.BinaryCrossentropy
-
Creates a Binary Crossentropy loss using
Class.getSimpleName()
as the loss name,BinaryCrossentropy.FROM_LOGITS_DEFAULT
for fromLogits, andBinaryCrossentropy.LABEL_SMOOTHING_DEFAULT
for labelSmoothing
C
- call(Ops, Operand<? extends TNumber>, Operand<? extends TNumber>, Class<U>) - Method in class org.tensorflow.framework.metrics.Accuracy
-
Calculates how often predictions equals labels.
- call(Ops, Operand<? extends TNumber>, Operand<? extends TNumber>, Class<U>) - Method in class org.tensorflow.framework.metrics.BinaryAccuracy
-
Calculates how often predictions match binary labels.
- call(Ops, Operand<? extends TNumber>, Operand<? extends TNumber>, Class<U>) - Method in class org.tensorflow.framework.metrics.BinaryCrossentropy
-
Computes the binary crossentropy loss between labels and predictions.
- call(Ops, Operand<? extends TNumber>, Operand<? extends TNumber>, Class<U>) - Method in class org.tensorflow.framework.metrics.CategoricalAccuracy
-
Computes the categorical crossentropy loss.
- call(Ops, Operand<? extends TNumber>, Operand<? extends TNumber>, Class<U>) - Method in class org.tensorflow.framework.metrics.CategoricalCrossentropy
-
Computes the crossentropy loss between the labels and predictions.
- call(Ops, Operand<? extends TNumber>, Operand<? extends TNumber>, Class<U>) - Method in class org.tensorflow.framework.metrics.CategoricalHinge
-
Computes the categorical hinge metric between
labels
and @{code predictions}. - call(Ops, Operand<? extends TNumber>, Operand<? extends TNumber>, Class<U>) - Method in class org.tensorflow.framework.metrics.CosineSimilarity
-
Computes the cosine similarity loss between labels and predictions.
- call(Ops, Operand<? extends TNumber>, Operand<? extends TNumber>, Class<U>) - Method in class org.tensorflow.framework.metrics.Hinge
-
Computes the hinge loss between labels and predictions.
- call(Ops, Operand<? extends TNumber>, Operand<? extends TNumber>, Class<U>) - Method in class org.tensorflow.framework.metrics.KLDivergence
-
Computes Kullback-Leibler divergence metric between labels and predictions.
- call(Ops, Operand<? extends TNumber>, Operand<? extends TNumber>, Class<U>) - Method in class org.tensorflow.framework.metrics.LogCoshError
-
Calculates the Logarithm of the hyperbolic cosine of the prediction error.
- call(Ops, Operand<? extends TNumber>, Operand<? extends TNumber>, Class<U>) - Method in class org.tensorflow.framework.metrics.MeanAbsoluteError
-
Computes the mean absolute error loss between labels and predictions.
- call(Ops, Operand<? extends TNumber>, Operand<? extends TNumber>, Class<U>) - Method in class org.tensorflow.framework.metrics.MeanAbsolutePercentageError
-
Computes the mean absolute percentage error loss between labels and predictions.
- call(Ops, Operand<? extends TNumber>, Operand<? extends TNumber>, Class<U>) - Method in class org.tensorflow.framework.metrics.MeanSquaredError
-
Computes the mean squared error between the labels and predictions.
- call(Ops, Operand<? extends TNumber>, Operand<? extends TNumber>, Class<U>) - Method in class org.tensorflow.framework.metrics.MeanSquaredLogarithmicError
-
Computes the mean squared logarithmic error between labels and predictions.
- call(Ops, Operand<? extends TNumber>, Operand<? extends TNumber>, Class<U>) - Method in class org.tensorflow.framework.metrics.Poisson
-
Computes the Poisson loss between labels and predictions.
- call(Ops, Operand<? extends TNumber>, Operand<? extends TNumber>, Class<U>) - Method in class org.tensorflow.framework.metrics.SparseCategoricalAccuracy
-
Calculates how often predictions matches integer labels.
- call(Ops, Operand<? extends TNumber>, Operand<? extends TNumber>, Class<U>) - Method in class org.tensorflow.framework.metrics.SparseCategoricalCrossentropy
-
Calculates how often predictions matches integer labels.
- call(Ops, Operand<? extends TNumber>, Operand<? extends TNumber>, Class<U>) - Method in class org.tensorflow.framework.metrics.SparseTopKCategoricalAccuracy
-
Computes how often integer targets are in the top
K
predictions. - call(Ops, Operand<? extends TNumber>, Operand<? extends TNumber>, Class<U>) - Method in class org.tensorflow.framework.metrics.SquaredHinge
-
Computes the squared hinge loss between labels and predictions.
- call(Ops, Operand<? extends TNumber>, Operand<? extends TNumber>, Class<U>) - Method in class org.tensorflow.framework.metrics.TopKCategoricalAccuracy
-
Computes how often targets are in the top
K
predictions. - call(Ops, Operand<? extends TNumber>, Operand<T>, Operand<T>) - Method in class org.tensorflow.framework.losses.BinaryCrossentropy
-
Generates an Operand that calculates the loss.
- call(Ops, Operand<? extends TNumber>, Operand<T>, Operand<T>) - Method in class org.tensorflow.framework.losses.CategoricalCrossentropy
-
Generates an Operand that calculates the loss.
- call(Ops, Operand<? extends TNumber>, Operand<T>, Operand<T>) - Method in class org.tensorflow.framework.losses.CategoricalHinge
-
Generates an Operand that calculates the loss.
- call(Ops, Operand<? extends TNumber>, Operand<T>, Operand<T>) - Method in class org.tensorflow.framework.losses.CosineSimilarity
-
Generates an Operand that calculates the loss.
- call(Ops, Operand<? extends TNumber>, Operand<T>, Operand<T>) - Method in class org.tensorflow.framework.losses.Hinge
-
Generates an Operand that calculates the loss.
- call(Ops, Operand<? extends TNumber>, Operand<T>, Operand<T>) - Method in class org.tensorflow.framework.losses.Huber
-
Generates an Operand that calculates the loss.
- call(Ops, Operand<? extends TNumber>, Operand<T>, Operand<T>) - Method in class org.tensorflow.framework.losses.KLDivergence
-
Generates an Operand that calculates the loss.
- call(Ops, Operand<? extends TNumber>, Operand<T>, Operand<T>) - Method in class org.tensorflow.framework.losses.LogCosh
-
Generates an Operand that calculates the loss.
- call(Ops, Operand<? extends TNumber>, Operand<T>, Operand<T>) - Method in interface org.tensorflow.framework.losses.Loss
-
Generates an Operand that calculates the loss.
- call(Ops, Operand<? extends TNumber>, Operand<T>, Operand<T>) - Method in class org.tensorflow.framework.losses.MeanAbsoluteError
-
Generates an Operand that calculates the loss.
- call(Ops, Operand<? extends TNumber>, Operand<T>, Operand<T>) - Method in class org.tensorflow.framework.losses.MeanAbsolutePercentageError
-
Generates an Operand that calculates the loss.
- call(Ops, Operand<? extends TNumber>, Operand<T>, Operand<T>) - Method in class org.tensorflow.framework.losses.MeanSquaredError
-
Generates an Operand that calculates the loss.
- call(Ops, Operand<? extends TNumber>, Operand<T>, Operand<T>) - Method in class org.tensorflow.framework.losses.MeanSquaredLogarithmicError
-
Generates an Operand that calculates the loss.
- call(Ops, Operand<? extends TNumber>, Operand<T>, Operand<T>) - Method in class org.tensorflow.framework.losses.Poisson
-
Generates an Operand that calculates the loss.
- call(Ops, Operand<? extends TNumber>, Operand<T>, Operand<T>) - Method in class org.tensorflow.framework.losses.SparseCategoricalCrossentropy
-
Generates an Operand the calculates the loss.
- call(Ops, Operand<? extends TNumber>, Operand<T>, Operand<T>) - Method in class org.tensorflow.framework.losses.SquaredHinge
-
Generates an Operand that calculates the loss.
- call(Ops, Operand<TInt64>, Class<T>) - Method in class org.tensorflow.framework.initializers.Constant
-
Generates the operation used to perform the initialization.
- call(Ops, Operand<TInt64>, Class<T>) - Method in class org.tensorflow.framework.initializers.Identity
-
Generates the operation used to perform the initialization.
- call(Ops, Operand<TInt64>, Class<T>) - Method in interface org.tensorflow.framework.initializers.Initializer
-
Generates the operation used to perform the initialization.
- call(Ops, Operand<TInt64>, Class<T>) - Method in class org.tensorflow.framework.initializers.Ones
-
Generates the operation used to perform the initialization.
- call(Ops, Operand<TInt64>, Class<T>) - Method in class org.tensorflow.framework.initializers.Orthogonal
-
Generates the operation used to perform the initialization.
- call(Ops, Operand<TInt64>, Class<T>) - Method in class org.tensorflow.framework.initializers.RandomNormal
-
Generates the operation used to perform the initialization.
- call(Ops, Operand<TInt64>, Class<T>) - Method in class org.tensorflow.framework.initializers.RandomUniform
-
Generates the operation used to perform the initialization.
- call(Ops, Operand<TInt64>, Class<T>) - Method in class org.tensorflow.framework.initializers.TruncatedNormal
-
Generates the operation used to perform the initialization.
- call(Ops, Operand<TInt64>, Class<T>) - Method in class org.tensorflow.framework.initializers.VarianceScaling
-
Generates the operation used to perform the initialization.
- call(Ops, Operand<TInt64>, Class<T>) - Method in class org.tensorflow.framework.initializers.Zeros
- call(Ops, Operand<R>) - Method in class org.tensorflow.framework.regularizers.L1L2
-
Computes a regularization penalty from an input.
- call(Ops, Operand<R>) - Method in interface org.tensorflow.framework.regularizers.Regularizer
-
Computes a regularization penalty from an input.
- call(Ops, Operand<T>) - Method in interface org.tensorflow.framework.activations.Activation
-
Gets the calculation operation for the activation.
- call(Ops, Operand<T>) - Method in class org.tensorflow.framework.activations.ELU
-
Gets the calculation operation for the activation.
- call(Ops, Operand<T>) - Method in class org.tensorflow.framework.activations.Exponential
-
Gets the calculation operation for the activation.
- call(Ops, Operand<T>) - Method in class org.tensorflow.framework.activations.GELU
-
Gets the calculation operation for the activation.
- call(Ops, Operand<T>) - Method in class org.tensorflow.framework.activations.HardSigmoid
-
Gets the calculation operation for the activation.
- call(Ops, Operand<T>) - Method in class org.tensorflow.framework.activations.ReLU
-
Gets the calculation operation for the activation.
- call(Ops, Operand<T>) - Method in class org.tensorflow.framework.activations.SELU
-
Gets the calculation operation for the activation.
- call(Ops, Operand<T>) - Method in class org.tensorflow.framework.activations.Sigmoid
-
Gets the calculation operation for the activation.
- call(Ops, Operand<T>) - Method in class org.tensorflow.framework.activations.Softmax
-
Gets the calculation operation for the activation.
- call(Ops, Operand<T>) - Method in class org.tensorflow.framework.activations.Softplus
-
Gets the calculation operation for the activation.
- call(Ops, Operand<T>) - Method in class org.tensorflow.framework.activations.Softsign
-
Gets the calculation operation for the activation.
- call(Ops, Operand<T>) - Method in class org.tensorflow.framework.activations.Swish
-
Gets the calculation operation for the activation.
- call(Ops, Operand<T>) - Method in class org.tensorflow.framework.activations.Tanh
-
Gets the calculation operation for the activation.
- call(Ops, Operand<T>) - Method in interface org.tensorflow.framework.constraints.Constraint
-
Applies the constraint against the provided weights
- call(Ops, Operand<T>) - Method in class org.tensorflow.framework.constraints.MaxNorm
-
Applies the constraint against the provided weights
- call(Ops, Operand<T>) - Method in class org.tensorflow.framework.constraints.MinMaxNorm
-
Applies the constraint against the provided weights
- call(Ops, Operand<T>) - Method in class org.tensorflow.framework.constraints.NonNeg
-
Applies the constraint against the provided weights
- call(Ops, Operand<T>) - Method in class org.tensorflow.framework.constraints.UnitNorm
-
Applies the constraint against the provided weights
- call(Ops, Operand<U>) - Method in class org.tensorflow.framework.activations.Linear
-
Gets the calculation operation for the activation.
- callOnce(Ops, Operand<? extends TNumber>, Operand<? extends TNumber>, Class<T>) - Method in class org.tensorflow.framework.metrics.BaseMetric
-
Calls update state once, followed by a call to get the result
- callOnce(Ops, Operand<? extends TNumber>, Operand<? extends TNumber>, Class<T>) - Method in interface org.tensorflow.framework.metrics.Metric
-
Calls update state once, followed by a call to get the result
- cast(Ops, Operand<U>, Class<T>) - Static method in class org.tensorflow.framework.utils.CastHelper
-
Casts an operand to the desired type.
- CastHelper - Class in org.tensorflow.framework.utils
-
A helper class for casting an Operand
- CastHelper() - Constructor for class org.tensorflow.framework.utils.CastHelper
- CategoricalAccuracy<T extends TNumber> - Class in org.tensorflow.framework.metrics
-
Metric that calculates how often predictions matches one-hot labels.
- CategoricalAccuracy(long, Class<T>) - Constructor for class org.tensorflow.framework.metrics.CategoricalAccuracy
-
Creates a CategoricalAccuracy metric, using
Class.getSimpleName()
for the metric name - CategoricalAccuracy(String, long, Class<T>) - Constructor for class org.tensorflow.framework.metrics.CategoricalAccuracy
-
Creates a CategoricalAccuracy metric
- categoricalCrossentropy(Ops, Operand<? extends TNumber>, Operand<T>, boolean, float, int) - Static method in class org.tensorflow.framework.losses.Losses
-
Computes the categorical crossentropy loss between labels and predictions.
- CategoricalCrossentropy - Class in org.tensorflow.framework.losses
-
Computes the crossentropy loss between the labels and predictions.
- CategoricalCrossentropy<T extends TNumber> - Class in org.tensorflow.framework.metrics
-
A Metric that computes the categorical cross-entropy loss between true labels and predicted labels.
- CategoricalCrossentropy() - Constructor for class org.tensorflow.framework.losses.CategoricalCrossentropy
-
Creates a categorical cross entropy AbstractLoss using
Class.getSimpleName()
as the loss name,CategoricalCrossentropy.FROM_LOGITS_DEFAULT
for fromLogits,CategoricalCrossentropy.LABEL_SMOOTHING_DEFAULT
for labelSmoothing, a AbstractLoss Reduction ofAbstractLoss.REDUCTION_DEFAULT
, and an axis ofCategoricalCrossentropy.DEFAULT_AXIS
- CategoricalCrossentropy(boolean) - Constructor for class org.tensorflow.framework.losses.CategoricalCrossentropy
-
Creates a categorical cross entropy AbstractLoss using
Class.getSimpleName()
as the loss name,CategoricalCrossentropy.LABEL_SMOOTHING_DEFAULT
for labelSmoothing, a AbstractLoss Reduction ofAbstractLoss.REDUCTION_DEFAULT
, and an axis ofCategoricalCrossentropy.DEFAULT_AXIS
- CategoricalCrossentropy(boolean, float) - Constructor for class org.tensorflow.framework.losses.CategoricalCrossentropy
-
Creates a categorical cross entropy AbstractLoss using
Class.getSimpleName()
as the loss name, a AbstractLoss Reduction ofAbstractLoss.REDUCTION_DEFAULT
, and a channel axis ofCategoricalCrossentropy.DEFAULT_AXIS
- CategoricalCrossentropy(boolean, float, int, long, Class<T>) - Constructor for class org.tensorflow.framework.metrics.CategoricalCrossentropy
-
Creates a CategoricalCrossentropy metric that computes the crossentropy metric between the labels and predictions using
Class.getSimpleName()
for the metric name. - CategoricalCrossentropy(boolean, float, long, Class<T>) - Constructor for class org.tensorflow.framework.metrics.CategoricalCrossentropy
-
Creates a CategoricalCrossentropy metric that computes the crossentropy metric between the labels and predictions using
Class.getSimpleName()
for the metric name - CategoricalCrossentropy(boolean, float, Reduction) - Constructor for class org.tensorflow.framework.losses.CategoricalCrossentropy
-
Creates a categorical cross entropy AbstractLoss using
Class.getSimpleName()
as the loss name and a channel axis ofCategoricalCrossentropy.DEFAULT_AXIS
- CategoricalCrossentropy(String) - Constructor for class org.tensorflow.framework.losses.CategoricalCrossentropy
-
Creates a categorical cross entropy AbstractLoss using
CategoricalCrossentropy.FROM_LOGITS_DEFAULT
for fromLogits,CategoricalCrossentropy.LABEL_SMOOTHING_DEFAULT
for labelSmoothing, a AbstractLoss Reduction ofAbstractLoss.REDUCTION_DEFAULT
, and an axis ofCategoricalCrossentropy.DEFAULT_AXIS
- CategoricalCrossentropy(String, boolean) - Constructor for class org.tensorflow.framework.losses.CategoricalCrossentropy
-
Creates a categorical cross entropy AbstractLoss using
CategoricalCrossentropy.LABEL_SMOOTHING_DEFAULT
for labelSmoothing, a AbstractLoss Reduction ofAbstractLoss.REDUCTION_DEFAULT
, and a channel axis ofCategoricalCrossentropy.DEFAULT_AXIS
- CategoricalCrossentropy(String, boolean, float) - Constructor for class org.tensorflow.framework.losses.CategoricalCrossentropy
-
Creates a categorical cross entropy AbstractLoss using a AbstractLoss Reduction of
AbstractLoss.REDUCTION_DEFAULT
, and a channel axis ofCategoricalCrossentropy.DEFAULT_AXIS
- CategoricalCrossentropy(String, boolean, float, int, long, Class<T>) - Constructor for class org.tensorflow.framework.metrics.CategoricalCrossentropy
-
Creates a CategoricalCrossentropy metric that computes the crossentropy metric between the labels and predictions.
- CategoricalCrossentropy(String, boolean, float, long, Class<T>) - Constructor for class org.tensorflow.framework.metrics.CategoricalCrossentropy
-
Creates a CategoricalCrossentropy metric that computes the crossentropy metric between the labels and predictions.
- CategoricalCrossentropy(String, boolean, float, Reduction, int) - Constructor for class org.tensorflow.framework.losses.CategoricalCrossentropy
-
Creates a categorical cross entropy AbstractLoss
- CategoricalCrossentropy(String, Reduction) - Constructor for class org.tensorflow.framework.losses.CategoricalCrossentropy
-
Creates a categorical cross entropy AbstractLoss
CategoricalCrossentropy.FROM_LOGITS_DEFAULT
for fromLogits,CategoricalCrossentropy.LABEL_SMOOTHING_DEFAULT
for labelSmoothing, and an axis ofCategoricalCrossentropy.DEFAULT_AXIS
- CategoricalCrossentropy(Reduction) - Constructor for class org.tensorflow.framework.losses.CategoricalCrossentropy
-
Creates a categorical cross entropy AbstractLoss using
Class.getSimpleName()
as the loss name,CategoricalCrossentropy.FROM_LOGITS_DEFAULT
for fromLogits,CategoricalCrossentropy.LABEL_SMOOTHING_DEFAULT
for labelSmoothing and an axis ofCategoricalCrossentropy.DEFAULT_AXIS
- categoricalHinge(Ops, Operand<? extends TNumber>, Operand<T>) - Static method in class org.tensorflow.framework.losses.Losses
-
Computes the categorical hinge loss between labels and predictions.
- CategoricalHinge - Class in org.tensorflow.framework.losses
-
Computes the categorical hinge loss between labels and predictions.
- CategoricalHinge<T extends TNumber> - Class in org.tensorflow.framework.metrics
-
A Metric that computes the categorical hinge loss metric between labels and predictions.
- CategoricalHinge() - Constructor for class org.tensorflow.framework.losses.CategoricalHinge
-
Creates a Categorical Hinge AbstractLoss using
Class.getSimpleName()
as the loss name and a AbstractLoss Reduction ofAbstractLoss.REDUCTION_DEFAULT
- CategoricalHinge(long, Class<T>) - Constructor for class org.tensorflow.framework.metrics.CategoricalHinge
-
Creates a CategoricalHinge metric using
Class.getSimpleName()
for the metric name. - CategoricalHinge(String, long, Class<T>) - Constructor for class org.tensorflow.framework.metrics.CategoricalHinge
-
Creates a CategoricalHinge metric
- CategoricalHinge(String, Reduction) - Constructor for class org.tensorflow.framework.losses.CategoricalHinge
-
Creates a Categorical Hinge
- CategoricalHinge(Reduction) - Constructor for class org.tensorflow.framework.losses.CategoricalHinge
-
Creates a Categorical Hinge AbstractLoss using
Class.getSimpleName()
as the loss name - CENTERED_DEFAULT - Static variable in class org.tensorflow.framework.optimizers.RMSProp
- CHANNELS_FIRST - Static variable in class org.tensorflow.framework.losses.Losses
- CHANNELS_LAST - Static variable in class org.tensorflow.framework.losses.Losses
- checkClassName(Map<String, Object>) - Method in class org.tensorflow.framework.activations.AbstractActivation
-
Verifies that the configuration is for the same Activation class.
- checkConfigKeys(Set<String>, Set<String>) - Method in class org.tensorflow.framework.activations.AbstractActivation
-
Verifies that any key in keysToCheck is also in the allowedKeys set.
- checkIsGraph(Ops) - Method in class org.tensorflow.framework.metrics.BaseMetric
-
Checks if the TensorFlow Ops encapsulates a
Graph
environment. - clip(Ops, Operand<T>, double, double) - Method in class org.tensorflow.framework.constraints.AbstractConstraint
-
Gets the element-wise value clipping.
- computeGradients(Operand<?>) - Method in class org.tensorflow.framework.optimizers.Optimizer
-
Computes the gradients based on a loss operand.
- confusionMatrix(Scope, Operand<T>, Operand<T>) - Static method in class org.tensorflow.framework.op.math.ConfusionMatrix
-
Computes the confusion matrix from predictions and labels.
- confusionMatrix(Scope, Operand<T>, Operand<T>, Operand<T>) - Static method in class org.tensorflow.framework.op.math.ConfusionMatrix
-
Computes the confusion matrix from predictions and labels.
- confusionMatrix(Scope, Operand<T>, Operand<T>, Operand<T>, Operand<TInt64>) - Static method in class org.tensorflow.framework.op.math.ConfusionMatrix
-
Computes the confusion matrix from predictions and labels.
- confusionMatrix(Operand<T>, Operand<T>) - Method in class org.tensorflow.framework.op.MathOps
-
Computes the confusion matrix from predictions and labels.
- confusionMatrix(Operand<T>, Operand<T>, Operand<T>) - Method in class org.tensorflow.framework.op.MathOps
-
Computes the confusion matrix from predictions and labels.
- confusionMatrix(Operand<T>, Operand<T>, Operand<T>, Operand<TInt64>) - Method in class org.tensorflow.framework.op.MathOps
-
Computes the confusion matrix from predictions and labels.
- ConfusionMatrix - Class in org.tensorflow.framework.op.math
-
Confusion Matrix Operations
- ConfusionMatrix() - Constructor for class org.tensorflow.framework.op.math.ConfusionMatrix
- Constant<T extends TType> - Class in org.tensorflow.framework.initializers
-
Initializer that generates tensors with a constant value.
- Constant(boolean) - Constructor for class org.tensorflow.framework.initializers.Constant
-
Creates an Initializer that generates tensors with a constant value.
- Constant(double) - Constructor for class org.tensorflow.framework.initializers.Constant
-
Creates an Initializer that generates tensors with a constant value.
- Constant(long) - Constructor for class org.tensorflow.framework.initializers.Constant
-
Creates an Initializer that generates tensors with a constant value.
- Constraint - Interface in org.tensorflow.framework.constraints
- core - Variable in class org.tensorflow.framework.op.FrameworkOps
- cosineSimilarity(Ops, Operand<? extends TNumber>, Operand<T>, int[]) - Static method in class org.tensorflow.framework.losses.Losses
-
Computes the cosine similarity loss between labels and predictions.
- CosineSimilarity - Class in org.tensorflow.framework.losses
-
Computes the cosine similarity between labels and predictions.
- CosineSimilarity<T extends TNumber> - Class in org.tensorflow.framework.metrics
-
A metric that computes the cosine similarity metric between labels and predictions.
- CosineSimilarity() - Constructor for class org.tensorflow.framework.losses.CosineSimilarity
-
Creates a Cosine Similarity AbstractLoss using
Class.getSimpleName()
as the loss name, an axis ofCosineSimilarity.DEFAULT_AXIS
, and a AbstractLoss Reduction ofCosineSimilarity.DEFAULT_REDUCTION
- CosineSimilarity(int) - Constructor for class org.tensorflow.framework.losses.CosineSimilarity
-
Creates a Cosine Similarity AbstractLoss using
Class.getSimpleName()
as the loss name, and a AbstractLoss Reduction ofCosineSimilarity.DEFAULT_REDUCTION
- CosineSimilarity(int[]) - Constructor for class org.tensorflow.framework.losses.CosineSimilarity
-
Creates a Cosine Similarity AbstractLoss using
Class.getSimpleName()
as the loss name, and a AbstractLoss Reduction ofCosineSimilarity.DEFAULT_REDUCTION
- CosineSimilarity(int[], long, Class<T>) - Constructor for class org.tensorflow.framework.metrics.CosineSimilarity
-
Creates a CosineSimilarity metric using
Class.getSimpleName()
for the metric name. - CosineSimilarity(int[], Reduction) - Constructor for class org.tensorflow.framework.losses.CosineSimilarity
-
Creates a Cosine Similarity AbstractLoss using
Class.getSimpleName()
as the loss name - CosineSimilarity(int, long, Class<T>) - Constructor for class org.tensorflow.framework.metrics.CosineSimilarity
-
Creates a metric that computes the cosine similarity metric between labels and predictions using
Class.getSimpleName()
for the metric name. - CosineSimilarity(int, Reduction) - Constructor for class org.tensorflow.framework.losses.CosineSimilarity
-
Creates a Cosine Similarity AbstractLoss using
Class.getSimpleName()
as the loss name - CosineSimilarity(long, Class<T>) - Constructor for class org.tensorflow.framework.metrics.CosineSimilarity
-
Creates a metric that computes the cosine similarity metric between labels and predictions with a default axis,
CosineSimilarity.DEFAULT_AXIS
and usingClass.getSimpleName()
for the metric name. - CosineSimilarity(String) - Constructor for class org.tensorflow.framework.losses.CosineSimilarity
-
Creates a Cosine Similarity AbstractLoss using an axis of
CosineSimilarity.DEFAULT_AXIS
, and a AbstractLoss Reduction ofCosineSimilarity.DEFAULT_REDUCTION
- CosineSimilarity(String, int) - Constructor for class org.tensorflow.framework.losses.CosineSimilarity
-
Creates a Cosine Similarity AbstractLoss using a AbstractLoss Reduction of
CosineSimilarity.DEFAULT_REDUCTION
- CosineSimilarity(String, int[]) - Constructor for class org.tensorflow.framework.losses.CosineSimilarity
-
Creates a Cosine Similarity AbstractLoss using a AbstractLoss Reduction of
CosineSimilarity.DEFAULT_REDUCTION
- CosineSimilarity(String, int[], long, Class<T>) - Constructor for class org.tensorflow.framework.metrics.CosineSimilarity
-
Creates a CosineSimilarity metric
- CosineSimilarity(String, int[], Reduction) - Constructor for class org.tensorflow.framework.losses.CosineSimilarity
-
Creates a Cosine Similarity AbstractLoss
- CosineSimilarity(String, int, long, Class<T>) - Constructor for class org.tensorflow.framework.metrics.CosineSimilarity
-
Creates a metric that computes the cosine similarity metric between labels and predictions.
- CosineSimilarity(String, int, Reduction) - Constructor for class org.tensorflow.framework.losses.CosineSimilarity
-
Creates a Cosine Similarity AbstractLoss
- CosineSimilarity(String, long, Class<T>) - Constructor for class org.tensorflow.framework.metrics.CosineSimilarity
-
Creates a metric that computes the cosine similarity metric between labels and predictions with a default axis,
CosineSimilarity.DEFAULT_AXIS
- CosineSimilarity(String, Reduction) - Constructor for class org.tensorflow.framework.losses.CosineSimilarity
-
Creates a Cosine Similarity AbstractLoss using an axis of
CosineSimilarity.DEFAULT_AXIS
- CosineSimilarity(Reduction) - Constructor for class org.tensorflow.framework.losses.CosineSimilarity
-
Creates a Cosine Similarity AbstractLoss using
Class.getSimpleName()
as the loss name and an axis ofCosineSimilarity.DEFAULT_AXIS
- COUNT - Static variable in class org.tensorflow.framework.metrics.MeanTensor
- create() - Static method in class org.tensorflow.framework.op.FrameworkOps
-
Creates an API for building operations in the default eager execution environment
- create(String) - Static method in interface org.tensorflow.framework.activations.Activation
-
Creates an Activation instance based on the name as known to the TensorFlow engine.
- create(Map<String, Object>) - Static method in interface org.tensorflow.framework.activations.Activation
-
Creates an Activation getInstance based on a configuration as produced by TensorFlow.
- create(ExecutionEnvironment) - Static method in class org.tensorflow.framework.op.FrameworkOps
-
Creates an API for building operations in the provided execution environment
- create(Ops) - Static method in class org.tensorflow.framework.op.FrameworkOps
-
Creates an API for building operations in the default eager execution environment
- createAdamMinimize(Scope, Operand<T>, float, float, float, float, Optimizer.Options...) - Static method in class org.tensorflow.framework.optimizers.Adam
-
Creates the Operation that minimizes the loss
- createName(Output<? extends TType>, String) - Static method in class org.tensorflow.framework.optimizers.Optimizer
-
Creates a name by combining a variable name and a slot name
- createOptimizer(Graph) - Method in enum org.tensorflow.framework.optimizers.Optimizers
-
Creates an Optimizer with default settings.
- createSlot(Output<T>, String, Operand<T>) - Method in class org.tensorflow.framework.optimizers.Optimizer
-
Creates a slot in the graph for the specified variable with the specified name.
- createSlots(List<Output<? extends TType>>) - Method in class org.tensorflow.framework.optimizers.AdaDelta
-
Performs a No-op slot creation method.
- createSlots(List<Output<? extends TType>>) - Method in class org.tensorflow.framework.optimizers.AdaGrad
-
Performs a No-op slot creation method.
- createSlots(List<Output<? extends TType>>) - Method in class org.tensorflow.framework.optimizers.AdaGradDA
-
Performs a No-op slot creation method.
- createSlots(List<Output<? extends TType>>) - Method in class org.tensorflow.framework.optimizers.Adam
-
Performs a No-op slot creation method.
- createSlots(List<Output<? extends TType>>) - Method in class org.tensorflow.framework.optimizers.Adamax
-
Performs a No-op slot creation method.
- createSlots(List<Output<? extends TType>>) - Method in class org.tensorflow.framework.optimizers.Ftrl
-
Performs a No-op slot creation method.
- createSlots(List<Output<? extends TType>>) - Method in class org.tensorflow.framework.optimizers.Momentum
-
Performs a No-op slot creation method.
- createSlots(List<Output<? extends TType>>) - Method in class org.tensorflow.framework.optimizers.Nadam
-
Performs a No-op slot creation method.
- createSlots(List<Output<? extends TType>>) - Method in class org.tensorflow.framework.optimizers.Optimizer
-
Performs a No-op slot creation method.
- createSlots(List<Output<? extends TType>>) - Method in class org.tensorflow.framework.optimizers.RMSProp
-
Performs a No-op slot creation method.
D
- Dataset - Class in org.tensorflow.framework.data
-
Represents a potentially large list of independent elements (samples), and allows iteration and transformations to be performed across these elements.
- Dataset(Dataset) - Constructor for class org.tensorflow.framework.data.Dataset
-
Creates a Dataset that is a copy of another Dataset
- Dataset(Ops, Operand<?>, List<Class<? extends TType>>, List<Shape>) - Constructor for class org.tensorflow.framework.data.Dataset
-
Creates a Dataset
- DatasetIterator - Class in org.tensorflow.framework.data
-
Represents the state of an iteration through a tf.data Datset.
- DatasetIterator(DatasetIterator) - Constructor for class org.tensorflow.framework.data.DatasetIterator
- DatasetIterator(Ops, Operand<?>, List<Class<? extends TType>>, List<Shape>) - Constructor for class org.tensorflow.framework.data.DatasetIterator
- DatasetIterator(Ops, Operand<?>, Op, List<Class<? extends TType>>, List<Shape>) - Constructor for class org.tensorflow.framework.data.DatasetIterator
- DatasetOptional - Class in org.tensorflow.framework.data
-
An optional represents the result of a dataset getNext operation that may fail, when the end of the dataset has been reached.
- DatasetOptional(DatasetOptional) - Constructor for class org.tensorflow.framework.data.DatasetOptional
-
Creates a Dataset that is a copy of another Dataset
- DatasetOptional(Ops, Operand<?>, List<Class<? extends TType>>, List<Shape>) - Constructor for class org.tensorflow.framework.data.DatasetOptional
-
Creates a DatasetOptional dataset
- DECAY_DEFAULT - Static variable in class org.tensorflow.framework.optimizers.RMSProp
- DEFAULT_AXIS - Static variable in class org.tensorflow.framework.losses.CategoricalCrossentropy
- DEFAULT_AXIS - Static variable in class org.tensorflow.framework.losses.CosineSimilarity
- DEFAULT_AXIS - Static variable in class org.tensorflow.framework.metrics.CosineSimilarity
- DEFAULT_K - Static variable in class org.tensorflow.framework.metrics.SparseTopKCategoricalAccuracy
- DEFAULT_K - Static variable in class org.tensorflow.framework.metrics.TopKCategoricalAccuracy
- DEFAULT_NAME - Static variable in class org.tensorflow.framework.metrics.AUC
- DEFAULT_NUM_THRESHOLDS - Static variable in class org.tensorflow.framework.metrics.AUC
- DEFAULT_REDUCTION - Static variable in class org.tensorflow.framework.losses.CosineSimilarity
- DEFAULT_REGULARIZATION_PENALTY - Static variable in class org.tensorflow.framework.regularizers.AbstractRegularizer
- DEFAULT_THRESHOLD - Static variable in class org.tensorflow.framework.metrics.BinaryAccuracy
-
the default threshold value for deciding whether prediction values are 1 or 0
- DEFAULT_THRESHOLD - Static variable in class org.tensorflow.framework.metrics.Precision
- DEFAULT_THRESHOLD - Static variable in class org.tensorflow.framework.metrics.Recall
- DELTA_DEFAULT - Static variable in class org.tensorflow.framework.losses.Huber
- difference(Scope, Operand<T>, Operand<T>) - Static method in class org.tensorflow.framework.op.sets.Sets
-
Computes set difference of elements in last dimension of
a
andb
withaMinusB
set to true. - difference(Scope, Operand<T>, Operand<T>, boolean) - Static method in class org.tensorflow.framework.op.sets.Sets
-
Computes set difference of elements in last dimension of
a
andb
. - difference(Operand<T>, Operand<T>) - Method in class org.tensorflow.framework.op.SetOps
-
Computes set difference of elements in last dimension of
a
andb
withaMinusB
set to true. - difference(Operand<T>, Operand<T>, boolean) - Method in class org.tensorflow.framework.op.SetOps
-
Computes set difference of elements in last dimension of
a
andb
. - DISTRIBUTION_DEFAULT - Static variable in class org.tensorflow.framework.initializers.VarianceScaling
E
- elu(Ops, Operand<T>, double) - Static method in class org.tensorflow.framework.activations.ELU
-
Computes the Exponential linear unit.
- ELU - Class in org.tensorflow.framework.activations
-
Exponential linear unit.
- ELU - org.tensorflow.framework.activations.Activations
- ELU() - Constructor for class org.tensorflow.framework.activations.ELU
-
Creates a new ELU with alpha=
ELU.ALPHA_DEFAULT
. - ELU(double) - Constructor for class org.tensorflow.framework.activations.ELU
-
Creates a new ELU
- ELU(Map<String, Object>) - Constructor for class org.tensorflow.framework.activations.ELU
-
Creates a new ELU from a configuration Map
- EMPTY_SHARED_NAME - Static variable in class org.tensorflow.framework.data.DatasetIterator
- EPSILON - Static variable in class org.tensorflow.framework.constraints.AbstractConstraint
- EPSILON - Static variable in class org.tensorflow.framework.losses.Losses
-
Default Fuzz factor.
- EPSILON - Static variable in class org.tensorflow.framework.metrics.AUC
-
Default Fuzz factor.
- EPSILON_DEFAULT - Static variable in class org.tensorflow.framework.optimizers.AdaDelta
- EPSILON_DEFAULT - Static variable in class org.tensorflow.framework.optimizers.Adam
- EPSILON_DEFAULT - Static variable in class org.tensorflow.framework.optimizers.Adamax
- EPSILON_DEFAULT - Static variable in class org.tensorflow.framework.optimizers.Nadam
- EPSILON_DEFAULT - Static variable in class org.tensorflow.framework.optimizers.RMSProp
- exponential(Ops, Operand<T>) - Static method in class org.tensorflow.framework.activations.Exponential
-
Computes the Exponential activation function.
- Exponential - Class in org.tensorflow.framework.activations
-
Exponential activation function.
- Exponential() - Constructor for class org.tensorflow.framework.activations.Exponential
-
Creates an Exponential activation.
- Exponential(Map<String, Object>) - Constructor for class org.tensorflow.framework.activations.Exponential
-
Creates a new Exponential from a configuration Map
- EXPONENTIAL - org.tensorflow.framework.activations.Activations
F
- FALSE_NEGATIVES - Static variable in class org.tensorflow.framework.metrics.AUC
- FALSE_NEGATIVES - Static variable in class org.tensorflow.framework.metrics.Recall
- FALSE_POSITIVES - Static variable in class org.tensorflow.framework.metrics.AUC
- FALSE_POSITIVES - Static variable in class org.tensorflow.framework.metrics.Precision
- FalseNegatives<T extends TNumber> - Class in org.tensorflow.framework.metrics
-
Metric that calculates the number of false negatives.
- FalseNegatives(float[], long, Class<T>) - Constructor for class org.tensorflow.framework.metrics.FalseNegatives
-
Creates a FalseNegatives metric, using
Class.getSimpleName()
for the metric name - FalseNegatives(float, long, Class<T>) - Constructor for class org.tensorflow.framework.metrics.FalseNegatives
-
Creates a FalseNegatives metric, using
Class.getSimpleName()
for the metric name - FalseNegatives(long, Class<T>) - Constructor for class org.tensorflow.framework.metrics.FalseNegatives
-
Creates a FalseNegatives metric, using
Class.getSimpleName()
for the metric name and a default threshold ofConfusionMatrixConditionCount.DEFAULT_THRESHOLD
. - FalseNegatives(String, float[], long, Class<T>) - Constructor for class org.tensorflow.framework.metrics.FalseNegatives
-
Creates a FalseNegatives metric
- FalseNegatives(String, float, long, Class<T>) - Constructor for class org.tensorflow.framework.metrics.FalseNegatives
-
Creates a FalseNegatives metric
- FalseNegatives(String, long, Class<T>) - Constructor for class org.tensorflow.framework.metrics.FalseNegatives
-
Creates a FalseNegatives metric, using a default threshold of
ConfusionMatrixConditionCount.DEFAULT_THRESHOLD
. - FalsePositives<T extends TNumber> - Class in org.tensorflow.framework.metrics
-
Metric that calculates the number of false positives.
- FalsePositives(float[], long, Class<T>) - Constructor for class org.tensorflow.framework.metrics.FalsePositives
-
Creates a FalsePositives metric, using
Class.getSimpleName()
for the metric name - FalsePositives(float, long, Class<T>) - Constructor for class org.tensorflow.framework.metrics.FalsePositives
-
Creates a FalsePositives metric, using
Class.getSimpleName()
for the metric name - FalsePositives(long, Class<T>) - Constructor for class org.tensorflow.framework.metrics.FalsePositives
-
Creates a FalsePositives metric, using
Class.getSimpleName()
for the metric name and a default threshold ofConfusionMatrixConditionCount.DEFAULT_THRESHOLD
. - FalsePositives(String, float[], long, Class<T>) - Constructor for class org.tensorflow.framework.metrics.FalsePositives
-
Creates a FalsePositives metric
- FalsePositives(String, float, long, Class<T>) - Constructor for class org.tensorflow.framework.metrics.FalsePositives
-
Creates a FalsePositives metric
- FalsePositives(String, long, Class<T>) - Constructor for class org.tensorflow.framework.metrics.FalsePositives
-
Creates a FalsePositives metric, using a default threshold of
ConfusionMatrixConditionCount.DEFAULT_THRESHOLD
. - FAN_AVG - org.tensorflow.framework.initializers.VarianceScaling.Mode
- FAN_IN - org.tensorflow.framework.initializers.VarianceScaling.Mode
- FAN_OUT - org.tensorflow.framework.initializers.VarianceScaling.Mode
- finish(List<Op>, String) - Method in class org.tensorflow.framework.optimizers.AdaGradDA
-
Gathers up the update operations into a single op that can be used as a run target.
- finish(List<Op>, String) - Method in class org.tensorflow.framework.optimizers.Adam
-
Gathers up the update operations into a single op that can be used as a run target.
- finish(List<Op>, String) - Method in class org.tensorflow.framework.optimizers.Adamax
-
Gathers up the update operations into a single op that can be used as a run target.
- finish(List<Op>, String) - Method in class org.tensorflow.framework.optimizers.Nadam
-
Gathers up the update operations into a single op that can be used as a run target.
- finish(List<Op>, String) - Method in class org.tensorflow.framework.optimizers.Optimizer
-
Gathers up the update operations into a single op that can be used as a run target.
- FIRST_MOMENT - Static variable in class org.tensorflow.framework.optimizers.Adam
- FIRST_MOMENT - Static variable in class org.tensorflow.framework.optimizers.Adamax
- FIRST_MOMENT - Static variable in class org.tensorflow.framework.optimizers.Nadam
- FrameworkOps - Class in org.tensorflow.framework.op
-
An API for building framework operations as
Op
s - FROM_LOGITS_DEFAULT - Static variable in class org.tensorflow.framework.losses.BinaryCrossentropy
- FROM_LOGITS_DEFAULT - Static variable in class org.tensorflow.framework.losses.CategoricalCrossentropy
- FROM_LOGITS_DEFAULT - Static variable in class org.tensorflow.framework.losses.SparseCategoricalCrossentropy
- fromComponents(Ops, List<Operand<?>>, List<Class<? extends TType>>, List<Shape>) - Static method in class org.tensorflow.framework.data.DatasetOptional
-
Creates a DatasetOptional from components.
- fromStructure(Ops, List<Class<? extends TType>>, List<Shape>) - Static method in class org.tensorflow.framework.data.DatasetIterator
-
Creates a new iterator from a "structure" defined by `outputShapes` and `outputTypes`.
- fromTensorSlices(Ops, List<Operand<?>>, List<Class<? extends TType>>) - Static method in class org.tensorflow.framework.data.Dataset
-
Creates an in-memory `Dataset` whose elements are slices of the given tensors.
- Ftrl - Class in org.tensorflow.framework.optimizers
-
Optimizer that implements the FTRL algorithm.
- Ftrl(Graph) - Constructor for class org.tensorflow.framework.optimizers.Ftrl
-
Creates a Ftrl Optimizer
- Ftrl(Graph, float) - Constructor for class org.tensorflow.framework.optimizers.Ftrl
-
Creates a Ftrl Optimizer
- Ftrl(Graph, float, float, float, float, float, float) - Constructor for class org.tensorflow.framework.optimizers.Ftrl
-
Creates a Ftrl Optimizer
- Ftrl(Graph, String) - Constructor for class org.tensorflow.framework.optimizers.Ftrl
-
Creates a Ftrl Optimizer
- Ftrl(Graph, String, float) - Constructor for class org.tensorflow.framework.optimizers.Ftrl
-
Creates a Ftrl Optimizer
- Ftrl(Graph, String, float, float, float, float, float, float) - Constructor for class org.tensorflow.framework.optimizers.Ftrl
-
Creates a Ftrl Optimizer
- FTRL - org.tensorflow.framework.optimizers.Optimizers
G
- GAIN_DEFAULT - Static variable in class org.tensorflow.framework.initializers.Identity
- GAIN_DEFAULT - Static variable in class org.tensorflow.framework.initializers.Orthogonal
- gelu(Ops, Operand<T>) - Static method in class org.tensorflow.framework.activations.GELU
-
Applies the Gaussian error linear unit (GELU) activation function with approximate set to false.
- gelu(Ops, Operand<T>, boolean) - Static method in class org.tensorflow.framework.activations.GELU
-
Applies the Gaussian error linear unit (GELU) activation function.
- gelu(Scope, Operand<T>) - Static method in class org.tensorflow.framework.op.nn.GELU
-
Compute the Gaussian Error Linear Unit (GELU) activation function without approximation.
- gelu(Scope, Operand<T>, boolean) - Static method in class org.tensorflow.framework.op.nn.GELU
-
Compute the Gaussian Error Linear Unit (GELU) activation function.
- gelu(Operand<T>) - Method in class org.tensorflow.framework.op.NnOps
-
Compute the Gaussian Error Linear Unit (GELU) activation function without approximation.
- gelu(Operand<T>, boolean) - Method in class org.tensorflow.framework.op.NnOps
-
Compute the Gaussian Error Linear Unit (GELU) activation function.
- GELU - Class in org.tensorflow.framework.activations
-
Applies the Gaussian error linear unit (GELU) activation function.
- GELU - Class in org.tensorflow.framework.op.nn
-
The Gaussian Error Linear Unit (GELU) activation function.
- GELU - org.tensorflow.framework.activations.Activations
- GELU() - Constructor for class org.tensorflow.framework.activations.GELU
-
Creates a Gaussian error linear unit (GELU) activation.
- GELU() - Constructor for class org.tensorflow.framework.op.nn.GELU
- GELU(boolean) - Constructor for class org.tensorflow.framework.activations.GELU
-
Creates a Gaussian error linear unit (GELU) activation.
- GELU(Map<String, Object>) - Constructor for class org.tensorflow.framework.activations.GELU
-
Creates a GELU activation from a config map.
- get(String) - Method in enum org.tensorflow.framework.metrics.AUCCurve
-
Gets the AUCCurve enum value by name, regardless of case
- get(String) - Method in enum org.tensorflow.framework.metrics.AUCSummationMethod
-
Gets the AUCSummationMethod enum value by name, regardless of case
- getAlpha() - Method in class org.tensorflow.framework.activations.ELU
-
Gets the slope of negative section.
- getAlpha() - Method in class org.tensorflow.framework.activations.ReLU
-
Gets the value that governs the slope for values lower than the threshold.
- getAxes() - Method in class org.tensorflow.framework.constraints.MaxNorm
-
Gets the axes
- getAxes() - Method in class org.tensorflow.framework.constraints.MinMaxNorm
-
Gets the axes
- getAxes() - Method in class org.tensorflow.framework.constraints.UnitNorm
-
Gets the axes
- getAxis() - Method in class org.tensorflow.framework.activations.Softmax
-
Gets the axis along which the softmax normalization is applied.
- getClassId() - Method in class org.tensorflow.framework.metrics.Precision
-
Gets the classId, may be null
- getClassId() - Method in class org.tensorflow.framework.metrics.Recall
-
Gets the class id
- getConfig() - Method in class org.tensorflow.framework.activations.AbstractActivation
-
Gets a configuration map
- getConfig() - Method in class org.tensorflow.framework.activations.ELU
-
Gets a configuration map
- getConfig() - Method in class org.tensorflow.framework.activations.Exponential
-
Gets a configuration map
- getConfig() - Method in class org.tensorflow.framework.activations.GELU
-
Gets a configuration map with entries
approximate
and value set withGELU.approximate
. - getConfig() - Method in class org.tensorflow.framework.activations.HardSigmoid
-
Gets a configuration map
- getConfig() - Method in class org.tensorflow.framework.activations.Linear
-
Gets a configuration map
- getConfig() - Method in class org.tensorflow.framework.activations.ReLU
-
Gets a configuration map with entries
alpha
and value set withReLU.alpha
. - getConfig() - Method in class org.tensorflow.framework.activations.SELU
-
Gets a configuration map
- getConfig() - Method in class org.tensorflow.framework.activations.Sigmoid
-
Gets a configuration map
- getConfig() - Method in class org.tensorflow.framework.activations.Softmax
-
Gets a configuration map with entries
axis
and value set withSoftmax.axis
. - getConfig() - Method in class org.tensorflow.framework.activations.Softplus
-
Gets a configuration map
- getConfig() - Method in class org.tensorflow.framework.activations.Softsign
-
Gets a configuration map
- getConfig() - Method in class org.tensorflow.framework.activations.Swish
-
Gets a configuration map
- getConfig() - Method in class org.tensorflow.framework.activations.Tanh
-
Gets a configuration map
- getCount() - Method in class org.tensorflow.framework.metrics.MeanTensor
- getCurve() - Method in class org.tensorflow.framework.metrics.AUC
- getDefaultConfig(String) - Method in class org.tensorflow.framework.activations.AbstractActivation
-
Gets a configuration map, this default implementation returns a singleton Map, with
AbstractActivation.NAME_KEY
as the key, and thename
parameter as its value; - getDenseShape() - Method in class org.tensorflow.framework.utils.SparseTensor
-
Gets the dense shape for the Sparse Tensor
- getFalseNegatives() - Method in class org.tensorflow.framework.metrics.AUC
- getFalseNegatives() - Method in class org.tensorflow.framework.metrics.Recall
-
Gets the falseNegatives variable
- getFalseNegativesName() - Method in class org.tensorflow.framework.metrics.AUC
- getFalseNegativesName() - Method in class org.tensorflow.framework.metrics.Recall
-
Gets the falseNegatives variable name
- getFalsePositives() - Method in class org.tensorflow.framework.metrics.AUC
- getFalsePositives() - Method in class org.tensorflow.framework.metrics.Precision
-
Gets the falsePositives variable
- getFalsePositivesName() - Method in class org.tensorflow.framework.metrics.AUC
- getFalsePositivesName() - Method in class org.tensorflow.framework.metrics.Precision
-
Gets the name of the falsePositives variable
- getGradient() - Method in class org.tensorflow.framework.optimizers.Optimizer.GradAndVar
-
Gets the gradient
- getIndices() - Method in class org.tensorflow.framework.utils.SparseTensor
-
Gets the indices for the Sparse Tensor
- getInitializer() - Method in class org.tensorflow.framework.data.DatasetIterator
- getInstance() - Method in enum org.tensorflow.framework.activations.Activations
-
Gets an Activation Instance
- getInstance(Map<String, Object>) - Method in enum org.tensorflow.framework.activations.Activations
-
Gets an Activation Instance
- getIntArray(Scope, Operand<TInt32>) - Static method in class org.tensorflow.framework.utils.ShapeUtils
-
Converts a TInt32 type Operand to a Java int array
- getIteratorResource() - Method in class org.tensorflow.framework.data.DatasetIterator
- getL1() - Method in class org.tensorflow.framework.regularizers.L1L2
-
Gets the L1 regularization factor
- getL2() - Method in class org.tensorflow.framework.regularizers.L1L2
-
Gets the L2 regularization factor
- getLabelWeights() - Method in class org.tensorflow.framework.metrics.AUC
- getLongArray(Scope, Operand<T>) - Static method in class org.tensorflow.framework.utils.ShapeUtils
-
Converts a TInt32 or TInt64 Operand to a java long array
- getLongArray(T) - Static method in class org.tensorflow.framework.utils.ShapeUtils
-
Converts a TInt32 or TInt64 to a java long array
- getMaxValue() - Method in class org.tensorflow.framework.activations.ReLU
-
Gets the saturation threshold (the largest value the function will return).
- getMaxValue() - Method in class org.tensorflow.framework.constraints.MaxNorm
-
Gets the max value
- getMaxValue() - Method in class org.tensorflow.framework.constraints.MinMaxNorm
-
Gets the maxValue
- getMinValue() - Method in class org.tensorflow.framework.constraints.MinMaxNorm
-
Gets the minValue
- getName() - Method in class org.tensorflow.framework.activations.AbstractActivation
-
Get the name of the activation as known by the TensorFlow Engine
- getName() - Method in class org.tensorflow.framework.activations.ELU
-
Get the name of the activation as known by the TensorFlow Engine
- getName() - Method in class org.tensorflow.framework.activations.Exponential
-
Get the name of the activation as known by the TensorFlow Engine
- getName() - Method in class org.tensorflow.framework.activations.GELU
-
Get the name of the activation as known by the TensorFlow Engine
- getName() - Method in class org.tensorflow.framework.activations.HardSigmoid
-
Get the name of the activation as known by the TensorFlow Engine
- getName() - Method in class org.tensorflow.framework.activations.Linear
-
Get the name of the activation as known by the TensorFlow Engine
- getName() - Method in class org.tensorflow.framework.activations.ReLU
-
Get the name of the activation as known by the TensorFlow Engine
- getName() - Method in class org.tensorflow.framework.activations.SELU
-
Get the name of the activation as known by the TensorFlow Engine
- getName() - Method in class org.tensorflow.framework.activations.Sigmoid
-
Get the name of the activation as known by the TensorFlow Engine
- getName() - Method in class org.tensorflow.framework.activations.Softmax
-
Get the name of the activation as known by the TensorFlow Engine
- getName() - Method in class org.tensorflow.framework.activations.Softplus
-
Get the name of the activation as known by the TensorFlow Engine
- getName() - Method in class org.tensorflow.framework.activations.Softsign
-
Get the name of the activation as known by the TensorFlow Engine
- getName() - Method in class org.tensorflow.framework.activations.Swish
-
Get the name of the activation as known by the TensorFlow Engine
- getName() - Method in class org.tensorflow.framework.activations.Tanh
-
Get the name of the activation as known by the TensorFlow Engine
- getName() - Method in class org.tensorflow.framework.initializers.BaseInitializer
-
Gets the name for this initializer
- getName() - Method in class org.tensorflow.framework.metrics.BaseMetric
-
The name for this metric.
- getName() - Method in class org.tensorflow.framework.regularizers.AbstractRegularizer
-
Gets the name for this regularizer
- getNext() - Method in class org.tensorflow.framework.data.DatasetIterator
-
Returns a list of
Operand<?>
representing the components of the next dataset element. - getNextAsOptional() - Method in class org.tensorflow.framework.data.DatasetIterator
-
Returns a `DatasetOptional` representing the components of the next dataset element.
- getNormalizer() - Method in class org.tensorflow.framework.metrics.MeanRelativeError
-
Gets the normalizer Operand
- getNumLabels() - Method in class org.tensorflow.framework.metrics.AUC
- getNumThresholds() - Method in class org.tensorflow.framework.metrics.AUC
- getOpsInstance() - Method in class org.tensorflow.framework.data.Dataset
-
Gets the TensorFlow Ops instance for this dataset
- getOpsInstance() - Method in class org.tensorflow.framework.data.DatasetIterator
- getOpsInstance() - Method in class org.tensorflow.framework.data.DatasetOptional
-
Gets the TensorFlow Ops instance for this dataset
- getOptimizerName() - Method in class org.tensorflow.framework.optimizers.AdaDelta
-
Get the Name of the optimizer.
- getOptimizerName() - Method in class org.tensorflow.framework.optimizers.AdaGrad
-
Get the Name of the optimizer.
- getOptimizerName() - Method in class org.tensorflow.framework.optimizers.AdaGradDA
-
Get the Name of the optimizer.
- getOptimizerName() - Method in class org.tensorflow.framework.optimizers.Adam
-
Get the Name of the optimizer.
- getOptimizerName() - Method in class org.tensorflow.framework.optimizers.Adamax
-
Get the Name of the optimizer.
- getOptimizerName() - Method in class org.tensorflow.framework.optimizers.Ftrl
-
Get the Name of the optimizer.
- getOptimizerName() - Method in class org.tensorflow.framework.optimizers.GradientDescent
-
Get the Name of the optimizer.
- getOptimizerName() - Method in class org.tensorflow.framework.optimizers.Momentum
-
Get the Name of the optimizer.
- getOptimizerName() - Method in class org.tensorflow.framework.optimizers.Nadam
-
Get the Name of the optimizer.
- getOptimizerName() - Method in class org.tensorflow.framework.optimizers.Optimizer
-
Get the Name of the optimizer.
- getOptimizerName() - Method in class org.tensorflow.framework.optimizers.RMSProp
-
Get the Name of the optimizer.
- getOptionalVariant() - Method in class org.tensorflow.framework.data.DatasetOptional
-
Gets the optional variant for this Dataset
- getOutputShapes() - Method in class org.tensorflow.framework.data.Dataset
-
Gets a list of shapes for each component of this dataset.
- getOutputTypes() - Method in class org.tensorflow.framework.data.Dataset
-
Gets a list of output types for each component of this dataset.
- getPrecision() - Method in class org.tensorflow.framework.metrics.RecallAtPrecision
-
Gets the precision
- getRate() - Method in class org.tensorflow.framework.constraints.MinMaxNorm
-
Gets the rate
- getRecall() - Method in class org.tensorflow.framework.metrics.PrecisionAtRecall
-
Gets the recall value
- getSeed() - Method in class org.tensorflow.framework.metrics.BaseMetric
-
Gets the random number generator seed value
- getSensitivity() - Method in class org.tensorflow.framework.metrics.SpecificityAtSensitivity
-
Gets the sensitivity
- getSetOperation() - Method in enum org.tensorflow.framework.op.sets.Sets.Operation
-
Gets the set operation String value used to pass as the stringOperation value to
SparseOps.denseToDenseSetOperation(org.tensorflow.Operand<T>, org.tensorflow.Operand<T>, java.lang.String, org.tensorflow.op.sparse.DenseToDenseSetOperation.Options...)
- getSlot(Output<T>, String) - Method in class org.tensorflow.framework.optimizers.Optimizer
-
Gets the slot associated with the specified variable and slot name.
- getSpecificity() - Method in class org.tensorflow.framework.metrics.SensitivityAtSpecificity
-
Gets the specificity
- getSummationMethod() - Method in class org.tensorflow.framework.metrics.AUC
- getTensorFlowName() - Method in enum org.tensorflow.framework.activations.Activations
-
Gets the activation name as known to the TensorFlow engine.
- getTF() - Method in class org.tensorflow.framework.activations.AbstractActivation
-
Gets the TensorFlow Ops
- getTF() - Method in class org.tensorflow.framework.metrics.BaseMetric
-
Gets the TensorFlow Ops for this metric
- getTF() - Method in class org.tensorflow.framework.optimizers.Optimizer
-
Gets the Optimizer's Ops instance
- getThreshold() - Method in class org.tensorflow.framework.activations.ReLU
-
Gets the saturation threshold (the largest value the function will return).
- getThresholds() - Method in class org.tensorflow.framework.metrics.AUC
- getThresholds() - Method in class org.tensorflow.framework.metrics.Precision
-
Gets the thresholds
- getThresholds() - Method in class org.tensorflow.framework.metrics.Recall
-
Gets the thresholds
- getTopK() - Method in class org.tensorflow.framework.metrics.Precision
-
Gets the topK value, may be null
- getTopK() - Method in class org.tensorflow.framework.metrics.Recall
-
Gets the topK value
- getTotal() - Method in class org.tensorflow.framework.metrics.MeanTensor
- getTrueNegatives() - Method in class org.tensorflow.framework.metrics.AUC
- getTrueNegativesName() - Method in class org.tensorflow.framework.metrics.AUC
- getTruePositives() - Method in class org.tensorflow.framework.metrics.AUC
- getTruePositives() - Method in class org.tensorflow.framework.metrics.Precision
-
Gets the truePositives variable
- getTruePositives() - Method in class org.tensorflow.framework.metrics.Recall
-
Gets the truePositives variable
- getTruePositivesName() - Method in class org.tensorflow.framework.metrics.AUC
- getTruePositivesName() - Method in class org.tensorflow.framework.metrics.Precision
-
Gets the name of the truePositives variable
- getTruePositivesName() - Method in class org.tensorflow.framework.metrics.Recall
-
Gets the truePositives variable name
- getValue() - Method in class org.tensorflow.framework.data.DatasetOptional
-
Returns the value of the dataset element represented by this optional, if it exists.
- getValues() - Method in class org.tensorflow.framework.utils.SparseTensor
-
Get the values for the Sparse Tensor
- getVariable() - Method in class org.tensorflow.framework.optimizers.Optimizer.GradAndVar
-
Gets the variable
- getVariableName(String) - Method in class org.tensorflow.framework.metrics.BaseMetric
-
Gets a formatted name for a variable, in the form
BaseMetric.name
+ "_" + varName. - getVariant() - Method in class org.tensorflow.framework.data.Dataset
-
Gets the variant tensor representing this dataset.
- globals - Variable in class org.tensorflow.framework.optimizers.Optimizer
-
Global state variables
- Glorot<T extends TFloating> - Class in org.tensorflow.framework.initializers
-
The Glorot initializer, also called Xavier initializer.
- Glorot(VarianceScaling.Distribution, long) - Constructor for class org.tensorflow.framework.initializers.Glorot
-
Creates a Glorot initializer
- GradAndVar(Output<T>, Output<T>) - Constructor for class org.tensorflow.framework.optimizers.Optimizer.GradAndVar
-
Creates a Gradient and Variable pair
- GRADIENT_DESCENT - org.tensorflow.framework.optimizers.Optimizers
- GradientDescent - Class in org.tensorflow.framework.optimizers
-
Basic Stochastic gradient descent optimizer.
- GradientDescent(Graph) - Constructor for class org.tensorflow.framework.optimizers.GradientDescent
-
Creates a GradientDescent Optimizer
- GradientDescent(Graph, float) - Constructor for class org.tensorflow.framework.optimizers.GradientDescent
-
Creates a GradientDescent Optimizer
- GradientDescent(Graph, String, float) - Constructor for class org.tensorflow.framework.optimizers.GradientDescent
-
Creates a GradientDescent Optimizer
- graph - Variable in class org.tensorflow.framework.optimizers.Optimizer
-
The Graph this optimizer is operating on.
H
- HARD_SIGMOID - org.tensorflow.framework.activations.Activations
- hardSigmoid(Ops, Operand<T>) - Static method in class org.tensorflow.framework.activations.HardSigmoid
-
Computes the hard sigmoid activation function.
- HardSigmoid - Class in org.tensorflow.framework.activations
-
Hard sigmoid activation.
- HardSigmoid() - Constructor for class org.tensorflow.framework.activations.HardSigmoid
-
Creates Hard sigmoid activation.
- HardSigmoid(Map<String, Object>) - Constructor for class org.tensorflow.framework.activations.HardSigmoid
-
Creates a new Exponential from a configuration Map
- hasValue() - Method in class org.tensorflow.framework.data.DatasetOptional
-
Gets the indicator of whether this optional has a value.
- He<T extends TFloating> - Class in org.tensorflow.framework.initializers
-
He initializer.
- He(VarianceScaling.Distribution, long) - Constructor for class org.tensorflow.framework.initializers.He
-
Creates an He Initializer
- hinge(Ops, Operand<? extends TNumber>, Operand<T>) - Static method in class org.tensorflow.framework.losses.Losses
-
Computes the hinge loss between labels and predictions
- Hinge - Class in org.tensorflow.framework.losses
-
Computes the hinge loss between labels and predictions.
- Hinge<T extends TNumber> - Class in org.tensorflow.framework.metrics
-
A metric that computes the hinge loss metric between labels and predictions.
- Hinge() - Constructor for class org.tensorflow.framework.losses.Hinge
-
Creates a Hinge AbstractLoss using
Class.getSimpleName()
as the loss name and a AbstractLoss Reduction ofAbstractLoss.REDUCTION_DEFAULT
- Hinge(long, Class<T>) - Constructor for class org.tensorflow.framework.metrics.Hinge
-
Creates a Hinge metric using
Class.getSimpleName()
for the metric name. - Hinge(String, long, Class<T>) - Constructor for class org.tensorflow.framework.metrics.Hinge
-
Creates a Hinge metric
- Hinge(String, Reduction) - Constructor for class org.tensorflow.framework.losses.Hinge
-
Creates a Hinge
- Hinge(Reduction) - Constructor for class org.tensorflow.framework.losses.Hinge
-
Creates a Hinge AbstractLoss using
Class.getSimpleName()
as the loss name - huber(Ops, Operand<? extends TNumber>, Operand<T>, float) - Static method in class org.tensorflow.framework.losses.Losses
-
Computes the Huber loss between labels and predictions.
- Huber - Class in org.tensorflow.framework.losses
-
Computes the Huber loss between labels and predictions.
- Huber() - Constructor for class org.tensorflow.framework.losses.Huber
-
Creates a Huber AbstractLoss using
Class.getSimpleName()
as the loss name,Huber.DELTA_DEFAULT
as the delta and a AbstractLoss Reduction ofAbstractLoss.REDUCTION_DEFAULT
- Huber(String) - Constructor for class org.tensorflow.framework.losses.Huber
-
Creates a Huber AbstractLoss using
Huber.DELTA_DEFAULT
as the delta and a AbstractLoss Reduction ofAbstractLoss.REDUCTION_DEFAULT
- Huber(String, float, Reduction) - Constructor for class org.tensorflow.framework.losses.Huber
-
Creates a Huber AbstractLoss
- Huber(String, Reduction) - Constructor for class org.tensorflow.framework.losses.Huber
-
Creates a Huber AbstractLoss using
Huber.DELTA_DEFAULT
as the delta - Huber(Reduction) - Constructor for class org.tensorflow.framework.losses.Huber
-
Creates a Huber AbstractLoss using
Class.getSimpleName()
as the loss name and andHuber.DELTA_DEFAULT
as the delta
I
- Identity<T extends TFloating> - Class in org.tensorflow.framework.initializers
-
Initializer that generates the identity matrix.
- Identity() - Constructor for class org.tensorflow.framework.initializers.Identity
-
Creates an Initializer that generates the identity matrix.
- Identity(double) - Constructor for class org.tensorflow.framework.initializers.Identity
-
Creates an Initializer that generates the identity matrix.
- init(Ops) - Method in class org.tensorflow.framework.metrics.AUC
-
Initialize the TensorFlow Ops
- init(Ops) - Method in class org.tensorflow.framework.metrics.BaseMetric
-
Initialize the TensorFlow Ops
- init(Ops) - Method in class org.tensorflow.framework.metrics.MeanIoU
-
Initialize the TensorFlow Ops
- init(Ops) - Method in class org.tensorflow.framework.metrics.MeanRelativeError
-
Initialize the TensorFlow Ops
- init(Ops) - Method in class org.tensorflow.framework.metrics.MeanTensor
-
Initialize the TensorFlow Ops
- init(Ops) - Method in class org.tensorflow.framework.metrics.Precision
-
Initialize the TensorFlow Ops
- init(Ops) - Method in class org.tensorflow.framework.metrics.Recall
-
Initialize the TensorFlow Ops
- INITIAL_ACCUMULATOR_DEFAULT - Static variable in class org.tensorflow.framework.optimizers.AdaGrad
- INITIAL_ACCUMULATOR_DEFAULT - Static variable in class org.tensorflow.framework.optimizers.AdaGradDA
- INITIAL_ACCUMULATOR_VALUE_DEFAULT - Static variable in class org.tensorflow.framework.optimizers.Ftrl
- Initializer<T extends TType> - Interface in org.tensorflow.framework.initializers
-
An interface for Initializers
- INTERPOLATION - org.tensorflow.framework.metrics.AUCSummationMethod
-
Apply mid-point summation scheme for
AUCCurve.ROC
. - intersection(Scope, Operand<T>, Operand<T>) - Static method in class org.tensorflow.framework.op.sets.Sets
-
Computes set intersection of elements in last dimension of
a
andb
. - intersection(Operand<T>, Operand<T>) - Method in class org.tensorflow.framework.op.SetOps
-
Computes set intersection of elements in last dimension of
a
andb
. - INTERSECTION - org.tensorflow.framework.op.sets.Sets.Operation
- isApproximate() - Method in class org.tensorflow.framework.activations.GELU
-
Gets the flag whether to enable approximation.
- isInitialized() - Method in class org.tensorflow.framework.metrics.BaseMetric
-
Checks whether the Metric is initialized or not.
- isMultiLabel() - Method in class org.tensorflow.framework.metrics.AUC
- iterator() - Method in class org.tensorflow.framework.data.Dataset
-
Creates an iterator which iterates through all batches of this Dataset in an eager fashion.
- iterator() - Method in class org.tensorflow.framework.data.DatasetIterator
K
- KLDivergence - Class in org.tensorflow.framework.losses
-
Computes Kullback-Leibler divergence loss between labels and predictions.
- KLDivergence<T extends TNumber> - Class in org.tensorflow.framework.metrics
-
A metric that computes the Kullback-Leibler divergence loss metric between labels and predictions.
- KLDivergence() - Constructor for class org.tensorflow.framework.losses.KLDivergence
-
Creates a Kullback Leibler Divergence AbstractLoss using
Class.getSimpleName()
as the loss name and a AbstractLoss Reduction ofAbstractLoss.REDUCTION_DEFAULT
- KLDivergence(long, Class<T>) - Constructor for class org.tensorflow.framework.metrics.KLDivergence
-
Creates a KLDivergence metric using
Class.getSimpleName()
for the metric name. - KLDivergence(String, long, Class<T>) - Constructor for class org.tensorflow.framework.metrics.KLDivergence
-
Creates a KLDivergence metric
- KLDivergence(String, Reduction) - Constructor for class org.tensorflow.framework.losses.KLDivergence
-
Creates a Kullback Leibler Divergence AbstractLoss
- KLDivergence(Reduction) - Constructor for class org.tensorflow.framework.losses.KLDivergence
-
Creates a Kullback Leibler Divergence AbstractLoss AbstractLoss using
Class.getSimpleName()
as the loss name - kullbackLeiblerDivergence(Ops, Operand<? extends TNumber>, Operand<T>) - Static method in class org.tensorflow.framework.losses.Losses
-
Computes the Kullback-Leibler divergence loss between labels and predictions.
L
- L1 - Class in org.tensorflow.framework.regularizers
-
A regularizer that applies an L1 or Lasso(least absolute shrinkage and selection operator) Regression, regularization penalty.
- L1() - Constructor for class org.tensorflow.framework.regularizers.L1
-
Create a regularizer that applies an L1 regularization penalty of
AbstractRegularizer.DEFAULT_REGULARIZATION_PENALTY
and a name based on the class name. - L1(float) - Constructor for class org.tensorflow.framework.regularizers.L1
-
Create a regularizer that applies an L1 regularization penalty and a name based on the class name.
- L1(String) - Constructor for class org.tensorflow.framework.regularizers.L1
-
Create a regularizer that applies an L1 regularization penalty of
AbstractRegularizer.DEFAULT_REGULARIZATION_PENALTY
- L1(String, float) - Constructor for class org.tensorflow.framework.regularizers.L1
-
Create a regularizer that applies an L1 regularization penalty
- L1_STRENGTH_DEFAULT - Static variable in class org.tensorflow.framework.optimizers.AdaGradDA
- L1L2 - Class in org.tensorflow.framework.regularizers
-
A regularizer that applies both L1 and L2 regularization penalties.
- L1L2() - Constructor for class org.tensorflow.framework.regularizers.L1L2
-
Creates an L1L2 regularizer with no l1 or l2 penalty with zero penalty
- L1L2(float, float) - Constructor for class org.tensorflow.framework.regularizers.L1L2
-
Creates an L1L2 regularizer
- L1L2(String, float, float) - Constructor for class org.tensorflow.framework.regularizers.L1L2
-
Creates an L1L2 regularizer
- L1STRENGTH_DEFAULT - Static variable in class org.tensorflow.framework.optimizers.Ftrl
- L2 - Class in org.tensorflow.framework.regularizers
-
A regularizer that applies a L2 (Ridge Regression) regularization penalty.
- L2() - Constructor for class org.tensorflow.framework.regularizers.L2
-
Create a regularizer that applies an L2 regularization penalty of
AbstractRegularizer.DEFAULT_REGULARIZATION_PENALTY
and a name based on the class name. - L2(float) - Constructor for class org.tensorflow.framework.regularizers.L2
-
Create a regularizer that applies an L1 regularization penalty and a name based on the class name.
- L2(String) - Constructor for class org.tensorflow.framework.regularizers.L2
-
Create a regularizer that applies an L2 regularization penalty of
AbstractRegularizer.DEFAULT_REGULARIZATION_PENALTY
- L2(String, float) - Constructor for class org.tensorflow.framework.regularizers.L2
-
Create a regularizer that applies an L1 regularization penalty
- L2_SHRINKAGE_REGULARIZATION_STRENGTH_DEFAULT - Static variable in class org.tensorflow.framework.optimizers.Ftrl
- L2_STRENGTH_DEFAULT - Static variable in class org.tensorflow.framework.optimizers.AdaGradDA
- l2Normalize(Ops, Operand<T>, int[]) - Static method in class org.tensorflow.framework.losses.Losses
-
Normalizes along dimension axis using an L2 norm.
- l2Normalize(Scope, Operand<T>, int[]) - Static method in class org.tensorflow.framework.op.math.L2Normalize
-
Normalizes along dimension axis using an L2 norm.
- l2Normalize(Operand<T>, int[]) - Method in class org.tensorflow.framework.op.MathOps
-
Normalizes along dimension axis using an L2 norm.
- L2Normalize - Class in org.tensorflow.framework.op.math
-
L2 Normalization Operations
- L2Normalize() - Constructor for class org.tensorflow.framework.op.math.L2Normalize
- L2STRENGTH_DEFAULT - Static variable in class org.tensorflow.framework.optimizers.Ftrl
- LABEL_SMOOTHING_DEFAULT - Static variable in class org.tensorflow.framework.losses.BinaryCrossentropy
- LABEL_SMOOTHING_DEFAULT - Static variable in class org.tensorflow.framework.losses.CategoricalCrossentropy
- LEARNING_RATE_DEFAULT - Static variable in class org.tensorflow.framework.optimizers.AdaDelta
- LEARNING_RATE_DEFAULT - Static variable in class org.tensorflow.framework.optimizers.AdaGrad
- LEARNING_RATE_DEFAULT - Static variable in class org.tensorflow.framework.optimizers.AdaGradDA
- LEARNING_RATE_DEFAULT - Static variable in class org.tensorflow.framework.optimizers.Adam
- LEARNING_RATE_DEFAULT - Static variable in class org.tensorflow.framework.optimizers.Adamax
- LEARNING_RATE_DEFAULT - Static variable in class org.tensorflow.framework.optimizers.Ftrl
- LEARNING_RATE_DEFAULT - Static variable in class org.tensorflow.framework.optimizers.GradientDescent
- LEARNING_RATE_DEFAULT - Static variable in class org.tensorflow.framework.optimizers.Momentum
- LEARNING_RATE_DEFAULT - Static variable in class org.tensorflow.framework.optimizers.Nadam
- LEARNING_RATE_DEFAULT - Static variable in class org.tensorflow.framework.optimizers.RMSProp
- LEARNING_RATE_POWER_DEFAULT - Static variable in class org.tensorflow.framework.optimizers.Ftrl
- LeCun<T extends TFloating> - Class in org.tensorflow.framework.initializers
-
LeCun normal initializer.
- LeCun(VarianceScaling.Distribution, long) - Constructor for class org.tensorflow.framework.initializers.LeCun
-
Creates a LeCunNormal Initializer
- linalg - Variable in class org.tensorflow.framework.op.FrameworkOps
- LinalgOps - Class in org.tensorflow.framework.op
- linear(Ops, Operand<T>) - Static method in class org.tensorflow.framework.activations.Linear
-
Computes the linear activation function (pass-through).
- Linear - Class in org.tensorflow.framework.activations
-
Linear activation function (pass-through).
- Linear() - Constructor for class org.tensorflow.framework.activations.Linear
-
Creates a linear activation.
- Linear(Map<String, Object>) - Constructor for class org.tensorflow.framework.activations.Linear
-
Creates a new Exponential from a configuration Map
- LINEAR - org.tensorflow.framework.activations.Activations
- LINEAR_ACCUMULATOR - Static variable in class org.tensorflow.framework.optimizers.Ftrl
- logCosh(Ops, Operand<? extends TNumber>, Operand<T>) - Static method in class org.tensorflow.framework.losses.Losses
-
Computes the hyperbolic cosine loss between labels and predictions.
- LogCosh - Class in org.tensorflow.framework.losses
-
Computes Computes the logarithm of the hyperbolic cosine of the prediction error.
- LogCosh() - Constructor for class org.tensorflow.framework.losses.LogCosh
-
Creates a LogCosh AbstractLoss using
Class.getSimpleName()
as the loss name and a AbstractLoss Reduction ofAbstractLoss.REDUCTION_DEFAULT
- LogCosh(String) - Constructor for class org.tensorflow.framework.losses.LogCosh
-
Creates a LogCosh AbstractLoss using a AbstractLoss Reduction of
AbstractLoss.REDUCTION_DEFAULT
- LogCosh(String, Reduction) - Constructor for class org.tensorflow.framework.losses.LogCosh
-
Creates a LogCosh AbstractLoss
- LogCosh(Reduction) - Constructor for class org.tensorflow.framework.losses.LogCosh
-
Creates a LogCosh AbstractLoss using
Class.getSimpleName()
as the loss name - LogCoshError<T extends TNumber> - Class in org.tensorflow.framework.metrics
-
A metric that computes the logarithm of the hyperbolic cosine of the prediction error metric between labels and predictions.
- LogCoshError(long, Class<T>) - Constructor for class org.tensorflow.framework.metrics.LogCoshError
-
Creates a LogCoshError metric using
Class.getSimpleName()
for the metric name. - LogCoshError(String, long, Class<T>) - Constructor for class org.tensorflow.framework.metrics.LogCoshError
-
Creates a LogCoshError metric
- Loss - Interface in org.tensorflow.framework.losses
-
Interface for loss calc ulation
- Losses - Class in org.tensorflow.framework.losses
-
Built-in loss functions.
- Losses() - Constructor for class org.tensorflow.framework.losses.Losses
M
- MAJORING - org.tensorflow.framework.metrics.AUCSummationMethod
-
Apply right summation for increasing intervals and left summation for decreasing intervals
- makeInitializeableIterator() - Method in class org.tensorflow.framework.data.Dataset
-
Creates a `DatasetIterator` that can be used to iterate over elements of this dataset.
- makeInitializer(Dataset) - Method in class org.tensorflow.framework.data.DatasetIterator
-
Creates and returns a TF `Op` that can be run to initialize this iterator on a dataset.
- makeOneShotIterator() - Method in class org.tensorflow.framework.data.Dataset
-
Creates a `DatasetIterator` that can be used to iterate over elements of this dataset.
- map(Function<List<Operand<?>>, List<Operand<?>>>) - Method in class org.tensorflow.framework.data.Dataset
-
Returns a new Dataset which maps a function over all elements returned by this dataset.
- mapAllComponents(Function<Operand<?>, Operand<?>>) - Method in class org.tensorflow.framework.data.Dataset
-
Returns a new Dataset which maps a function across all elements from this dataset, on all components of each element.
- mapOneComponent(int, Function<Operand<?>, Operand<?>>) - Method in class org.tensorflow.framework.data.Dataset
-
Returns a new Dataset which maps a function across all elements from this dataset, on a single component of each element.
- math - Variable in class org.tensorflow.framework.op.FrameworkOps
- MathOps - Class in org.tensorflow.framework.op
- matmul(Scope, Operand<T>, Operand<T>) - Static method in class org.tensorflow.framework.op.linalg.MatMul
-
Multiplies matrix
a
by matrixb
, producinga
*b
. - matmul(Scope, Operand<T>, Operand<T>, boolean, boolean) - Static method in class org.tensorflow.framework.op.linalg.MatMul
-
Multiplies matrix
a
by matrixb
, producinga
*b
. - matmul(Scope, Operand<T>, Operand<T>, boolean, boolean, boolean, boolean, boolean, boolean) - Static method in class org.tensorflow.framework.op.linalg.MatMul
-
Multiplies matrix
a
by matrixb
, producinga
*b
. - matmul(Operand<T>, Operand<T>) - Method in class org.tensorflow.framework.op.LinalgOps
-
Multiplies matrix
a
by matrixb
, producinga
*b
. - matmul(Operand<T>, Operand<T>, boolean, boolean) - Method in class org.tensorflow.framework.op.LinalgOps
-
Multiplies matrix
a
by matrixb
, producinga
*b
. - matmul(Operand<T>, Operand<T>, boolean, boolean, boolean, boolean, boolean, boolean) - Method in class org.tensorflow.framework.op.LinalgOps
-
Multiplies matrix
a
by matrixb
, producinga
*b
. - MatMul - Class in org.tensorflow.framework.op.linalg
-
Multiplication matrix operations
- MatMul() - Constructor for class org.tensorflow.framework.op.linalg.MatMul
- MAX_VALUE_DEFAULT - Static variable in class org.tensorflow.framework.activations.ReLU
- MAX_VALUE_DEFAULT - Static variable in class org.tensorflow.framework.constraints.MaxNorm
- MAX_VALUE_DEFAULT - Static variable in class org.tensorflow.framework.constraints.MinMaxNorm
- MaxNorm - Class in org.tensorflow.framework.constraints
-
Constrains the weights incident to each hidden unit to have a norm less than or equal to a desired value.
- MaxNorm() - Constructor for class org.tensorflow.framework.constraints.MaxNorm
-
Create a MaxNorm constraint using
MaxNorm.MAX_VALUE_DEFAULT
for the max value andMaxNorm.AXIS_DEFAULT
for the axis. - MaxNorm(double) - Constructor for class org.tensorflow.framework.constraints.MaxNorm
-
Create a MaxNorm constraint using
MaxNorm.AXIS_DEFAULT
for the axis. - MaxNorm(double, int) - Constructor for class org.tensorflow.framework.constraints.MaxNorm
-
Create a MaxNorm constraint
- MaxNorm(double, int[]) - Constructor for class org.tensorflow.framework.constraints.MaxNorm
-
Create a MaxNorm constraint
- MAXVAL_DEFAULT - Static variable in class org.tensorflow.framework.initializers.RandomUniform
- Mean<T extends TNumber> - Class in org.tensorflow.framework.metrics
-
A metric that that implements a weighted mean
MetricReduction.WEIGHTED_MEAN
- Mean(long, Class<T>) - Constructor for class org.tensorflow.framework.metrics.Mean
-
Creates a Reducible Metric with a metric reductions of
MetricReduction.SUM
and usingClass.getSimpleName()
for the metric name. - Mean(String, long, Class<T>) - Constructor for class org.tensorflow.framework.metrics.Mean
-
Creates a Reducible Metric with a metric reductions of
MetricReduction.SUM
- MEAN_DEFAULT - Static variable in class org.tensorflow.framework.initializers.RandomNormal
- MEAN_DEFAULT - Static variable in class org.tensorflow.framework.initializers.TruncatedNormal
- meanAbsoluteError(Ops, Operand<? extends TNumber>, Operand<T>) - Static method in class org.tensorflow.framework.losses.Losses
-
Calculates the mean absolute error between labels and predictions.
- MeanAbsoluteError - Class in org.tensorflow.framework.losses
-
Computes the mean of absolute difference between labels and predictions.
- MeanAbsoluteError<T extends TNumber> - Class in org.tensorflow.framework.metrics
-
A metric that computes the mean of absolute difference between labels and predictions.
- MeanAbsoluteError() - Constructor for class org.tensorflow.framework.losses.MeanAbsoluteError
-
Creates a MeanAbsoluteError AbstractLoss using
Class.getSimpleName()
as the loss name and a AbstractLoss Reduction ofAbstractLoss.REDUCTION_DEFAULT
- MeanAbsoluteError(long, Class<T>) - Constructor for class org.tensorflow.framework.metrics.MeanAbsoluteError
-
Creates a Mean Absolute Error metric using
Class.getSimpleName()
for the metric name. - MeanAbsoluteError(String, long, Class<T>) - Constructor for class org.tensorflow.framework.metrics.MeanAbsoluteError
-
Creates a Mean Absolute Error metric
- MeanAbsoluteError(String, Reduction) - Constructor for class org.tensorflow.framework.losses.MeanAbsoluteError
-
Creates a MeanAbsoluteError
- MeanAbsoluteError(Reduction) - Constructor for class org.tensorflow.framework.losses.MeanAbsoluteError
-
Creates a MeanAbsoluteError AbstractLoss using
Class.getSimpleName()
as the loss name - meanAbsolutePercentageError(Ops, Operand<? extends TNumber>, Operand<T>) - Static method in class org.tensorflow.framework.losses.Losses
-
Calculates the mean absolute percentage error between labels and predictions.
- MeanAbsolutePercentageError - Class in org.tensorflow.framework.losses
-
Computes the mean absolute percentage error between labels and predictions.
- MeanAbsolutePercentageError<T extends TNumber> - Class in org.tensorflow.framework.metrics
-
A metric that computes the mean of absolute difference between labels and predictions.
- MeanAbsolutePercentageError() - Constructor for class org.tensorflow.framework.losses.MeanAbsolutePercentageError
-
Creates a MeanAbsolutePercentageError AbstractLoss using
Class.getSimpleName()
as the loss name and a AbstractLoss Reduction ofAbstractLoss.REDUCTION_DEFAULT
- MeanAbsolutePercentageError(long, Class<T>) - Constructor for class org.tensorflow.framework.metrics.MeanAbsolutePercentageError
-
Creates a Mean Absolute Error metric using
Class.getSimpleName()
for the metric name. - MeanAbsolutePercentageError(String, long, Class<T>) - Constructor for class org.tensorflow.framework.metrics.MeanAbsolutePercentageError
-
Creates a Mean Absolute Error metric
- MeanAbsolutePercentageError(String, Reduction) - Constructor for class org.tensorflow.framework.losses.MeanAbsolutePercentageError
-
Creates a MeanAbsolutePercentageError
- MeanAbsolutePercentageError(Reduction) - Constructor for class org.tensorflow.framework.losses.MeanAbsolutePercentageError
-
Creates a MeanAbsolutePercentageError AbstractLoss using
Class.getSimpleName()
as the loss name - MeanIoU<T extends TNumber> - Class in org.tensorflow.framework.metrics
-
Computes the mean Intersection-Over-Union metric.
- MeanIoU(long, long, Class<T>) - Constructor for class org.tensorflow.framework.metrics.MeanIoU
-
Creates a metric MeanIoU, using name as
Class.getSimpleName()
- MeanIoU(String, long, long, Class<T>) - Constructor for class org.tensorflow.framework.metrics.MeanIoU
-
Creates a MeanIoU metric
- MeanRelativeError<T extends TNumber> - Class in org.tensorflow.framework.metrics
-
Computes the mean relative error by normalizing with the given values.
- MeanRelativeError(double[], long, Class<T>) - Constructor for class org.tensorflow.framework.metrics.MeanRelativeError
-
Creates a MeanRelativeError metric using
Class.getSimpleName()
as the name - MeanRelativeError(float[], long, Class<T>) - Constructor for class org.tensorflow.framework.metrics.MeanRelativeError
-
Creates a MeanRelativeError metric using
Class.getSimpleName()
as the name - MeanRelativeError(String, double[], long, Class<T>) - Constructor for class org.tensorflow.framework.metrics.MeanRelativeError
-
Creates a MeanRelativeError metric
- MeanRelativeError(String, float[], long, Class<T>) - Constructor for class org.tensorflow.framework.metrics.MeanRelativeError
-
Creates a MeanRelativeError metric
- MeanRelativeError(String, Operand<T>, long, Class<T>) - Constructor for class org.tensorflow.framework.metrics.MeanRelativeError
-
Creates a MeanRelativeError metric
- MeanRelativeError(Operand<T>, long, Class<T>) - Constructor for class org.tensorflow.framework.metrics.MeanRelativeError
-
Creates a MeanRelativeError metric using
Class.getSimpleName()
as the name - meanSquaredError(Ops, Operand<? extends TNumber>, Operand<T>) - Static method in class org.tensorflow.framework.losses.Losses
-
Computes the mean squared error between labels and predictions.
- MeanSquaredError - Class in org.tensorflow.framework.losses
-
Computes the mean of squares of errors between labels and predictions.
- MeanSquaredError<T extends TNumber> - Class in org.tensorflow.framework.metrics
-
A metric that computes the mean of absolute difference between labels and predictions.
- MeanSquaredError() - Constructor for class org.tensorflow.framework.losses.MeanSquaredError
-
Creates a MeanSquaredError AbstractLoss using
Class.getSimpleName()
as the loss name and a AbstractLoss Reduction ofAbstractLoss.REDUCTION_DEFAULT
- MeanSquaredError(long, Class<T>) - Constructor for class org.tensorflow.framework.metrics.MeanSquaredError
-
Creates a Mean Absolute Error metric using
Class.getSimpleName()
for the metric name. - MeanSquaredError(String, long, Class<T>) - Constructor for class org.tensorflow.framework.metrics.MeanSquaredError
-
Creates a Mean Absolute Error metric
- MeanSquaredError(String, Reduction) - Constructor for class org.tensorflow.framework.losses.MeanSquaredError
-
Creates a MeanSquaredError
- MeanSquaredError(Reduction) - Constructor for class org.tensorflow.framework.losses.MeanSquaredError
-
Creates a MeanSquaredError AbstractLoss using
Class.getSimpleName()
as the loss name - meanSquaredLogarithmicError(Ops, Operand<? extends TNumber>, Operand<T>) - Static method in class org.tensorflow.framework.losses.Losses
-
Calculates the mean squared logarithmic error between labels and predictions.
- MeanSquaredLogarithmicError - Class in org.tensorflow.framework.losses
-
Computes the mean squared logarithmic errors between labels and predictions.
- MeanSquaredLogarithmicError<T extends TNumber> - Class in org.tensorflow.framework.metrics
-
A metric that computes the mean of absolute difference between labels and predictions.
- MeanSquaredLogarithmicError() - Constructor for class org.tensorflow.framework.losses.MeanSquaredLogarithmicError
-
Creates a MeanSquaredError AbstractLoss using
Class.getSimpleName()
as the loss name and a AbstractLoss Reduction ofAbstractLoss.REDUCTION_DEFAULT
- MeanSquaredLogarithmicError(long, Class<T>) - Constructor for class org.tensorflow.framework.metrics.MeanSquaredLogarithmicError
-
Creates a Mean Absolute Error metric using
Class.getSimpleName()
for the metric name. - MeanSquaredLogarithmicError(String, long, Class<T>) - Constructor for class org.tensorflow.framework.metrics.MeanSquaredLogarithmicError
-
Creates a Mean Absolute Error metric
- MeanSquaredLogarithmicError(String, Reduction) - Constructor for class org.tensorflow.framework.losses.MeanSquaredLogarithmicError
-
Creates a MeanSquaredError
- MeanSquaredLogarithmicError(Reduction) - Constructor for class org.tensorflow.framework.losses.MeanSquaredLogarithmicError
-
Creates a MeanSquaredError AbstractLoss using
Class.getSimpleName()
as the loss name - MeanTensor<T extends TNumber> - Class in org.tensorflow.framework.metrics
-
Metric that computes the element-wise (weighted) mean of the given tensors.
- MeanTensor(long, Class<T>) - Constructor for class org.tensorflow.framework.metrics.MeanTensor
-
Creates a MeanTensor metric, using
Class.getSimpleName()
as the name - MeanTensor(String, long, Class<T>) - Constructor for class org.tensorflow.framework.metrics.MeanTensor
-
Creates a MeanTensor metric
- Metric - Interface in org.tensorflow.framework.metrics
-
Interface for metrics
- MetricReduction - Enum in org.tensorflow.framework.metrics
-
Defines the different types of metric reductions
- Metrics - Class in org.tensorflow.framework.metrics
-
Static methods for computing metrics.
- Metrics() - Constructor for class org.tensorflow.framework.metrics.Metrics
- MG - Static variable in class org.tensorflow.framework.optimizers.RMSProp
- MIN_VALUE_DEFAULT - Static variable in class org.tensorflow.framework.constraints.MinMaxNorm
- minimize(Operand<?>) - Method in class org.tensorflow.framework.optimizers.Optimizer
-
Minimizes the loss by updating the variables
- minimize(Operand<?>, String) - Method in class org.tensorflow.framework.optimizers.Optimizer
-
Minimizes the loss by updating the variables
- MinMaxNorm - Class in org.tensorflow.framework.constraints
-
Constrains the weights to have the norm between a lower bound and an upper bound.
- MinMaxNorm() - Constructor for class org.tensorflow.framework.constraints.MinMaxNorm
-
Create a MinMaxNorm constraint using
MinMaxNorm.MIN_VALUE_DEFAULT
for the min value,MinMaxNorm.MAX_VALUE_DEFAULT
for the max value,MinMaxNorm.RATE_DEFAULT
for the rate andMinMaxNorm.AXIS_DEFAULT
for the axis - MinMaxNorm(double, double) - Constructor for class org.tensorflow.framework.constraints.MinMaxNorm
-
Create a MinMaxNorm constraint using
MinMaxNorm.RATE_DEFAULT
for the rate andMinMaxNorm.AXIS_DEFAULT
for the axis - MinMaxNorm(double, double, double, int) - Constructor for class org.tensorflow.framework.constraints.MinMaxNorm
-
Create a MinMaxNorm constraint
- MinMaxNorm(double, double, double, int[]) - Constructor for class org.tensorflow.framework.constraints.MinMaxNorm
-
Create a MinMaxNorm constraint
- MINORING - org.tensorflow.framework.metrics.AUCSummationMethod
-
Apply left summation for increasing intervals and right summation for decreasing intervals
- MINVAL_DEFAULT - Static variable in class org.tensorflow.framework.initializers.RandomUniform
- MODE_DEFAULT - Static variable in class org.tensorflow.framework.initializers.VarianceScaling
- Momentum - Class in org.tensorflow.framework.optimizers
-
Stochastic gradient descent plus momentum, either nesterov or traditional.
- Momentum(Graph) - Constructor for class org.tensorflow.framework.optimizers.Momentum
-
Creates a Momentum Optimizer
- Momentum(Graph, float) - Constructor for class org.tensorflow.framework.optimizers.Momentum
-
Creates a Momentum Optimizer
- Momentum(Graph, float, float) - Constructor for class org.tensorflow.framework.optimizers.Momentum
-
Creates a Momentum Optimizer
- Momentum(Graph, float, float, boolean) - Constructor for class org.tensorflow.framework.optimizers.Momentum
-
Creates a Momentum Optimizer
- Momentum(Graph, String, float, float, boolean) - Constructor for class org.tensorflow.framework.optimizers.Momentum
-
Creates a Momentum Optimizer
- MOMENTUM - org.tensorflow.framework.optimizers.Optimizers
- MOMENTUM - Static variable in class org.tensorflow.framework.optimizers.Momentum
- MOMENTUM - Static variable in class org.tensorflow.framework.optimizers.Nadam
- MOMENTUM - Static variable in class org.tensorflow.framework.optimizers.RMSProp
- MOMENTUM_DEFAULT - Static variable in class org.tensorflow.framework.optimizers.Momentum
- MOMENTUM_DEFAULT - Static variable in class org.tensorflow.framework.optimizers.RMSProp
N
- Nadam - Class in org.tensorflow.framework.optimizers
-
Nadam Optimizer that implements the NAdam algorithm.
- Nadam(Graph) - Constructor for class org.tensorflow.framework.optimizers.Nadam
-
Creates a Nadam Optimizer
- Nadam(Graph, float) - Constructor for class org.tensorflow.framework.optimizers.Nadam
-
Creates a Nadam Optimizer
- Nadam(Graph, float, float, float, float) - Constructor for class org.tensorflow.framework.optimizers.Nadam
-
Creates a Nadam Optimizer
- Nadam(Graph, String, float) - Constructor for class org.tensorflow.framework.optimizers.Nadam
-
Creates a Nadam Optimizer
- Nadam(Graph, String, float, float, float, float) - Constructor for class org.tensorflow.framework.optimizers.Nadam
-
Creates a Nadam Optimizer
- NADAM - org.tensorflow.framework.optimizers.Optimizers
- NAME - Static variable in class org.tensorflow.framework.activations.ELU
-
The activation name as known by TensorFlow
- NAME - Static variable in class org.tensorflow.framework.activations.Exponential
-
The activation name as known by TensorFlow
- NAME - Static variable in class org.tensorflow.framework.activations.GELU
-
The activation name as known by TensorFlow
- NAME - Static variable in class org.tensorflow.framework.activations.HardSigmoid
-
The activation name as known by TensorFlow
- NAME - Static variable in class org.tensorflow.framework.activations.Linear
-
The activation name as known by TensorFlow
- NAME - Static variable in class org.tensorflow.framework.activations.ReLU
-
The activation name as known by TensorFlow
- NAME - Static variable in class org.tensorflow.framework.activations.SELU
-
The activation name as known by TensorFlow
- NAME - Static variable in class org.tensorflow.framework.activations.Sigmoid
-
The activation name as known by TensorFlow
- NAME - Static variable in class org.tensorflow.framework.activations.Softmax
-
The activation name as known by TensorFlow
- NAME - Static variable in class org.tensorflow.framework.activations.Softplus
-
The activation name as known by TensorFlow
- NAME - Static variable in class org.tensorflow.framework.activations.Softsign
-
The activation name as known by TensorFlow
- NAME - Static variable in class org.tensorflow.framework.activations.Swish
-
The activation name as known by TensorFlow
- NAME - Static variable in class org.tensorflow.framework.activations.Tanh
-
The activation name as known by TensorFlow
- NAME_KEY - Static variable in class org.tensorflow.framework.activations.AbstractActivation
- NESTEROV_DEFAULT - Static variable in class org.tensorflow.framework.optimizers.Momentum
- nn - Variable in class org.tensorflow.framework.op.FrameworkOps
- NnOps - Class in org.tensorflow.framework.op
-
Creates Framework nerual network Operations
- NONE - org.tensorflow.framework.losses.Reduction
- NonNeg - Class in org.tensorflow.framework.constraints
-
Constrains the weights to be non-negative.
- NonNeg() - Constructor for class org.tensorflow.framework.constraints.NonNeg
-
Create a NonNeg constraint
- norm(Ops, Operand<T>, int[]) - Method in class org.tensorflow.framework.constraints.AbstractConstraint
-
Calculates the norm of the weights along the axes
- NORMAL - org.tensorflow.framework.initializers.VarianceScaling.Distribution
- NotBroadcastableException - Exception in org.tensorflow.framework.metrics.exceptions
-
Exception that indicates that static shapes are not able to broadcast among each other during arithmetic operations.
- NotBroadcastableException(String) - Constructor for exception org.tensorflow.framework.metrics.exceptions.NotBroadcastableException
-
Creates a new NotBroadcastableException exception with the specified detail message
- NotBroadcastableException(String, Throwable) - Constructor for exception org.tensorflow.framework.metrics.exceptions.NotBroadcastableException
-
Creates a new NotBroadcastableException exception with the specified detail message
O
- of(String) - Static method in enum org.tensorflow.framework.activations.Activations
-
Gets the ActivationType based on the TensorFlow name for the activation
- ofName(String) - Static method in enum org.tensorflow.framework.losses.Reduction
-
Get the Reduction based on name
- Ones<T extends TType> - Class in org.tensorflow.framework.initializers
-
Initializer that generates tensors initialized to 1.
- Ones() - Constructor for class org.tensorflow.framework.initializers.Ones
-
Creates an Initializer that sets all values to one.
- Optimizer - Class in org.tensorflow.framework.optimizers
-
Base class for gradient optimizers.
- Optimizer(Graph) - Constructor for class org.tensorflow.framework.optimizers.Optimizer
-
Builds an optimizer for the supplied graph.
- Optimizer(Graph, String) - Constructor for class org.tensorflow.framework.optimizers.Optimizer
-
Builds an optimizer for the supplied graph.
- Optimizer.GradAndVar<T extends TType> - Class in org.tensorflow.framework.optimizers
-
A class that holds a paired gradient and variable.
- Optimizer.Options - Class in org.tensorflow.framework.optimizers
-
Optional attributes for
Optimizer
- Optimizers - Enum in org.tensorflow.framework.optimizers
-
Enumerator used to create a new Optimizer with default parameters.
- org.tensorflow.framework.activations - package org.tensorflow.framework.activations
- org.tensorflow.framework.constraints - package org.tensorflow.framework.constraints
- org.tensorflow.framework.data - package org.tensorflow.framework.data
- org.tensorflow.framework.initializers - package org.tensorflow.framework.initializers
- org.tensorflow.framework.losses - package org.tensorflow.framework.losses
- org.tensorflow.framework.metrics - package org.tensorflow.framework.metrics
- org.tensorflow.framework.metrics.exceptions - package org.tensorflow.framework.metrics.exceptions
- org.tensorflow.framework.op - package org.tensorflow.framework.op
- org.tensorflow.framework.op.linalg - package org.tensorflow.framework.op.linalg
- org.tensorflow.framework.op.math - package org.tensorflow.framework.op.math
- org.tensorflow.framework.op.nn - package org.tensorflow.framework.op.nn
- org.tensorflow.framework.op.sets - package org.tensorflow.framework.op.sets
- org.tensorflow.framework.optimizers - package org.tensorflow.framework.optimizers
- org.tensorflow.framework.regularizers - package org.tensorflow.framework.regularizers
- org.tensorflow.framework.utils - package org.tensorflow.framework.utils
- Orthogonal<T extends TFloating> - Class in org.tensorflow.framework.initializers
-
Initializer that generates an orthogonal matrix.
- Orthogonal(double, long) - Constructor for class org.tensorflow.framework.initializers.Orthogonal
-
Creates an Orthogonal Initializer
- Orthogonal(long) - Constructor for class org.tensorflow.framework.initializers.Orthogonal
-
Creates an Orthogonal Initializer using
Orthogonal.GAIN_DEFAULT
for the gain. - outputShapes - Variable in class org.tensorflow.framework.data.DatasetIterator
- outputTypes - Variable in class org.tensorflow.framework.data.DatasetIterator
P
- poisson(Ops, Operand<? extends TNumber>, Operand<T>) - Static method in class org.tensorflow.framework.losses.Losses
-
Computes the Poisson loss between labels and predictions.
- Poisson - Class in org.tensorflow.framework.losses
-
Computes the Poisson loss between labels and predictions.
- Poisson<T extends TNumber> - Class in org.tensorflow.framework.metrics
-
A metric that computes the poisson loss metric between labels and predictions.
- Poisson() - Constructor for class org.tensorflow.framework.losses.Poisson
-
Creates a Poisson AbstractLoss using
Class.getSimpleName()
as the loss name and a AbstractLoss Reduction ofAbstractLoss.REDUCTION_DEFAULT
- Poisson(long, Class<T>) - Constructor for class org.tensorflow.framework.metrics.Poisson
-
Creates a Poisson metric using
Class.getSimpleName()
for the metric name. - Poisson(String) - Constructor for class org.tensorflow.framework.losses.Poisson
-
Creates a Poisson AbstractLoss using a AbstractLoss Reduction of
AbstractLoss.REDUCTION_DEFAULT
- Poisson(String, long, Class<T>) - Constructor for class org.tensorflow.framework.metrics.Poisson
-
Creates a Poisson metric
- Poisson(String, Reduction) - Constructor for class org.tensorflow.framework.losses.Poisson
-
Creates a Poisson AbstractLoss
- Poisson(Reduction) - Constructor for class org.tensorflow.framework.losses.Poisson
-
Creates a Poisson AbstractLoss using
Class.getSimpleName()
as the loss name - PR - org.tensorflow.framework.metrics.AUCCurve
-
Precision-Recall-curve
- Precision<T extends TNumber> - Class in org.tensorflow.framework.metrics
-
Computes the precision of the predictions with respect to the labels.
- Precision(float[], long, Class<T>) - Constructor for class org.tensorflow.framework.metrics.Precision
-
Creates a Precision Metric with a name of
Class.getSimpleName()
and no topK or classId values. - Precision(float[], Integer, Integer, long, Class<T>) - Constructor for class org.tensorflow.framework.metrics.Precision
-
Creates a Precision Metric with a name of
Class.getSimpleName()
- Precision(float, long, Class<T>) - Constructor for class org.tensorflow.framework.metrics.Precision
-
Creates a Precision Metric with a name of
Class.getSimpleName()
and no topK or classId values. - Precision(float, Integer, Integer, long, Class<T>) - Constructor for class org.tensorflow.framework.metrics.Precision
-
Creates a Precision Metric with a name of
Class.getSimpleName()
- Precision(long, Class<T>) - Constructor for class org.tensorflow.framework.metrics.Precision
-
Creates a Precision Metric with a name of
Class.getSimpleName()
and no topK or classId values and with a threshold ofPrecision.DEFAULT_THRESHOLD
. - Precision(String, float[], long, Class<T>) - Constructor for class org.tensorflow.framework.metrics.Precision
-
Creates a Precision Metric with no topK or classId values.
- Precision(String, float[], Integer, Integer, long, Class<T>) - Constructor for class org.tensorflow.framework.metrics.Precision
-
Creates a Precision Metric.
- Precision(String, float, long, Class<T>) - Constructor for class org.tensorflow.framework.metrics.Precision
-
Creates a Precision Metric with no topK or classId values.
- Precision(String, float, Integer, Integer, long, Class<T>) - Constructor for class org.tensorflow.framework.metrics.Precision
-
Creates a Precision Metric.
- Precision(String, long, Class<T>) - Constructor for class org.tensorflow.framework.metrics.Precision
-
Creates a Precision Metric with no topK or classId values with a threshold of
Precision.DEFAULT_THRESHOLD
. - PrecisionAtRecall<T extends TNumber> - Class in org.tensorflow.framework.metrics
-
Computes best precision where recall is >= specified value.
- PrecisionAtRecall(float, int, long, Class<T>) - Constructor for class org.tensorflow.framework.metrics.PrecisionAtRecall
-
Creates a PrecisionRecall metric with a name of
Class.getSimpleName()
. - PrecisionAtRecall(float, long, Class<T>) - Constructor for class org.tensorflow.framework.metrics.PrecisionAtRecall
-
Creates a PrecisionRecall metric with a name of
Class.getSimpleName()
andSensitivitySpecificityBase.DEFAULT_NUM_THRESHOLDS
for the number of thresholds - PrecisionAtRecall(String, float, int, long, Class<T>) - Constructor for class org.tensorflow.framework.metrics.PrecisionAtRecall
-
Creates a PrecisionRecall metric.
- PrecisionAtRecall(String, float, long, Class<T>) - Constructor for class org.tensorflow.framework.metrics.PrecisionAtRecall
-
Creates a PrecisionRecall metric with
SensitivitySpecificityBase.DEFAULT_NUM_THRESHOLDS
for the number of thresholds - prepare(String) - Method in class org.tensorflow.framework.optimizers.AdaGradDA
-
Returns a No-op prepare.
- prepare(String) - Method in class org.tensorflow.framework.optimizers.Adam
-
Returns a No-op prepare.
- prepare(String) - Method in class org.tensorflow.framework.optimizers.Adamax
-
Returns a No-op prepare.
- prepare(String) - Method in class org.tensorflow.framework.optimizers.Nadam
-
Returns a No-op prepare.
- prepare(String) - Method in class org.tensorflow.framework.optimizers.Optimizer
-
Returns a No-op prepare.
R
- RandomNormal<T extends TFloating> - Class in org.tensorflow.framework.initializers
-
Initializer that generates tensors with a normal distribution.
- RandomNormal(double, double, long) - Constructor for class org.tensorflow.framework.initializers.RandomNormal
-
creates the RandomUniform initializer
- RandomNormal(double, long) - Constructor for class org.tensorflow.framework.initializers.RandomNormal
-
Creates the RandomUniform initializer using
RandomNormal.STDDEV_DEFAULT
for the standard deviation. - RandomNormal(long) - Constructor for class org.tensorflow.framework.initializers.RandomNormal
-
Creates the RandomUniform initializer using
RandomNormal.MEAN_DEFAULT
for the mean andRandomNormal.STDDEV_DEFAULT
for the standard deviation. - RandomUniform<T extends TNumber> - Class in org.tensorflow.framework.initializers
-
Initializer that generates tensors with a uniform distribution.
- RandomUniform(double, double, long) - Constructor for class org.tensorflow.framework.initializers.RandomUniform
-
Creates a RandomUniform initializer
- RandomUniform(long) - Constructor for class org.tensorflow.framework.initializers.RandomUniform
-
Creates a RandomUniform initializer using
RandomUniform.MINVAL_DEFAULT
for the minval andRandomUniform.MAXVAL_DEFAULT
for the maxval - RATE_DEFAULT - Static variable in class org.tensorflow.framework.constraints.MinMaxNorm
- Recall<T extends TNumber> - Class in org.tensorflow.framework.metrics
-
Computes the recall of the predictions with respect to the labels.
- Recall(float[], long, Class<T>) - Constructor for class org.tensorflow.framework.metrics.Recall
-
Creates a Recall metric with a name of
Class.getSimpleName()
, and topK and classId set to null. - Recall(float[], Integer, Integer, long, Class<T>) - Constructor for class org.tensorflow.framework.metrics.Recall
-
Creates a Recall metric with a name of
Class.getSimpleName()
- Recall(float, long, Class<T>) - Constructor for class org.tensorflow.framework.metrics.Recall
-
Creates a Recall metric with a name of
Class.getSimpleName()
, and topK and classId set to null. - Recall(float, Integer, Integer, long, Class<T>) - Constructor for class org.tensorflow.framework.metrics.Recall
-
Creates a Recall metric with a name of
Class.getSimpleName()
- Recall(long, Class<T>) - Constructor for class org.tensorflow.framework.metrics.Recall
-
Creates a Recall metric with a name of
Class.getSimpleName()
, and topK and classId set to null, and thresholds set toRecall.DEFAULT_THRESHOLD
- Recall(Integer, Integer, long, Class<T>) - Constructor for class org.tensorflow.framework.metrics.Recall
-
Creates a Recall metric with a name of
Class.getSimpleName()
and using a threshold value ofRecall.DEFAULT_THRESHOLD
. - Recall(String, float[], long, Class<T>) - Constructor for class org.tensorflow.framework.metrics.Recall
-
Creates a Recall metric with topK and classId set to null.
- Recall(String, float[], Integer, Integer, long, Class<T>) - Constructor for class org.tensorflow.framework.metrics.Recall
-
Creates a Recall metric.
- Recall(String, float, long, Class<T>) - Constructor for class org.tensorflow.framework.metrics.Recall
-
Creates a Recall metric with topK and classId set to null.
- Recall(String, float, Integer, Integer, long, Class<T>) - Constructor for class org.tensorflow.framework.metrics.Recall
-
Creates a Recall metric.
- Recall(String, long, Class<T>) - Constructor for class org.tensorflow.framework.metrics.Recall
-
Creates a Recall metric with topK and classId set to null and thresholds set to
Recall.DEFAULT_THRESHOLD
. - Recall(String, Integer, Integer, long, Class<T>) - Constructor for class org.tensorflow.framework.metrics.Recall
-
Creates a Recall metric using a threshold value of
Recall.DEFAULT_THRESHOLD
. - RecallAtPrecision<T extends TNumber> - Class in org.tensorflow.framework.metrics
-
Computes best recall where precision is >= specified value.
- RecallAtPrecision(float, int, long, Class<T>) - Constructor for class org.tensorflow.framework.metrics.RecallAtPrecision
-
Creates a PrecisionRecall metric with a name of
Class.getSimpleName()
. - RecallAtPrecision(float, long, Class<T>) - Constructor for class org.tensorflow.framework.metrics.RecallAtPrecision
-
Creates a PrecisionRecall metric with a name of
Class.getSimpleName()
andSensitivitySpecificityBase.DEFAULT_NUM_THRESHOLDS
for the number of thresholds - RecallAtPrecision(String, float, int, long, Class<T>) - Constructor for class org.tensorflow.framework.metrics.RecallAtPrecision
-
Creates a PrecisionRecall metric.
- RecallAtPrecision(String, float, long, Class<T>) - Constructor for class org.tensorflow.framework.metrics.RecallAtPrecision
-
Creates a PrecisionRecall metric with
SensitivitySpecificityBase.DEFAULT_NUM_THRESHOLDS
for the number of thresholds - reduce(Shape, int) - Static method in class org.tensorflow.framework.utils.ShapeUtils
-
Reduces the shape by eliminating trailing Dimensions.
- reduceLogSumExp(Scope, Operand<T>, int[], boolean) - Static method in class org.tensorflow.framework.op.math.ReduceLogSumExp
-
Computes log(sum(exp(elements across dimensions of a tensor))).
- reduceLogSumExp(Operand<T>, int[], boolean) - Method in class org.tensorflow.framework.op.MathOps
-
Computes log(sum(exp(elements across dimensions of a tensor))).
- ReduceLogSumExp - Class in org.tensorflow.framework.op.math
-
Reduce Log Sum Exp Operations
- ReduceLogSumExp() - Constructor for class org.tensorflow.framework.op.math.ReduceLogSumExp
- Reduction - Enum in org.tensorflow.framework.losses
-
Type of AbstractLoss Reduction
- Regularizer - Interface in org.tensorflow.framework.regularizers
- relu(Ops, Operand<T>) - Static method in class org.tensorflow.framework.activations.ReLU
-
Applies the rectified linear unit activation function with default values.
- relu(Ops, Operand<T>, float, float, float) - Static method in class org.tensorflow.framework.activations.ReLU
-
Applies the rectified linear unit activation function.
- ReLU - Class in org.tensorflow.framework.activations
-
Rectified Linear Unit(ReLU) activation.
- ReLU() - Constructor for class org.tensorflow.framework.activations.ReLU
-
Creates a new ReLU with alpha=
ReLU.ALPHA_DEFAULT
, maxValue=ReLU.MAX_VALUE_DEFAULT
, threshold=ReLU.THRESHOLD_DEFAULT
, - ReLU(float, float, float) - Constructor for class org.tensorflow.framework.activations.ReLU
-
Creates a new ReLU
- ReLU(Map<String, Object>) - Constructor for class org.tensorflow.framework.activations.ReLU
-
Creates a ReLU activation from a config map.
- RELU - org.tensorflow.framework.activations.Activations
- resetStates(Ops) - Method in class org.tensorflow.framework.metrics.AUC
-
Resets any state variables to their initial values
- resetStates(Ops) - Method in class org.tensorflow.framework.metrics.MeanIoU
-
Resets any state variables to their initial values
- resetStates(Ops) - Method in class org.tensorflow.framework.metrics.MeanTensor
-
Resets any state variables to their initial values
- resetStates(Ops) - Method in interface org.tensorflow.framework.metrics.Metric
-
Resets any state variables to their initial values
- resetStates(Ops) - Method in class org.tensorflow.framework.metrics.Precision
-
Resets any state variables to their initial values
- resetStates(Ops) - Method in class org.tensorflow.framework.metrics.Recall
-
Resets any state variables to their initial values
- result(Ops, Class<T>) - Method in interface org.tensorflow.framework.metrics.Metric
-
Gets the current result of the metric
- result(Ops, Class<U>) - Method in class org.tensorflow.framework.metrics.AUC
-
Gets the current result of the metric
- result(Ops, Class<U>) - Method in class org.tensorflow.framework.metrics.MeanIoU
-
Gets the current result of the metric
- result(Ops, Class<U>) - Method in class org.tensorflow.framework.metrics.MeanTensor
-
Gets the current result of the metric
- result(Ops, Class<U>) - Method in class org.tensorflow.framework.metrics.Precision
-
Gets the current result of the metric
- result(Ops, Class<U>) - Method in class org.tensorflow.framework.metrics.PrecisionAtRecall
-
Gets the current result of the metric
- result(Ops, Class<U>) - Method in class org.tensorflow.framework.metrics.Recall
- result(Ops, Class<U>) - Method in class org.tensorflow.framework.metrics.RecallAtPrecision
-
Gets the current result of the metric
- result(Ops, Class<U>) - Method in class org.tensorflow.framework.metrics.RootMeanSquaredError
-
Gets the current result of the metric
- result(Ops, Class<U>) - Method in class org.tensorflow.framework.metrics.SensitivityAtSpecificity
-
Gets the current result of the metric
- result(Ops, Class<U>) - Method in class org.tensorflow.framework.metrics.SpecificityAtSensitivity
-
Gets the current result of the metric
- RHO_DEFAULT - Static variable in class org.tensorflow.framework.optimizers.AdaDelta
- RMS - Static variable in class org.tensorflow.framework.optimizers.RMSProp
- RMSProp - Class in org.tensorflow.framework.optimizers
-
Optimizer that implements the RMSProp algorithm.
- RMSProp(Graph) - Constructor for class org.tensorflow.framework.optimizers.RMSProp
-
Creates an RMSPRrop Optimizer
- RMSProp(Graph, float) - Constructor for class org.tensorflow.framework.optimizers.RMSProp
-
Creates an RMSPRrop Optimizer
- RMSProp(Graph, float, float, float, float, boolean) - Constructor for class org.tensorflow.framework.optimizers.RMSProp
-
Creates an RMSPRrop Optimizer
- RMSProp(Graph, String, float) - Constructor for class org.tensorflow.framework.optimizers.RMSProp
-
Creates an RMSPRrop Optimizer
- RMSProp(Graph, String, float, float, float, float, boolean) - Constructor for class org.tensorflow.framework.optimizers.RMSProp
-
Creates an RMSPRrop Optimizer
- RMSPROP - org.tensorflow.framework.optimizers.Optimizers
- ROC - org.tensorflow.framework.metrics.AUCCurve
-
Receiver Operator Characteristic curve
- RootMeanSquaredError<T extends TNumber> - Class in org.tensorflow.framework.metrics
-
Computes root mean squared error metric between
labels
andpredictions
. - RootMeanSquaredError(long, Class<T>) - Constructor for class org.tensorflow.framework.metrics.RootMeanSquaredError
-
Creates a RootMeanSquaredError metric with a name of
Class.getSimpleName()
- RootMeanSquaredError(String, long, Class<T>) - Constructor for class org.tensorflow.framework.metrics.RootMeanSquaredError
-
Creates a RootMeanSquaredError metric
S
- SCALE - Static variable in class org.tensorflow.framework.initializers.Glorot
- SCALE - Static variable in class org.tensorflow.framework.initializers.He
- SCALE_DEFAULT - Static variable in class org.tensorflow.framework.initializers.VarianceScaling
- scope() - Method in class org.tensorflow.framework.op.FrameworkOps
-
Returns the current
scope
of this API - SECOND_MOMENT - Static variable in class org.tensorflow.framework.optimizers.Adam
- SECOND_MOMENT - Static variable in class org.tensorflow.framework.optimizers.Adamax
- SECOND_MOMENT - Static variable in class org.tensorflow.framework.optimizers.Nadam
- selu(Ops, Operand<T>) - Static method in class org.tensorflow.framework.activations.SELU
-
Applies Scaled Exponential Linear Unit (SELU) activation function
- SELU - Class in org.tensorflow.framework.activations
-
Scaled Exponential Linear Unit (SELU).
- SELU - org.tensorflow.framework.activations.Activations
- SELU() - Constructor for class org.tensorflow.framework.activations.SELU
-
Creates a Scaled Exponential Linear Unit (SELU) activation.
- SELU(Map<String, Object>) - Constructor for class org.tensorflow.framework.activations.SELU
-
Creates a new Exponential from a configuration Map
- SensitivityAtSpecificity<T extends TNumber> - Class in org.tensorflow.framework.metrics
-
Computes best sensitivity where sensitivity is >= specified value.
- SensitivityAtSpecificity(float, int, long, Class<T>) - Constructor for class org.tensorflow.framework.metrics.SensitivityAtSpecificity
-
Creates a PrecisionRecall metric with a name of
Class.getSimpleName()
. - SensitivityAtSpecificity(float, long, Class<T>) - Constructor for class org.tensorflow.framework.metrics.SensitivityAtSpecificity
-
Creates a SpecificityAtSensitivity metric with a name of
Class.getSimpleName()
andSensitivitySpecificityBase.DEFAULT_NUM_THRESHOLDS
for the number of thresholds - SensitivityAtSpecificity(String, float, int, long, Class<T>) - Constructor for class org.tensorflow.framework.metrics.SensitivityAtSpecificity
-
Creates a PrecisionRecall metric.
- SensitivityAtSpecificity(String, float, long, Class<T>) - Constructor for class org.tensorflow.framework.metrics.SensitivityAtSpecificity
-
Creates a SpecificityAtSensitivity metric with
SensitivitySpecificityBase.DEFAULT_NUM_THRESHOLDS
for the number of thresholds - setInitialized(boolean) - Method in class org.tensorflow.framework.metrics.BaseMetric
-
Sets the initialized indicator
- setName(String) - Method in class org.tensorflow.framework.metrics.BaseMetric
-
Sets the metric name
- setNumLabels(Integer) - Method in class org.tensorflow.framework.metrics.AUC
- setOperation(Scope, Operand<T>, Operand<T>, Sets.Operation) - Static method in class org.tensorflow.framework.op.sets.Sets
-
Compute set operation of elements in last dimension of
a
andb
. - SetOps - Class in org.tensorflow.framework.op
-
Creates Framework set Operations
- sets - Variable in class org.tensorflow.framework.op.FrameworkOps
- Sets - Class in org.tensorflow.framework.op.sets
- Sets() - Constructor for class org.tensorflow.framework.op.sets.Sets
- Sets.Operation - Enum in org.tensorflow.framework.op.sets
-
Enumeration containing the string operation values to be passed to the TensorFlow Sparse Ops function
SparseOps.denseToDenseSetOperation(org.tensorflow.Operand<T>, org.tensorflow.Operand<T>, java.lang.String, org.tensorflow.op.sparse.DenseToDenseSetOperation.Options...)
- setTF(Ops) - Method in class org.tensorflow.framework.activations.AbstractActivation
-
Sets the TensorFlow Ops
- setTF(Ops) - Method in class org.tensorflow.framework.metrics.BaseMetric
-
Sets the TensorFlow Ops for this metric.
- ShapeUtils - Class in org.tensorflow.framework.utils
-
Various methods for processing with Shapes and Operands
- ShapeUtils() - Constructor for class org.tensorflow.framework.utils.ShapeUtils
- sharedName - Variable in class org.tensorflow.framework.optimizers.Optimizer.Options
- sharedName(String) - Method in class org.tensorflow.framework.optimizers.Optimizer.Options
-
Sets the shared name
- sigmoid(Ops, Operand<T>) - Static method in class org.tensorflow.framework.activations.Sigmoid
-
Applies the Sigmoid activation function,
sigmoid(x) = 1 / (1 + exp(-x))
. - Sigmoid - Class in org.tensorflow.framework.activations
-
Sigmoid activation.
- Sigmoid() - Constructor for class org.tensorflow.framework.activations.Sigmoid
-
Creates a Sigmoid activation.
- Sigmoid(Map<String, Object>) - Constructor for class org.tensorflow.framework.activations.Sigmoid
-
Creates a new Exponential from a configuration Map
- SIGMOID - org.tensorflow.framework.activations.Activations
- sigmoidCrossEntropyWithLogits(Scope, Operand<T>, Operand<T>) - Static method in class org.tensorflow.framework.op.nn.SigmoidCrossEntropyWithLogits
-
Computes sigmoid cross entropy given
logits
. - sigmoidCrossEntropyWithLogits(Operand<T>, Operand<T>) - Method in class org.tensorflow.framework.op.NnOps
-
Computes sigmoid cross entropy given
logits
. - SigmoidCrossEntropyWithLogits - Class in org.tensorflow.framework.op.nn
- SigmoidCrossEntropyWithLogits() - Constructor for class org.tensorflow.framework.op.nn.SigmoidCrossEntropyWithLogits
- skip(long) - Method in class org.tensorflow.framework.data.Dataset
-
Returns a new `Dataset` which skips `count` initial elements from this dataset
- softmax(Ops, Operand<T>) - Static method in class org.tensorflow.framework.activations.Softmax
-
Converts a vector of values to a probability distribution along the last axis.
- softmax(Ops, Operand<T>, Operand<TInt32>) - Static method in class org.tensorflow.framework.activations.Softmax
-
Converts a vector of values to a probability distribution.
- Softmax - Class in org.tensorflow.framework.activations
-
Softmax converts a real vector to a vector of categorical probabilities.
- Softmax() - Constructor for class org.tensorflow.framework.activations.Softmax
-
Creates a softmax activation where the default axis is
Softmax.AXIS_DEFAULT
which indicates the last dimension. - Softmax(int) - Constructor for class org.tensorflow.framework.activations.Softmax
-
Creates a Softmax activation
- Softmax(Map<String, Object>) - Constructor for class org.tensorflow.framework.activations.Softmax
-
Creates a Softmax activation from a config map.
- SOFTMAX - org.tensorflow.framework.activations.Activations
- softmaxCrossEntropyWithLogits(Scope, Operand<U>, Operand<T>, int) - Static method in class org.tensorflow.framework.op.nn.SoftmaxCrossEntropyWithLogits
-
Computes softmax cross entropy between
logits
andlabels
. - softmaxCrossEntropyWithLogits(Operand<U>, Operand<T>, int) - Method in class org.tensorflow.framework.op.NnOps
-
Computes softmax cross entropy between
logits
andlabels
. - SoftmaxCrossEntropyWithLogits - Class in org.tensorflow.framework.op.nn
- SoftmaxCrossEntropyWithLogits() - Constructor for class org.tensorflow.framework.op.nn.SoftmaxCrossEntropyWithLogits
- softplus(Ops, Operand<T>) - Static method in class org.tensorflow.framework.activations.Softplus
-
Applies the Softplus activation function,
softplus(x) = log(exp(x) + 1)
. - Softplus - Class in org.tensorflow.framework.activations
-
Softplus activation function,
softplus(x) = log(exp(x) + 1)
. - Softplus() - Constructor for class org.tensorflow.framework.activations.Softplus
-
Creates a Softplus activation function.
- Softplus(Map<String, Object>) - Constructor for class org.tensorflow.framework.activations.Softplus
-
Creates a new Softplus from a configuration Map
- SOFTPLUS - org.tensorflow.framework.activations.Activations
- softsign(Ops, Operand<T>) - Static method in class org.tensorflow.framework.activations.Softsign
-
Applies the Softsign activation function,
softsign(x) = x / (abs(x) + 1)
. - Softsign - Class in org.tensorflow.framework.activations
-
Softsign activation function,
softsign(x) = x / (abs(x) + 1)
. - Softsign() - Constructor for class org.tensorflow.framework.activations.Softsign
-
Creates a Softsign activation.
- Softsign(Map<String, Object>) - Constructor for class org.tensorflow.framework.activations.Softsign
-
Creates a new Softsign from a configuration Map
- SOFTSIGN - org.tensorflow.framework.activations.Activations
- SparseCategoricalAccuracy<T extends TNumber> - Class in org.tensorflow.framework.metrics
-
Calculates how often predictions matches integer labels.
- SparseCategoricalAccuracy(long, Class<T>) - Constructor for class org.tensorflow.framework.metrics.SparseCategoricalAccuracy
-
Creates a SparseCategoricalAccuracy metric, using name of
Class.getSimpleName()
. - SparseCategoricalAccuracy(String, long, Class<T>) - Constructor for class org.tensorflow.framework.metrics.SparseCategoricalAccuracy
-
Creates a SparseCategoricalAccuracy metric.
- sparseCategoricalCrossentropy(Ops, Operand<? extends TNumber>, Operand<T>, boolean, int) - Static method in class org.tensorflow.framework.losses.Losses
-
Computes the sparse categorical crossentropy loss between labels and predictions.
- SparseCategoricalCrossentropy - Class in org.tensorflow.framework.losses
-
Computes the crossentropy loss between labels and predictions.
- SparseCategoricalCrossentropy<T extends TNumber> - Class in org.tensorflow.framework.metrics
-
A metric that computes the sparse categorical cross-entropy loss between true labels and predicted labels.
- SparseCategoricalCrossentropy() - Constructor for class org.tensorflow.framework.losses.SparseCategoricalCrossentropy
-
Creates a SparseCategoricalCrossentropy loss using
Class.getSimpleName()
as the loss name, a AbstractLoss Reduction ofAbstractLoss.REDUCTION_DEFAULT
, and fromLogits=SparseCategoricalCrossentropy.FROM_LOGITS_DEFAULT
. - SparseCategoricalCrossentropy(boolean) - Constructor for class org.tensorflow.framework.losses.SparseCategoricalCrossentropy
-
Creates a SparseCategoricalCrossentropy loss using
Class.getSimpleName()
as the loss name, a AbstractLoss Reduction ofAbstractLoss.REDUCTION_DEFAULT
and fromLogits=SparseCategoricalCrossentropy.FROM_LOGITS_DEFAULT
. - SparseCategoricalCrossentropy(boolean, int, long, Class<T>) - Constructor for class org.tensorflow.framework.metrics.SparseCategoricalCrossentropy
-
Creates a SparseCategoricalCrossentropy metric using
Class.getSimpleName()
for the metric name. - SparseCategoricalCrossentropy(boolean, Reduction) - Constructor for class org.tensorflow.framework.losses.SparseCategoricalCrossentropy
-
Creates a SparseCategoricalCrossentropy loss using
Class.getSimpleName()
as the loss name, - SparseCategoricalCrossentropy(String) - Constructor for class org.tensorflow.framework.losses.SparseCategoricalCrossentropy
-
Creates a SparseCategoricalCrossentropy loss using a AbstractLoss Reduction of
AbstractLoss.REDUCTION_DEFAULT
, and fromLogits=SparseCategoricalCrossentropy.FROM_LOGITS_DEFAULT
. - SparseCategoricalCrossentropy(String, boolean) - Constructor for class org.tensorflow.framework.losses.SparseCategoricalCrossentropy
-
Creates a SparseCategoricalCrossentropy using a AbstractLoss Reduction of
AbstractLoss.REDUCTION_DEFAULT
, and fromLogits=SparseCategoricalCrossentropy.FROM_LOGITS_DEFAULT
. - SparseCategoricalCrossentropy(String, boolean, int, long, Class<T>) - Constructor for class org.tensorflow.framework.metrics.SparseCategoricalCrossentropy
-
Creates a SparseCategoricalCrossentropy metric
- SparseCategoricalCrossentropy(String, boolean, Reduction, int) - Constructor for class org.tensorflow.framework.losses.SparseCategoricalCrossentropy
-
Creates a SparseCategoricalCrossentropy
- SparseCategoricalCrossentropy(String, Reduction) - Constructor for class org.tensorflow.framework.losses.SparseCategoricalCrossentropy
-
Creates a SparseCategoricalCrossentropy loss with Reduction.AUTO and fromLogits=
SparseCategoricalCrossentropy.FROM_LOGITS_DEFAULT
. - SparseCategoricalCrossentropy(Reduction) - Constructor for class org.tensorflow.framework.losses.SparseCategoricalCrossentropy
-
Creates a SparseCategoricalCrossentropy loss using
Class.getSimpleName()
as the loss name, with Reduction.AUTO and fromLogits=SparseCategoricalCrossentropy.FROM_LOGITS_DEFAULT
. - sparseSoftmaxCrossEntropyWithLogits(Scope, Operand<U>, Operand<T>) - Static method in class org.tensorflow.framework.op.nn.SparseSoftmaxCrossEntropyWithLogits
-
Computes sparse softmax cross entropy between
logits
andlabels
. - sparseSoftmaxCrossEntropyWithLogits(Operand<U>, Operand<T>) - Method in class org.tensorflow.framework.op.NnOps
-
Computes sparse softmax cross entropy between
logits
andlabels
. - SparseSoftmaxCrossEntropyWithLogits - Class in org.tensorflow.framework.op.nn
- SparseSoftmaxCrossEntropyWithLogits() - Constructor for class org.tensorflow.framework.op.nn.SparseSoftmaxCrossEntropyWithLogits
- SparseTensor<T extends TType> - Class in org.tensorflow.framework.utils
-
This is a helper class that represents a sparse tensor who's attributes may be passed to
SparseOps
methods. - SparseTensor(Operand<TInt64>, Operand<T>, Operand<TInt64>) - Constructor for class org.tensorflow.framework.utils.SparseTensor
-
Creates a SparseTensor
- sparseTopKCategoricalAccuracy(Ops, Operand<U>, Operand<T>, int) - Static method in class org.tensorflow.framework.metrics.Metrics
-
Computes how often integer targets are in the top K predictions.
- SparseTopKCategoricalAccuracy<T extends TNumber> - Class in org.tensorflow.framework.metrics
-
Computes how often integer targets are in the top `K` predictions.
- SparseTopKCategoricalAccuracy(int, long, Class<T>) - Constructor for class org.tensorflow.framework.metrics.SparseTopKCategoricalAccuracy
-
Creates a SparseTopKCategoricalAccuracy metric using
Class.getSimpleName()
for the metric name. - SparseTopKCategoricalAccuracy(long, Class<T>) - Constructor for class org.tensorflow.framework.metrics.SparseTopKCategoricalAccuracy
-
Creates a SparseTopKCategoricalAccuracy metric using
SparseTopKCategoricalAccuracy.DEFAULT_K
for the number of top elements usingClass.getSimpleName()
for the metric name. - SparseTopKCategoricalAccuracy(String, int, long, Class<T>) - Constructor for class org.tensorflow.framework.metrics.SparseTopKCategoricalAccuracy
-
Creates a SparseTopKCategoricalAccuracy metric.
- SparseTopKCategoricalAccuracy(String, long, Class<T>) - Constructor for class org.tensorflow.framework.metrics.SparseTopKCategoricalAccuracy
-
Creates a SparseTopKCategoricalAccuracy metric using
SparseTopKCategoricalAccuracy.DEFAULT_K
for the number of top elements. - SpecificityAtSensitivity<T extends TNumber> - Class in org.tensorflow.framework.metrics
-
Computes best specificity where sensitivity is >= specified value.
- SpecificityAtSensitivity(float, int, long, Class<T>) - Constructor for class org.tensorflow.framework.metrics.SpecificityAtSensitivity
-
Creates a PrecisionRecall metric with a name of
Class.getSimpleName()
. - SpecificityAtSensitivity(float, long, Class<T>) - Constructor for class org.tensorflow.framework.metrics.SpecificityAtSensitivity
-
Creates a SpecificityAtSensitivity metric with a name of
Class.getSimpleName()
andSensitivitySpecificityBase.DEFAULT_NUM_THRESHOLDS
for the number of thresholds - SpecificityAtSensitivity(String, float, int, long, Class<T>) - Constructor for class org.tensorflow.framework.metrics.SpecificityAtSensitivity
-
Creates a PrecisionRecall metric.
- SpecificityAtSensitivity(String, float, long, Class<T>) - Constructor for class org.tensorflow.framework.metrics.SpecificityAtSensitivity
-
Creates a SpecificityAtSensitivity metric with
SensitivitySpecificityBase.DEFAULT_NUM_THRESHOLDS
for the number of thresholds - sqrt(Ops, Operand<T>) - Method in class org.tensorflow.framework.constraints.AbstractConstraint
-
Gets the element-wise square root.
- SQUARED_ACCUMULATOR - Static variable in class org.tensorflow.framework.optimizers.AdaGradDA
- squaredHinge(Ops, Operand<? extends TNumber>, Operand<T>) - Static method in class org.tensorflow.framework.losses.Losses
-
Computes the squared hinge loss between labels and predictions.
- SquaredHinge - Class in org.tensorflow.framework.losses
-
Computes the squared hinge loss between labels and predictions.
- SquaredHinge<T extends TNumber> - Class in org.tensorflow.framework.metrics
-
A metric that computes the squared hinge loss metric between labels and predictions.
- SquaredHinge() - Constructor for class org.tensorflow.framework.losses.SquaredHinge
-
Creates a Squared Hinge AbstractLoss using
Class.getSimpleName()
as the loss name and a AbstractLoss Reduction ofAbstractLoss.REDUCTION_DEFAULT
- SquaredHinge(long, Class<T>) - Constructor for class org.tensorflow.framework.metrics.SquaredHinge
-
Creates a SquaredHinge metric using
Class.getSimpleName()
for the metric name. - SquaredHinge(String, long, Class<T>) - Constructor for class org.tensorflow.framework.metrics.SquaredHinge
-
Creates a SquaredHinge metric
- SquaredHinge(String, Reduction) - Constructor for class org.tensorflow.framework.losses.SquaredHinge
-
Creates a Squared Hinge
- SquaredHinge(Reduction) - Constructor for class org.tensorflow.framework.losses.SquaredHinge
-
Creates a Squared Hinge AbstractLoss using
Class.getSimpleName()
as the loss name - STDDEV_DEFAULT - Static variable in class org.tensorflow.framework.initializers.RandomNormal
- STDDEV_DEFAULT - Static variable in class org.tensorflow.framework.initializers.TruncatedNormal
- Sum<T extends TNumber> - Class in org.tensorflow.framework.metrics
-
Computes the (weighted) sum of the given values.
- Sum(long, Class<T>) - Constructor for class org.tensorflow.framework.metrics.Sum
-
Creates a Sum metric with a name of
Class.getSimpleName()
- Sum(String, long, Class<T>) - Constructor for class org.tensorflow.framework.metrics.Sum
-
Creates a Sum metric.
- SUM - org.tensorflow.framework.losses.Reduction
- SUM - org.tensorflow.framework.metrics.MetricReduction
-
Scalar sum of weighted values.
- SUM_OVER_BATCH_SIZE - org.tensorflow.framework.losses.Reduction
- SUM_OVER_BATCH_SIZE - org.tensorflow.framework.metrics.MetricReduction
-
Scalar sum of weighted values divided by number of elements.
- swish(Ops, Operand<T>) - Static method in class org.tensorflow.framework.activations.Swish
-
Applies the Swish activation function,
swish(x) = x * sigmoid(x)
. - Swish - Class in org.tensorflow.framework.activations
-
Swish activation function.
- Swish() - Constructor for class org.tensorflow.framework.activations.Swish
-
Creates a Swish activation,
swish(x) = x * sigmoid(x)
. - Swish(Map<String, Object>) - Constructor for class org.tensorflow.framework.activations.Swish
-
Creates a new Swish from a configuration Map
- SWISH - org.tensorflow.framework.activations.Activations
T
- take(long) - Method in class org.tensorflow.framework.data.Dataset
-
Returns a new `Dataset` with only the first `count` elements from this dataset.
- tanh(Ops, Operand<T>) - Static method in class org.tensorflow.framework.activations.Tanh
-
Applies the Hyperbolic tangent activation function,
tanh(x) = sinh(x)/cosh(x) = ((exp(x) - exp(-x))/(exp(x) + exp(-x)))
. - Tanh - Class in org.tensorflow.framework.activations
-
Hyperbolic tangent activation function.
- Tanh() - Constructor for class org.tensorflow.framework.activations.Tanh
-
Creates a Hyperbolic tangent activation.
- Tanh(Map<String, Object>) - Constructor for class org.tensorflow.framework.activations.Tanh
-
Creates a new Tanh from a configuration Map
- TANH - org.tensorflow.framework.activations.Activations
- tensordot(Scope, Operand<T>, Operand<T>, int) - Static method in class org.tensorflow.framework.op.math.TensorDot
-
Tensor contraction of a and b along specified axes and outer product.
- tensordot(Scope, Operand<T>, Operand<T>, int[]) - Static method in class org.tensorflow.framework.op.math.TensorDot
-
Tensor contraction of a and b along specified axes and outer product.
- tensordot(Scope, Operand<T>, Operand<T>, int[][]) - Static method in class org.tensorflow.framework.op.math.TensorDot
-
Tensor contraction of a and b along specified axes and outer product.
- tensordot(Scope, Operand<T>, Operand<T>, Operand<TInt32>) - Static method in class org.tensorflow.framework.op.math.TensorDot
-
Tensor contraction of a and b along specified axes and outer product.
- tensordot(Scope, Operand<T>, Operand<T>, Operand<TInt32>, Operand<TInt32>) - Static method in class org.tensorflow.framework.op.math.TensorDot
-
Tensor contraction of a and b along specified axes and outer product.
- tensordot(Operand<T>, Operand<T>, int) - Method in class org.tensorflow.framework.op.MathOps
-
Tensor contraction of a and b along specified axes and outer product.
- tensordot(Operand<T>, Operand<T>, int[]) - Method in class org.tensorflow.framework.op.MathOps
-
Tensor contraction of a and b along specified axes and outer product.
- tensordot(Operand<T>, Operand<T>, int[][]) - Method in class org.tensorflow.framework.op.MathOps
-
Tensor contraction of a and b along specified axes and outer product.
- tensordot(Operand<T>, Operand<T>, Operand<TInt32>) - Method in class org.tensorflow.framework.op.MathOps
-
Tensor contraction of a and b along specified axes and outer product.
- tensordot(Operand<T>, Operand<T>, Operand<TInt32>, Operand<TInt32>) - Method in class org.tensorflow.framework.op.MathOps
-
Tensor contraction of a and b along specified axes and outer product.
- TensorDot - Class in org.tensorflow.framework.op.math
-
tensor contraction Operations
- TensorDot() - Constructor for class org.tensorflow.framework.op.math.TensorDot
- tensorflow.framework - module tensorflow.framework
- textLineDataset(Ops, String, String, long) - Static method in class org.tensorflow.framework.data.Dataset
-
Creates a TextLineDataset from a file containing one recored per ling.
- tf - Variable in class org.tensorflow.framework.activations.AbstractActivation
-
The TensorFlow Ops
- tf - Variable in class org.tensorflow.framework.data.Dataset
- tf - Variable in class org.tensorflow.framework.data.DatasetIterator
- tf - Variable in class org.tensorflow.framework.data.DatasetOptional
- tf - Variable in class org.tensorflow.framework.optimizers.Optimizer
-
The ops builder for the graph.
- tfRecordDataset(Ops, String, String, long) - Static method in class org.tensorflow.framework.data.Dataset
-
Creates a TFRecordDataset from a file containing TFRecords
- THRESHOLD_DEFAULT - Static variable in class org.tensorflow.framework.activations.ReLU
- topKCategoricalAccuracy(Ops, Operand<? extends TNumber>, Operand<T>, long) - Static method in class org.tensorflow.framework.metrics.Metrics
-
Computes how often targets are in the top K predictions.
- TopKCategoricalAccuracy<T extends TNumber> - Class in org.tensorflow.framework.metrics
-
Computes the poisson loss metric between labels and predictions.
- TopKCategoricalAccuracy(int, long, Class<T>) - Constructor for class org.tensorflow.framework.metrics.TopKCategoricalAccuracy
-
Creates a TopKCategoricalAccuracy metric using
Class.getSimpleName()
for the metric name. - TopKCategoricalAccuracy(long, Class<T>) - Constructor for class org.tensorflow.framework.metrics.TopKCategoricalAccuracy
-
Creates a TopKCategoricalAccuracy metric using
TopKCategoricalAccuracy.DEFAULT_K
fork
, Number of top elements to look at for computing accuracy and usingClass.getSimpleName()
for the metric name. - TopKCategoricalAccuracy(String, int, long, Class<T>) - Constructor for class org.tensorflow.framework.metrics.TopKCategoricalAccuracy
-
Creates a TopKCategoricalAccuracy metric
- TopKCategoricalAccuracy(String, long, Class<T>) - Constructor for class org.tensorflow.framework.metrics.TopKCategoricalAccuracy
-
Creates a TopKCategoricalAccuracy metric using
TopKCategoricalAccuracy.DEFAULT_K
fork
, Number of top elements to look at for computing accuracy. - toShape(Scope, Operand<T>) - Static method in class org.tensorflow.framework.utils.ShapeUtils
-
Converts a shape operand to a Shape object
- toString() - Method in class org.tensorflow.framework.data.Dataset
- toString() - Method in class org.tensorflow.framework.optimizers.AdaDelta
- toString() - Method in class org.tensorflow.framework.optimizers.AdaGrad
- toString() - Method in class org.tensorflow.framework.optimizers.AdaGradDA
- toString() - Method in class org.tensorflow.framework.optimizers.Adam
- toString() - Method in class org.tensorflow.framework.optimizers.GradientDescent
- toString() - Method in class org.tensorflow.framework.optimizers.Momentum
- toString() - Method in class org.tensorflow.framework.optimizers.RMSProp
- TOTAL - Static variable in class org.tensorflow.framework.metrics.MeanTensor
- TOTAL_CONFUSION_MATRIX - Static variable in class org.tensorflow.framework.metrics.MeanIoU
- TRUE_NEGATIVES - Static variable in class org.tensorflow.framework.metrics.AUC
- TRUE_POSITIVES - Static variable in class org.tensorflow.framework.metrics.AUC
- TRUE_POSITIVES - Static variable in class org.tensorflow.framework.metrics.Precision
- TRUE_POSITIVES - Static variable in class org.tensorflow.framework.metrics.Recall
- TrueNegatives<T extends TNumber> - Class in org.tensorflow.framework.metrics
-
Metric that calculates the number of true negatives.
- TrueNegatives(float[], long, Class<T>) - Constructor for class org.tensorflow.framework.metrics.TrueNegatives
-
Creates a TrueNegatives metric, using
Class.getSimpleName()
for the metric name - TrueNegatives(float, long, Class<T>) - Constructor for class org.tensorflow.framework.metrics.TrueNegatives
-
Creates a TrueNegatives metric, using
Class.getSimpleName()
for the metric name - TrueNegatives(long, Class<T>) - Constructor for class org.tensorflow.framework.metrics.TrueNegatives
-
Creates a TrueNegatives metric, using
Class.getSimpleName()
for the metric name and a default threshold ofConfusionMatrixConditionCount.DEFAULT_THRESHOLD
. - TrueNegatives(String, float[], long, Class<T>) - Constructor for class org.tensorflow.framework.metrics.TrueNegatives
-
Creates a TrueNegatives metric
- TrueNegatives(String, float, long, Class<T>) - Constructor for class org.tensorflow.framework.metrics.TrueNegatives
-
Creates a TrueNegatives metric
- TrueNegatives(String, long, Class<T>) - Constructor for class org.tensorflow.framework.metrics.TrueNegatives
-
Creates a TrueNegatives metric, using a default threshold of
ConfusionMatrixConditionCount.DEFAULT_THRESHOLD
. - TruePositives<T extends TNumber> - Class in org.tensorflow.framework.metrics
-
Metric that calculates the number of true positives.
- TruePositives(float[], long, Class<T>) - Constructor for class org.tensorflow.framework.metrics.TruePositives
-
Creates a TruePositives metric, using
Class.getSimpleName()
for the metric name - TruePositives(float, long, Class<T>) - Constructor for class org.tensorflow.framework.metrics.TruePositives
-
Creates a TruePositives metric, using
Class.getSimpleName()
for the metric name - TruePositives(long, Class<T>) - Constructor for class org.tensorflow.framework.metrics.TruePositives
-
Creates a TruePositives metric, using
Class.getSimpleName()
for the metric name and a default threshold ofConfusionMatrixConditionCount.DEFAULT_THRESHOLD
. - TruePositives(String, float[], long, Class<T>) - Constructor for class org.tensorflow.framework.metrics.TruePositives
-
Creates a TruePositives metric
- TruePositives(String, float, long, Class<T>) - Constructor for class org.tensorflow.framework.metrics.TruePositives
-
Creates a TruePositives metric
- TruePositives(String, long, Class<T>) - Constructor for class org.tensorflow.framework.metrics.TruePositives
-
Creates a TruePositives metric, using a default threshold of
ConfusionMatrixConditionCount.DEFAULT_THRESHOLD
. - TRUNCATED_NORMAL - org.tensorflow.framework.initializers.VarianceScaling.Distribution
- TruncatedNormal<T extends TFloating> - Class in org.tensorflow.framework.initializers
-
Initializer that generates a truncated normal distribution.
- TruncatedNormal(double, double, long) - Constructor for class org.tensorflow.framework.initializers.TruncatedNormal
-
Creates a TruncatedNormal Initializer.
- TruncatedNormal(long) - Constructor for class org.tensorflow.framework.initializers.TruncatedNormal
-
Creates a TruncatedNormal Initializer using
TruncatedNormal.MEAN_DEFAULT
for the mean andTruncatedNormal.STDDEV_DEFAULT
for the standard deviation.
U
- UNIFORM - org.tensorflow.framework.initializers.VarianceScaling.Distribution
- union(Scope, Operand<T>, Operand<T>) - Static method in class org.tensorflow.framework.op.sets.Sets
-
Computes set union of elements in last dimension of
a
andb
. - union(Operand<T>, Operand<T>) - Method in class org.tensorflow.framework.op.SetOps
-
Computes set union of elements in last dimension of
a
andb
. - UNION - org.tensorflow.framework.op.sets.Sets.Operation
- UnitNorm - Class in org.tensorflow.framework.constraints
-
Constrains the weights to have unit norm.
- UnitNorm() - Constructor for class org.tensorflow.framework.constraints.UnitNorm
-
Create a UnitNorm AbstractConstraint with the axis set to
UnitNorm.AXIS_DEFAULT
- UnitNorm(int) - Constructor for class org.tensorflow.framework.constraints.UnitNorm
-
Create a UnitNorm AbstractConstraint
- UnitNorm(int[]) - Constructor for class org.tensorflow.framework.constraints.UnitNorm
-
Create a UnitNorm AbstractConstraint
- updateState(Ops, Operand<? extends TNumber>, Operand<? extends TNumber>) - Method in class org.tensorflow.framework.metrics.BaseMetric
-
Creates a NoOp Operation with control dependencies to update the metric state
- updateState(Ops, Operand<? extends TNumber>, Operand<? extends TNumber>) - Method in interface org.tensorflow.framework.metrics.Metric
-
Creates a NoOp Operation with control dependencies to update the metric state
- updateState(Ops, Operand<? extends TNumber>, Operand<? extends TNumber>, Operand<? extends TNumber>) - Method in class org.tensorflow.framework.metrics.BaseMetric
-
Creates a NoOp Operation with control dependencies to update the metric state
- updateState(Ops, Operand<? extends TNumber>, Operand<? extends TNumber>, Operand<? extends TNumber>) - Method in interface org.tensorflow.framework.metrics.Metric
-
Creates a NoOp Operation with control dependencies to update the metric state
- updateStateList(Ops, Operand<? extends TNumber>, Operand<? extends TNumber>) - Method in class org.tensorflow.framework.metrics.BaseMetric
-
Creates a List of Operations to update the metric state based on input values.
- updateStateList(Ops, Operand<? extends TNumber>, Operand<? extends TNumber>) - Method in class org.tensorflow.framework.metrics.MeanTensor
-
Accumulates statistics for computing the element-wise mean.
- updateStateList(Ops, Operand<? extends TNumber>, Operand<? extends TNumber>) - Method in interface org.tensorflow.framework.metrics.Metric
-
Creates a List of Operations to update the metric state based on input values.
- updateStateList(Ops, Operand<? extends TNumber>, Operand<? extends TNumber>, Operand<? extends TNumber>) - Method in class org.tensorflow.framework.metrics.AUC
-
Creates a List of Operations to update the metric state based on labels and predictions.
- updateStateList(Ops, Operand<? extends TNumber>, Operand<? extends TNumber>, Operand<? extends TNumber>) - Method in class org.tensorflow.framework.metrics.BaseMetric
-
Creates a List of Operations to update the metric state based on labels and predictions.
- updateStateList(Ops, Operand<? extends TNumber>, Operand<? extends TNumber>, Operand<? extends TNumber>) - Method in class org.tensorflow.framework.metrics.MeanIoU
-
Accumulates the confusion matrix statistics.
- updateStateList(Ops, Operand<? extends TNumber>, Operand<? extends TNumber>, Operand<? extends TNumber>) - Method in class org.tensorflow.framework.metrics.MeanRelativeError
-
Accumulates metric statistics.
- updateStateList(Ops, Operand<? extends TNumber>, Operand<? extends TNumber>, Operand<? extends TNumber>) - Method in interface org.tensorflow.framework.metrics.Metric
-
Creates a List of Operations to update the metric state based on labels and predictions.
- updateStateList(Ops, Operand<? extends TNumber>, Operand<? extends TNumber>, Operand<? extends TNumber>) - Method in class org.tensorflow.framework.metrics.Precision
-
Accumulates true positive and false positive statistics.
- updateStateList(Ops, Operand<? extends TNumber>, Operand<? extends TNumber>, Operand<? extends TNumber>) - Method in class org.tensorflow.framework.metrics.Recall
-
Accumulates true positive and false negative statistics.
- updateStateList(Ops, Operand<? extends TNumber>, Operand<? extends TNumber>, Operand<? extends TNumber>) - Method in class org.tensorflow.framework.metrics.RootMeanSquaredError
-
Accumulates root mean squared error statistics.
V
- valueOf(String) - Static method in enum org.tensorflow.framework.activations.Activations
-
Returns the enum constant of this type with the specified name.
- valueOf(String) - Static method in enum org.tensorflow.framework.initializers.VarianceScaling.Distribution
-
Returns the enum constant of this type with the specified name.
- valueOf(String) - Static method in enum org.tensorflow.framework.initializers.VarianceScaling.Mode
-
Returns the enum constant of this type with the specified name.
- valueOf(String) - Static method in enum org.tensorflow.framework.losses.Reduction
-
Returns the enum constant of this type with the specified name.
- valueOf(String) - Static method in enum org.tensorflow.framework.metrics.AUCCurve
-
Returns the enum constant of this type with the specified name.
- valueOf(String) - Static method in enum org.tensorflow.framework.metrics.AUCSummationMethod
-
Returns the enum constant of this type with the specified name.
- valueOf(String) - Static method in enum org.tensorflow.framework.metrics.MetricReduction
-
Returns the enum constant of this type with the specified name.
- valueOf(String) - Static method in enum org.tensorflow.framework.op.sets.Sets.Operation
-
Returns the enum constant of this type with the specified name.
- valueOf(String) - Static method in enum org.tensorflow.framework.optimizers.Optimizers
-
Returns the enum constant of this type with the specified name.
- values() - Static method in enum org.tensorflow.framework.activations.Activations
-
Returns an array containing the constants of this enum type, in the order they are declared.
- values() - Static method in enum org.tensorflow.framework.initializers.VarianceScaling.Distribution
-
Returns an array containing the constants of this enum type, in the order they are declared.
- values() - Static method in enum org.tensorflow.framework.initializers.VarianceScaling.Mode
-
Returns an array containing the constants of this enum type, in the order they are declared.
- values() - Static method in enum org.tensorflow.framework.losses.Reduction
-
Returns an array containing the constants of this enum type, in the order they are declared.
- values() - Static method in enum org.tensorflow.framework.metrics.AUCCurve
-
Returns an array containing the constants of this enum type, in the order they are declared.
- values() - Static method in enum org.tensorflow.framework.metrics.AUCSummationMethod
-
Returns an array containing the constants of this enum type, in the order they are declared.
- values() - Static method in enum org.tensorflow.framework.metrics.MetricReduction
-
Returns an array containing the constants of this enum type, in the order they are declared.
- values() - Static method in enum org.tensorflow.framework.op.sets.Sets.Operation
-
Returns an array containing the constants of this enum type, in the order they are declared.
- values() - Static method in enum org.tensorflow.framework.optimizers.Optimizers
-
Returns an array containing the constants of this enum type, in the order they are declared.
- VARIABLE_V2 - Static variable in class org.tensorflow.framework.optimizers.Optimizer
- VarianceScaling<T extends TFloating> - Class in org.tensorflow.framework.initializers
-
Initializer capable of adapting its scale to the shape of weights tensors.
- VarianceScaling(double, VarianceScaling.Mode, VarianceScaling.Distribution, long) - Constructor for class org.tensorflow.framework.initializers.VarianceScaling
-
Creates a VarianceScaling Initializer
- VarianceScaling(long) - Constructor for class org.tensorflow.framework.initializers.VarianceScaling
-
Creates a VarianceScaling Initializer
- VarianceScaling.Distribution - Enum in org.tensorflow.framework.initializers
-
The random distribution to use when initializing the values.
- VarianceScaling.Mode - Enum in org.tensorflow.framework.initializers
-
The mode to use for calculating the fan values.
W
- WEIGHTED_MEAN - org.tensorflow.framework.metrics.MetricReduction
-
Scalar sum of weighted values divided by sum of weights.
- withControlDependencies(Iterable<Op>) - Method in class org.tensorflow.framework.op.FrameworkOps
-
Returns an API that adds operations to the graph with the provided control dependencies.
- withDevice(DeviceSpec) - Method in class org.tensorflow.framework.op.FrameworkOps
-
Returns an API that places the created operations on the device(s) matching the provided spec.
- withInitScope() - Method in class org.tensorflow.framework.op.FrameworkOps
-
Returns an FrameworkOps that builds init operations.
- withName(String) - Method in class org.tensorflow.framework.op.FrameworkOps
-
Returns an API that uses the provided name for an op.
- withSubScope(String) - Method in class org.tensorflow.framework.op.FrameworkOps
-
Returns an API that builds operations with the provided name prefix.
Z
- Zeros<T extends TType> - Class in org.tensorflow.framework.initializers
-
Creates an Initializer that sets all values to zero.
- Zeros() - Constructor for class org.tensorflow.framework.initializers.Zeros
-
Creates an Initializer that sets all values to one.
All Classes All Packages