Trait/Object

cats.laws

BimonadLaws

Related Docs: object BimonadLaws | package laws

Permalink

trait BimonadLaws[F[_]] extends MonadLaws[F] with ComonadLaws[F]

Laws that must be obeyed by any Bimonad.

For more information, see definition 4.1 from this paper: http://arxiv.org/pdf/0710.1163v3.pdf

Linear Supertypes
Ordering
  1. Alphabetic
  2. By Inheritance
Inherited
  1. BimonadLaws
  2. ComonadLaws
  3. CoflatMapLaws
  4. MonadLaws
  5. FlatMapLaws
  6. ApplicativeLaws
  7. ApplyLaws
  8. SemigroupalLaws
  9. FunctorLaws
  10. InvariantLaws
  11. AnyRef
  12. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. All

Abstract Value Members

  1. implicit abstract def F: Bimonad[F]

    Permalink

Concrete Value Members

  1. final def !=(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  2. final def ##(): Int

    Permalink
    Definition Classes
    AnyRef → Any
  3. final def ==(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  4. def apProductConsistent[A, B](fa: F[A], f: F[(A) ⇒ B]): IsEq[F[B]]

    Permalink
    Definition Classes
    ApplicativeLaws
  5. def applicativeComposition[A, B, C](fa: F[A], fab: F[(A) ⇒ B], fbc: F[(B) ⇒ C]): IsEq[F[C]]

    Permalink

    This law is applyComposition stated in terms of pure.

    This law is applyComposition stated in terms of pure. It is a combination of applyComposition and applicativeMap and hence not strictly necessary.

    Definition Classes
    ApplicativeLaws
  6. def applicativeHomomorphism[A, B](a: A, f: (A) ⇒ B): IsEq[F[B]]

    Permalink
    Definition Classes
    ApplicativeLaws
  7. def applicativeIdentity[A](fa: F[A]): IsEq[F[A]]

    Permalink
    Definition Classes
    ApplicativeLaws
  8. def applicativeInterchange[A, B](a: A, ff: F[(A) ⇒ B]): IsEq[F[B]]

    Permalink
    Definition Classes
    ApplicativeLaws
  9. def applicativeMap[A, B](fa: F[A], f: (A) ⇒ B): IsEq[F[B]]

    Permalink
    Definition Classes
    ApplicativeLaws
  10. def applicativeUnit[A](a: A): IsEq[F[A]]

    Permalink
    Definition Classes
    ApplicativeLaws
  11. def applyComposition[A, B, C](fa: F[A], fab: F[(A) ⇒ B], fbc: F[(B) ⇒ C]): IsEq[F[C]]

    Permalink
    Definition Classes
    ApplyLaws
  12. final def asInstanceOf[T0]: T0

    Permalink
    Definition Classes
    Any
  13. def clone(): AnyRef

    Permalink
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  14. def coflatMapAssociativity[A, B, C](fa: F[A], f: (F[A]) ⇒ B, g: (F[B]) ⇒ C): IsEq[F[C]]

    Permalink
    Definition Classes
    CoflatMapLaws
  15. def coflatMapIdentity[A, B](fa: F[A]): IsEq[F[F[A]]]

    Permalink
    Definition Classes
    CoflatMapLaws
  16. def coflattenCoherence[A, B](fa: F[A], f: (F[A]) ⇒ B): IsEq[F[B]]

    Permalink
    Definition Classes
    CoflatMapLaws
  17. def coflattenThroughMap[A](fa: F[A]): IsEq[F[F[F[A]]]]

    Permalink
    Definition Classes
    CoflatMapLaws
  18. def cokleisliAssociativity[A, B, C, D](f: (F[A]) ⇒ B, g: (F[B]) ⇒ C, h: (F[C]) ⇒ D, fa: F[A]): IsEq[D]

    Permalink

    The composition of cats.data.Cokleisli arrows is associative.

    The composition of cats.data.Cokleisli arrows is associative. This is analogous to coflatMapAssociativity.

    Definition Classes
    CoflatMapLaws
  19. def cokleisliLeftIdentity[A, B](fa: F[A], f: (F[A]) ⇒ B): IsEq[B]

    Permalink

    extract is the left identity element under left-to-right composition of cats.data.Cokleisli arrows.

    extract is the left identity element under left-to-right composition of cats.data.Cokleisli arrows. This is analogous to comonadLeftIdentity.

    Definition Classes
    ComonadLaws
  20. def cokleisliRightIdentity[A, B](fa: F[A], f: (F[A]) ⇒ B): IsEq[B]

    Permalink

    extract is the right identity element under left-to-right composition of cats.data.Cokleisli arrows.

    extract is the right identity element under left-to-right composition of cats.data.Cokleisli arrows. This is analogous to comonadRightIdentity.

    Definition Classes
    ComonadLaws
  21. def comonadLeftIdentity[A](fa: F[A]): IsEq[F[A]]

    Permalink
    Definition Classes
    ComonadLaws
  22. def comonadRightIdentity[A, B](fa: F[A], f: (F[A]) ⇒ B): IsEq[B]

    Permalink
    Definition Classes
    ComonadLaws
  23. def covariantComposition[A, B, C](fa: F[A], f: (A) ⇒ B, g: (B) ⇒ C): IsEq[F[C]]

    Permalink
    Definition Classes
    FunctorLaws
  24. def covariantIdentity[A](fa: F[A]): IsEq[F[A]]

    Permalink
    Definition Classes
    FunctorLaws
  25. final def eq(arg0: AnyRef): Boolean

    Permalink
    Definition Classes
    AnyRef
  26. def equals(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  27. def extractCoflattenIdentity[A](fa: F[A]): IsEq[F[A]]

    Permalink
    Definition Classes
    ComonadLaws
  28. def extractFlatMapEntwining[A](ffa: F[F[A]]): IsEq[A]

    Permalink
  29. def finalize(): Unit

    Permalink
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  30. def flatMapAssociativity[A, B, C](fa: F[A], f: (A) ⇒ F[B], g: (B) ⇒ F[C]): IsEq[F[C]]

    Permalink
    Definition Classes
    FlatMapLaws
  31. def flatMapConsistentApply[A, B](fa: F[A], fab: F[(A) ⇒ B]): IsEq[F[B]]

    Permalink
    Definition Classes
    FlatMapLaws
  32. def flatMapFromTailRecMConsistency[A, B](fa: F[A], fn: (A) ⇒ F[B]): IsEq[F[B]]

    Permalink

    It is possible to implement flatMap from tailRecM and map and it should agree with the flatMap implementation.

    It is possible to implement flatMap from tailRecM and map and it should agree with the flatMap implementation.

    Definition Classes
    FlatMapLaws
  33. final def getClass(): Class[_]

    Permalink
    Definition Classes
    AnyRef → Any
  34. def hashCode(): Int

    Permalink
    Definition Classes
    AnyRef → Any
  35. def invariantComposition[A, B, C](fa: F[A], f1: (A) ⇒ B, f2: (B) ⇒ A, g1: (B) ⇒ C, g2: (C) ⇒ B): IsEq[F[C]]

    Permalink
    Definition Classes
    InvariantLaws
  36. def invariantIdentity[A](fa: F[A]): IsEq[F[A]]

    Permalink
    Definition Classes
    InvariantLaws
  37. final def isInstanceOf[T0]: Boolean

    Permalink
    Definition Classes
    Any
  38. def kleisliAssociativity[A, B, C, D](f: (A) ⇒ F[B], g: (B) ⇒ F[C], h: (C) ⇒ F[D], a: A): IsEq[F[D]]

    Permalink

    The composition of cats.data.Kleisli arrows is associative.

    The composition of cats.data.Kleisli arrows is associative. This is analogous to flatMapAssociativity.

    Definition Classes
    FlatMapLaws
  39. def kleisliLeftIdentity[A, B](a: A, f: (A) ⇒ F[B]): IsEq[F[B]]

    Permalink

    pure is the left identity element under left-to-right composition of cats.data.Kleisli arrows.

    pure is the left identity element under left-to-right composition of cats.data.Kleisli arrows. This is analogous to monadLeftIdentity.

    Definition Classes
    MonadLaws
  40. def kleisliRightIdentity[A, B](a: A, f: (A) ⇒ F[B]): IsEq[F[B]]

    Permalink

    pure is the right identity element under left-to-right composition of cats.data.Kleisli arrows.

    pure is the right identity element under left-to-right composition of cats.data.Kleisli arrows. This is analogous to monadRightIdentity.

    Definition Classes
    MonadLaws
  41. def map2EvalConsistency[A, B, C](fa: F[A], fb: F[B], f: (A, B) ⇒ C): IsEq[F[C]]

    Permalink
    Definition Classes
    ApplyLaws
  42. def map2ProductConsistency[A, B, C](fa: F[A], fb: F[B], f: (A, B) ⇒ C): IsEq[F[C]]

    Permalink
    Definition Classes
    ApplyLaws
  43. def mapCoflatMapCoherence[A, B](fa: F[A], f: (A) ⇒ B): IsEq[F[B]]

    Permalink
    Definition Classes
    ComonadLaws
  44. def mapCoflattenIdentity[A](fa: F[A]): IsEq[F[A]]

    Permalink
    Definition Classes
    ComonadLaws
  45. def mapFlatMapCoherence[A, B](fa: F[A], f: (A) ⇒ B): IsEq[F[B]]

    Permalink

    Make sure that map and flatMap are consistent.

    Make sure that map and flatMap are consistent.

    Definition Classes
    MonadLaws
  46. def monadLeftIdentity[A, B](a: A, f: (A) ⇒ F[B]): IsEq[F[B]]

    Permalink
    Definition Classes
    MonadLaws
  47. def monadRightIdentity[A](fa: F[A]): IsEq[F[A]]

    Permalink
    Definition Classes
    MonadLaws
  48. def monoidalLeftIdentity[A](fa: F[A]): (F[(Unit, A)], F[A])

    Permalink
    Definition Classes
    ApplicativeLaws
  49. def monoidalRightIdentity[A](fa: F[A]): (F[(A, Unit)], F[A])

    Permalink
    Definition Classes
    ApplicativeLaws
  50. def mproductConsistency[A, B](fa: F[A], fb: (A) ⇒ F[B]): IsEq[F[(A, B)]]

    Permalink
    Definition Classes
    FlatMapLaws
  51. final def ne(arg0: AnyRef): Boolean

    Permalink
    Definition Classes
    AnyRef
  52. final def notify(): Unit

    Permalink
    Definition Classes
    AnyRef
  53. final def notifyAll(): Unit

    Permalink
    Definition Classes
    AnyRef
  54. def productLConsistency[A, B](fa: F[A], fb: F[B]): IsEq[F[A]]

    Permalink
    Definition Classes
    ApplyLaws
  55. def productRConsistency[A, B](fa: F[A], fb: F[B]): IsEq[F[B]]

    Permalink
    Definition Classes
    ApplyLaws
  56. def pureCoflatMapEntwining[A](a: A): IsEq[F[F[A]]]

    Permalink
  57. def pureExtractIsId[A](a: A): IsEq[A]

    Permalink
  58. def semigroupalAssociativity[A, B, C](fa: F[A], fb: F[B], fc: F[C]): (F[(A, (B, C))], F[((A, B), C)])

    Permalink
    Definition Classes
    SemigroupalLaws
  59. final def synchronized[T0](arg0: ⇒ T0): T0

    Permalink
    Definition Classes
    AnyRef
  60. def tailRecMConsistentFlatMap[A](a: A, f: (A) ⇒ F[A]): IsEq[F[A]]

    Permalink
    Definition Classes
    FlatMapLaws
  61. lazy val tailRecMStackSafety: IsEq[F[Int]]

    Permalink
    Definition Classes
    MonadLaws
  62. def toString(): String

    Permalink
    Definition Classes
    AnyRef → Any
  63. final def wait(): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  64. final def wait(arg0: Long, arg1: Int): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  65. final def wait(arg0: Long): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )

Inherited from ComonadLaws[F]

Inherited from CoflatMapLaws[F]

Inherited from MonadLaws[F]

Inherited from FlatMapLaws[F]

Inherited from ApplicativeLaws[F]

Inherited from ApplyLaws[F]

Inherited from SemigroupalLaws[F]

Inherited from FunctorLaws[F]

Inherited from InvariantLaws[F]

Inherited from AnyRef

Inherited from Any

Ungrouped