Trait/Object

cats.laws

BimonadLaws

Related Docs: object BimonadLaws | package laws

Permalink

trait BimonadLaws[F[_]] extends MonadLaws[F] with ComonadLaws[F]

Laws that must be obeyed by any Bimonad.

For more information, see definition 4.1 from this paper: http://arxiv.org/pdf/0710.1163v3.pdf

Linear Supertypes
Ordering
  1. Alphabetic
  2. By Inheritance
Inherited
  1. BimonadLaws
  2. ComonadLaws
  3. CoflatMapLaws
  4. MonadLaws
  5. FlatMapLaws
  6. ApplicativeLaws
  7. ApplyLaws
  8. CartesianLaws
  9. FunctorLaws
  10. InvariantLaws
  11. AnyRef
  12. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. All

Abstract Value Members

  1. implicit abstract def F: Bimonad[F]

    Permalink

Concrete Value Members

  1. final def !=(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  2. final def ##(): Int

    Permalink
    Definition Classes
    AnyRef → Any
  3. final def ==(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  4. def apProductConsistent[A, B](fa: F[A], f: F[(A) ⇒ B]): IsEq[F[B]]

    Permalink
    Definition Classes
    ApplicativeLaws
  5. def applicativeComposition[A, B, C](fa: F[A], fab: F[(A) ⇒ B], fbc: F[(B) ⇒ C]): IsEq[F[C]]

    Permalink

    This law is applyComposition stated in terms of pure.

    This law is applyComposition stated in terms of pure. It is a combination of applyComposition and applicativeMap and hence not strictly necessary.

    Definition Classes
    ApplicativeLaws
  6. def applicativeHomomorphism[A, B](a: A, f: (A) ⇒ B): IsEq[F[B]]

    Permalink
    Definition Classes
    ApplicativeLaws
  7. def applicativeIdentity[A](fa: F[A]): IsEq[F[A]]

    Permalink
    Definition Classes
    ApplicativeLaws
  8. def applicativeInterchange[A, B](a: A, ff: F[(A) ⇒ B]): IsEq[F[B]]

    Permalink
    Definition Classes
    ApplicativeLaws
  9. def applicativeMap[A, B](fa: F[A], f: (A) ⇒ B): IsEq[F[B]]

    Permalink
    Definition Classes
    ApplicativeLaws
  10. def applicativeUnit[A](a: A): IsEq[F[A]]

    Permalink
    Definition Classes
    ApplicativeLaws
  11. def applyComposition[A, B, C](fa: F[A], fab: F[(A) ⇒ B], fbc: F[(B) ⇒ C]): IsEq[F[C]]

    Permalink
    Definition Classes
    ApplyLaws
  12. final def asInstanceOf[T0]: T0

    Permalink
    Definition Classes
    Any
  13. def cartesianAssociativity[A, B, C](fa: F[A], fb: F[B], fc: F[C]): (F[(A, (B, C))], F[((A, B), C)])

    Permalink
    Definition Classes
    CartesianLaws
  14. def clone(): AnyRef

    Permalink
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  15. def coflatMapAssociativity[A, B, C](fa: F[A], f: (F[A]) ⇒ B, g: (F[B]) ⇒ C): IsEq[F[C]]

    Permalink
    Definition Classes
    CoflatMapLaws
  16. def coflatMapIdentity[A, B](fa: F[A]): IsEq[F[F[A]]]

    Permalink
    Definition Classes
    CoflatMapLaws
  17. def coflattenCoherence[A, B](fa: F[A], f: (F[A]) ⇒ B): IsEq[F[B]]

    Permalink
    Definition Classes
    CoflatMapLaws
  18. def coflattenThroughMap[A](fa: F[A]): IsEq[F[F[F[A]]]]

    Permalink
    Definition Classes
    CoflatMapLaws
  19. def cokleisliAssociativity[A, B, C, D](f: (F[A]) ⇒ B, g: (F[B]) ⇒ C, h: (F[C]) ⇒ D, fa: F[A]): IsEq[D]

    Permalink

    The composition of cats.data.Cokleisli arrows is associative.

    The composition of cats.data.Cokleisli arrows is associative. This is analogous to coflatMapAssociativity.

    Definition Classes
    CoflatMapLaws
  20. def cokleisliLeftIdentity[A, B](fa: F[A], f: (F[A]) ⇒ B): IsEq[B]

    Permalink

    extract is the left identity element under left-to-right composition of cats.data.Cokleisli arrows.

    extract is the left identity element under left-to-right composition of cats.data.Cokleisli arrows. This is analogous to comonadLeftIdentity.

    Definition Classes
    ComonadLaws
  21. def cokleisliRightIdentity[A, B](fa: F[A], f: (F[A]) ⇒ B): IsEq[B]

    Permalink

    extract is the right identity element under left-to-right composition of cats.data.Cokleisli arrows.

    extract is the right identity element under left-to-right composition of cats.data.Cokleisli arrows. This is analogous to comonadRightIdentity.

    Definition Classes
    ComonadLaws
  22. def comonadLeftIdentity[A](fa: F[A]): IsEq[F[A]]

    Permalink
    Definition Classes
    ComonadLaws
  23. def comonadRightIdentity[A, B](fa: F[A], f: (F[A]) ⇒ B): IsEq[B]

    Permalink
    Definition Classes
    ComonadLaws
  24. def covariantComposition[A, B, C](fa: F[A], f: (A) ⇒ B, g: (B) ⇒ C): IsEq[F[C]]

    Permalink
    Definition Classes
    FunctorLaws
  25. def covariantIdentity[A](fa: F[A]): IsEq[F[A]]

    Permalink
    Definition Classes
    FunctorLaws
  26. final def eq(arg0: AnyRef): Boolean

    Permalink
    Definition Classes
    AnyRef
  27. def equals(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  28. def extractCoflattenIdentity[A](fa: F[A]): IsEq[F[A]]

    Permalink
    Definition Classes
    ComonadLaws
  29. def extractFlatMapEntwining[A](ffa: F[F[A]]): IsEq[A]

    Permalink
  30. def finalize(): Unit

    Permalink
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  31. def flatMapAssociativity[A, B, C](fa: F[A], f: (A) ⇒ F[B], g: (B) ⇒ F[C]): IsEq[F[C]]

    Permalink
    Definition Classes
    FlatMapLaws
  32. def flatMapConsistentApply[A, B](fa: F[A], fab: F[(A) ⇒ B]): IsEq[F[B]]

    Permalink
    Definition Classes
    FlatMapLaws
  33. def followedByConsistency[A, B](fa: F[A], fb: F[B]): IsEq[F[B]]

    Permalink
    Definition Classes
    FlatMapLaws
  34. def forEffectConsistency[A, B](fa: F[A], fb: F[B]): IsEq[F[A]]

    Permalink
    Definition Classes
    FlatMapLaws
  35. final def getClass(): Class[_]

    Permalink
    Definition Classes
    AnyRef → Any
  36. def hashCode(): Int

    Permalink
    Definition Classes
    AnyRef → Any
  37. def invariantComposition[A, B, C](fa: F[A], f1: (A) ⇒ B, f2: (B) ⇒ A, g1: (B) ⇒ C, g2: (C) ⇒ B): IsEq[F[C]]

    Permalink
    Definition Classes
    InvariantLaws
  38. def invariantIdentity[A](fa: F[A]): IsEq[F[A]]

    Permalink
    Definition Classes
    InvariantLaws
  39. final def isInstanceOf[T0]: Boolean

    Permalink
    Definition Classes
    Any
  40. def kleisliAssociativity[A, B, C, D](f: (A) ⇒ F[B], g: (B) ⇒ F[C], h: (C) ⇒ F[D], a: A): IsEq[F[D]]

    Permalink

    The composition of cats.data.Kleisli arrows is associative.

    The composition of cats.data.Kleisli arrows is associative. This is analogous to flatMapAssociativity.

    Definition Classes
    FlatMapLaws
  41. def kleisliLeftIdentity[A, B](a: A, f: (A) ⇒ F[B]): IsEq[F[B]]

    Permalink

    pure is the left identity element under left-to-right composition of cats.data.Kleisli arrows.

    pure is the left identity element under left-to-right composition of cats.data.Kleisli arrows. This is analogous to monadLeftIdentity.

    Definition Classes
    MonadLaws
  42. def kleisliRightIdentity[A, B](a: A, f: (A) ⇒ F[B]): IsEq[F[B]]

    Permalink

    pure is the right identity element under left-to-right composition of cats.data.Kleisli arrows.

    pure is the right identity element under left-to-right composition of cats.data.Kleisli arrows. This is analogous to monadRightIdentity.

    Definition Classes
    MonadLaws
  43. def mapCoflatMapCoherence[A, B](fa: F[A], f: (A) ⇒ B): IsEq[F[B]]

    Permalink
    Definition Classes
    ComonadLaws
  44. def mapCoflattenIdentity[A](fa: F[A]): IsEq[F[A]]

    Permalink
    Definition Classes
    ComonadLaws
  45. def mapFlatMapCoherence[A, B](fa: F[A], f: (A) ⇒ B): IsEq[F[B]]

    Permalink

    Make sure that map and flatMap are consistent.

    Make sure that map and flatMap are consistent.

    Definition Classes
    MonadLaws
  46. def monadLeftIdentity[A, B](a: A, f: (A) ⇒ F[B]): IsEq[F[B]]

    Permalink
    Definition Classes
    MonadLaws
  47. def monadRightIdentity[A](fa: F[A]): IsEq[F[A]]

    Permalink
    Definition Classes
    MonadLaws
  48. def monoidalLeftIdentity[A](fa: F[A]): (F[(Unit, A)], F[A])

    Permalink
    Definition Classes
    ApplicativeLaws
  49. def monoidalRightIdentity[A](fa: F[A]): (F[(A, Unit)], F[A])

    Permalink
    Definition Classes
    ApplicativeLaws
  50. def mproductConsistency[A, B](fa: F[A], fb: (A) ⇒ F[B]): IsEq[F[(A, B)]]

    Permalink
    Definition Classes
    FlatMapLaws
  51. final def ne(arg0: AnyRef): Boolean

    Permalink
    Definition Classes
    AnyRef
  52. final def notify(): Unit

    Permalink
    Definition Classes
    AnyRef
  53. final def notifyAll(): Unit

    Permalink
    Definition Classes
    AnyRef
  54. def pureCoflatMapEntwining[A](a: A): IsEq[F[F[A]]]

    Permalink
  55. def pureExtractIsId[A](a: A): IsEq[A]

    Permalink
  56. final def synchronized[T0](arg0: ⇒ T0): T0

    Permalink
    Definition Classes
    AnyRef
  57. def tailRecMConsistentFlatMap[A](a: A, f: (A) ⇒ F[A]): IsEq[F[A]]

    Permalink
    Definition Classes
    FlatMapLaws
  58. lazy val tailRecMStackSafety: IsEq[F[Int]]

    Permalink
    Definition Classes
    MonadLaws
  59. def toString(): String

    Permalink
    Definition Classes
    AnyRef → Any
  60. final def wait(): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  61. final def wait(arg0: Long, arg1: Int): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  62. final def wait(arg0: Long): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )

Inherited from ComonadLaws[F]

Inherited from CoflatMapLaws[F]

Inherited from MonadLaws[F]

Inherited from FlatMapLaws[F]

Inherited from ApplicativeLaws[F]

Inherited from ApplyLaws[F]

Inherited from CartesianLaws[F]

Inherited from FunctorLaws[F]

Inherited from InvariantLaws[F]

Inherited from AnyRef

Inherited from Any

Ungrouped