org.apache.spark.ml.odkl

LinearRegressor

abstract class LinearRegressor[M <: LinearModel[M], O <: Optimizer, T <: LinearRegressor[M, O, T]] extends LinearEstimator[M, T] with DefaultParamsWritable with Logging with HasCacheTrainData

Linear Supertypes
HasCacheTrainData, DefaultParamsWritable, MLWritable, LinearEstimator[M, T], HasWeights, LinearModelParams, SummarizableEstimator[M], Predictor[Vector, T, M], PredictorParams, HasPredictionCol, HasFeaturesCol, HasLabelCol, Estimator[M], PipelineStage, Logging, Params, Serializable, Serializable, Identifiable, AnyRef, Any
Known Subclasses
Ordering
  1. Alphabetic
  2. By inheritance
Inherited
  1. LinearRegressor
  2. HasCacheTrainData
  3. DefaultParamsWritable
  4. MLWritable
  5. LinearEstimator
  6. HasWeights
  7. LinearModelParams
  8. SummarizableEstimator
  9. Predictor
  10. PredictorParams
  11. HasPredictionCol
  12. HasFeaturesCol
  13. HasLabelCol
  14. Estimator
  15. PipelineStage
  16. Logging
  17. Params
  18. Serializable
  19. Serializable
  20. Identifiable
  21. AnyRef
  22. Any
  1. Hide All
  2. Show all
Learn more about member selection
Visibility
  1. Public
  2. All

Instance Constructors

  1. new LinearRegressor(uid: String)

Abstract Value Members

  1. abstract def createModel(optimizer: O, coefficients: Vector, sqlContext: SQLContext, features: StructField): M

    Attributes
    protected
  2. abstract def createOptimizer(): O

    Attributes
    protected

Concrete Value Members

  1. final def !=(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  2. final def !=(arg0: Any): Boolean

    Definition Classes
    Any
  3. final def ##(): Int

    Definition Classes
    AnyRef → Any
  4. final def $[T](param: Param[T]): T

    Attributes
    protected
    Definition Classes
    Params
  5. final def ==(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  6. final def ==(arg0: Any): Boolean

    Definition Classes
    Any
  7. final def asInstanceOf[T0]: T0

    Definition Classes
    Any
  8. final val cacheTrainData: BooleanParam

    Definition Classes
    HasCacheTrainData
  9. final def clear(param: Param[_]): LinearRegressor.this.type

    Definition Classes
    Params
  10. def clone(): AnyRef

    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  11. def copy(extra: ParamMap): T

    Definition Classes
    LinearRegressorLinearEstimatorSummarizableEstimator → Predictor → Estimator → PipelineStage → Params
  12. def copyValues[T <: Params](to: T, extra: ParamMap): T

    Attributes
    protected
    Definition Classes
    Params
  13. def createWeightsSummary(coefficients: Vector, sqlContext: SQLContext, features: StructField): DataFrame

    Attributes
    protected
  14. final def defaultCopy[T <: Params](extra: ParamMap): T

    Attributes
    protected
    Definition Classes
    Params
  15. final def eq(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  16. def equals(arg0: Any): Boolean

    Definition Classes
    AnyRef → Any
  17. def explainParam(param: Param[_]): String

    Definition Classes
    Params
  18. def explainParams(): String

    Definition Classes
    Params
  19. def extractLabeledPoints(dataset: Dataset[_]): RDD[LabeledPoint]

    Attributes
    protected
    Definition Classes
    Predictor
  20. final def extractParamMap(): ParamMap

    Definition Classes
    Params
  21. final def extractParamMap(extra: ParamMap): ParamMap

    Definition Classes
    Params
  22. final val featuresCol: Param[String]

    Definition Classes
    HasFeaturesCol
  23. def finalize(): Unit

    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  24. def fit(dataset: Dataset[_]): M

    Definition Classes
    Predictor → Estimator
  25. def fit(dataset: Dataset[_], paramMaps: Array[ParamMap]): Seq[M]

    Definition Classes
    Estimator
    Annotations
    @Since( "2.0.0" )
  26. def fit(dataset: Dataset[_], paramMap: ParamMap): M

    Definition Classes
    Estimator
    Annotations
    @Since( "2.0.0" )
  27. def fit(dataset: Dataset[_], firstParamPair: ParamPair[_], otherParamPairs: ParamPair[_]*): M

    Definition Classes
    Estimator
    Annotations
    @Since( "2.0.0" ) @varargs()
  28. final def get[T](param: Param[T]): Option[T]

    Definition Classes
    Params
  29. final def getCacheTrainData: Boolean

    Definition Classes
    HasCacheTrainData
  30. final def getClass(): Class[_]

    Definition Classes
    AnyRef → Any
  31. final def getDefault[T](param: Param[T]): Option[T]

    Definition Classes
    Params
  32. final def getFeaturesCol: String

    Definition Classes
    HasFeaturesCol
  33. final def getLabelCol: String

    Definition Classes
    HasLabelCol
  34. final def getOrDefault[T](param: Param[T]): T

    Definition Classes
    Params
  35. def getParam(paramName: String): Param[Any]

    Definition Classes
    Params
  36. final def getPredictionCol: String

    Definition Classes
    HasPredictionCol
  37. final def hasDefault[T](param: Param[T]): Boolean

    Definition Classes
    Params
  38. def hasParam(paramName: String): Boolean

    Definition Classes
    Params
  39. def hashCode(): Int

    Definition Classes
    AnyRef → Any
  40. val index: String

    Definition Classes
    HasWeights
  41. def initializeLogIfNecessary(isInterpreter: Boolean): Unit

    Attributes
    protected
    Definition Classes
    Logging
  42. final def isDefined(param: Param[_]): Boolean

    Definition Classes
    Params
  43. final def isInstanceOf[T0]: Boolean

    Definition Classes
    Any
  44. final def isSet(param: Param[_]): Boolean

    Definition Classes
    Params
  45. def isTraceEnabled(): Boolean

    Attributes
    protected
    Definition Classes
    Logging
  46. final val labelCol: Param[String]

    Definition Classes
    HasLabelCol
  47. def log: Logger

    Attributes
    protected
    Definition Classes
    Logging
  48. def logDebug(msg: ⇒ String, throwable: Throwable): Unit

    Attributes
    protected
    Definition Classes
    Logging
  49. def logDebug(msg: ⇒ String): Unit

    Attributes
    protected
    Definition Classes
    Logging
  50. def logError(msg: ⇒ String, throwable: Throwable): Unit

    Attributes
    protected
    Definition Classes
    Logging
  51. def logError(msg: ⇒ String): Unit

    Attributes
    protected
    Definition Classes
    Logging
  52. def logInfo(msg: ⇒ String, throwable: Throwable): Unit

    Attributes
    protected
    Definition Classes
    Logging
  53. def logInfo(msg: ⇒ String): Unit

    Attributes
    protected
    Definition Classes
    Logging
  54. def logName: String

    Attributes
    protected
    Definition Classes
    Logging
  55. def logTrace(msg: ⇒ String, throwable: Throwable): Unit

    Attributes
    protected
    Definition Classes
    Logging
  56. def logTrace(msg: ⇒ String): Unit

    Attributes
    protected
    Definition Classes
    Logging
  57. def logWarning(msg: ⇒ String, throwable: Throwable): Unit

    Attributes
    protected
    Definition Classes
    Logging
  58. def logWarning(msg: ⇒ String): Unit

    Attributes
    protected
    Definition Classes
    Logging
  59. val name: String

    Definition Classes
    HasWeights
  60. final def ne(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  61. final def notify(): Unit

    Definition Classes
    AnyRef
  62. final def notifyAll(): Unit

    Definition Classes
    AnyRef
  63. lazy val params: Array[Param[_]]

    Definition Classes
    Params
  64. final val predictionCol: Param[String]

    Definition Classes
    HasPredictionCol
  65. def save(path: String): Unit

    Definition Classes
    MLWritable
    Annotations
    @Since( "1.6.0" ) @throws( ... )
  66. final def set(paramPair: ParamPair[_]): LinearRegressor.this.type

    Attributes
    protected
    Definition Classes
    Params
  67. final def set(param: String, value: Any): LinearRegressor.this.type

    Attributes
    protected
    Definition Classes
    Params
  68. final def set[T](param: Param[T], value: T): LinearRegressor.this.type

    Definition Classes
    Params
  69. def setCacheTrainData(value: Boolean): LinearRegressor.this.type

    Definition Classes
    HasCacheTrainData
  70. final def setDefault(paramPairs: ParamPair[_]*): LinearRegressor.this.type

    Attributes
    protected
    Definition Classes
    Params
  71. final def setDefault[T](param: Param[T], value: T): LinearRegressor.this.type

    Attributes
    protected
    Definition Classes
    Params
  72. def setFeaturesCol(value: String): T

    Definition Classes
    Predictor
  73. def setLabelCol(value: String): T

    Definition Classes
    Predictor
  74. def setPredictionCol(value: String): T

    Definition Classes
    Predictor
  75. final def synchronized[T0](arg0: ⇒ T0): T0

    Definition Classes
    AnyRef
  76. def toString(): String

    Definition Classes
    Identifiable → AnyRef → Any
  77. def train(dataset: Dataset[_]): M

    Attributes
    protected
    Definition Classes
    LinearRegressor → Predictor
  78. def transformSchema(schema: StructType): StructType

    Definition Classes
    Predictor → PipelineStage
  79. def transformSchema(schema: StructType, logging: Boolean): StructType

    Attributes
    protected
    Definition Classes
    PipelineStage
    Annotations
    @DeveloperApi()
  80. val uid: String

    Definition Classes
    LinearRegressor → Identifiable
  81. def validateAndTransformSchema(schema: StructType, fitting: Boolean, featuresDataType: DataType): StructType

    Attributes
    protected
    Definition Classes
    PredictorParams
  82. final def wait(): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  83. final def wait(arg0: Long, arg1: Int): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  84. final def wait(arg0: Long): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  85. val weight: String

    Definition Classes
    HasWeights
  86. val weights: Block

    Definition Classes
    HasWeights
  87. def write: MLWriter

    Definition Classes
    DefaultParamsWritable → MLWritable

Inherited from HasCacheTrainData

Inherited from DefaultParamsWritable

Inherited from MLWritable

Inherited from LinearEstimator[M, T]

Inherited from HasWeights

Inherited from LinearModelParams

Inherited from SummarizableEstimator[M]

Inherited from Predictor[Vector, T, M]

Inherited from PredictorParams

Inherited from HasPredictionCol

Inherited from HasFeaturesCol

Inherited from HasLabelCol

Inherited from Estimator[M]

Inherited from PipelineStage

Inherited from Logging

Inherited from Params

Inherited from Serializable

Inherited from Serializable

Inherited from Identifiable

Inherited from AnyRef

Inherited from Any

getParam

Ungrouped