Uses of Class
convex.core.Order
Packages that use Order
-
Uses of Order in convex.core
Methods in convex.core that return OrderModifier and TypeMethodDescriptionOrder.append(SignedData<Block> block) Append a new block of transactions in this Orderstatic OrderOrder.create()Create an empty OrderBelief.getOrder(AccountKey address) Gets the current Order for a given Address within this Belief.Peer.getOrder(AccountKey peerKey) Gets the current chain this Peer sees for a given peer addressPeer.getPeerOrder()Gets the current Order for this Peerstatic OrderOrder.read(ByteBuffer bb) Decode an Order from a ByteBufferOrder.updateBlocks(AVector<SignedData<Block>> newBlocks) Update this chain with a new list of blocksOrder.updateRefs(IRefFunction func) Order.withBlocks(AVector<SignedData<Block>> newBlocks) Updates blocks in this Order.Order.withConsenusPoint(long newConsensusPoint) Updates this Order with a new consensus position.Order.withoutConsenus()Clears the consensus and proposal pointOrder.withProposalPoint(long newProposalPoint) Updates this Order with a new proposal position.Methods in convex.core that return types with arguments of type OrderMethods in convex.core with parameters of type OrderModifier and TypeMethodDescriptionbooleanOrder.checkConsistent(Order bc) Checks if another Order is consistent with this Order.static BeliefCreate a Belief with a single order signed by the given key pair, using initial timestamp.Method parameters in convex.core with type arguments of type OrderModifier and TypeMethodDescriptionstatic AVector<SignedData<Block>>Belief.computeWinningOrder(HashMap<Order, Double> stakedOrders, long consensusPoint, double initialTotalStake) Compute the new winning Order for this Peer, including any new blocks encounteredstatic doubleBelief.prepareStakedOrders(AMap<AccountKey, SignedData<Order>> peerOrders, HashMap<AccountKey, Double> peerStakes, HashMap<Order, Double> dest) Compute the total stake for every distinct Order seen.Belief.withOrders(BlobMap<AccountKey, SignedData<Order>> newOrders) Updates this Belief with a new set of Chains for each peer address