package spark
- Alphabetic
- Public
- All
Type Members
- class Analyzer extends AnyRef
- class Args extends ScallopConf
- sealed trait BaseKvRdd extends AnyRef
- case class BootstrapInfo(joinConf: api.Join, joinParts: Seq[JoinPartMetadata], externalParts: Seq[ExternalPartMetadata], derivations: Array[StructField], hashToSchema: Map[String, Array[StructField]]) extends Product with Serializable
- class ChrononDeltaLakeKryoRegistrator extends ChrononKryoRegistrator
- class ChrononKryoRegistrator extends KryoRegistrator
- case class CoveringSet(hashes: Seq[String], rowCount: Long, isCovering: Boolean) extends Product with Serializable
- class CpcSketchKryoSerializer extends Serializer[CpcSketch]
- sealed trait DataRange extends AnyRef
-
case class
DefaultFormatProvider(sparkSession: SparkSession) extends FormatProvider with Product with Serializable
Default format provider implementation based on default Chronon supported open source library versions.
- class DummyExtensions extends (SparkSessionExtensions) ⇒ Unit
- case class ExternalPartMetadata(externalPart: ExternalPart, keySchema: Array[StructField], valueSchema: Array[StructField]) extends Product with Serializable
-
trait
Format extends AnyRef
Trait to track the table format in use by a Chronon dataset and some utility methods to help retrieve metadata / configure it appropriately at creation time
-
trait
FormatProvider extends Serializable
Dynamically provide the read / write table format depending on table name.
Dynamically provide the read / write table format depending on table name. This supports reading/writing tables with heterogeneous formats. This approach enables users to override and specify a custom format provider if needed. This is useful in cases such as leveraging different library versions from what we support in the Chronon project (e.g. newer delta lake) as well as working with custom internal company logic / checks.
- class GroupBy extends Serializable
- class GroupByUpload extends Serializable
- sealed case class IncompatibleSchemaException(inconsistencies: Seq[(String, DataType, DataType)]) extends Exception with Product with Serializable
- class ItemSketchSerializable extends Serializable
- class ItemsSketchKryoSerializer[T] extends Serializer[ItemsSketchIR[T]]
- class Join extends JoinBase
- abstract class JoinBase extends AnyRef
- case class JoinPartMetadata(joinPart: JoinPart, keySchema: Array[StructField], valueSchema: Array[StructField], derivationDependencies: Map[StructField, Seq[StructField]]) extends Product with Serializable
- case class KeyWithHash(data: Array[Any], hash: Array[Byte], hashInt: Int) extends Serializable with Product
- case class KvRdd(data: RDD[(Array[Any], Array[Any])], keySchema: StructType, valueSchema: StructType)(implicit sparkSession: SparkSession) extends BaseKvRdd with Product with Serializable
- class LabelJoin extends AnyRef
- class LocalTableExporter extends AnyRef
-
class
LogFlattenerJob extends Serializable
Purpose of LogFlattenerJob is to unpack serialized Avro data from online requests and flatten each field (both keys and values) into individual columns and save to an offline "flattened" log table.
Purpose of LogFlattenerJob is to unpack serialized Avro data from online requests and flatten each field (both keys and values) into individual columns and save to an offline "flattened" log table.
Steps: 1. determine unfilled range and pull raw logs from partitioned log table 2. fetch joinCodecs for all unique schema_hash present in the logs 3. build a merged schema from all schema versions, which will be used as output schema 4. unpack each row and adhere to the output schema 5. save the schema info in the flattened log table properties (cumulatively)
- case class LoggingSchema(keyCodec: AvroCodec, valueCodec: AvroCodec) extends Product with Serializable
- case class PartitionRange(start: String, end: String)(implicit tableUtils: TableUtils) extends DataRange with Ordered[PartitionRange] with Product with Serializable
- case class SemanticHashException(message: String) extends Exception with Product with Serializable
- case class SemanticHashHiveMetadata(semanticHash: Map[String, String], excludeTopic: Boolean) extends Product with Serializable
- class StagingQuery extends AnyRef
- case class TableUtils(sparkSession: SparkSession) extends Product with Serializable
- case class TimeRange(start: Long, end: Long)(implicit tableUtils: TableUtils) extends DataRange with Product with Serializable
- case class TimedKvRdd(data: RDD[(Array[Any], Array[Any], Long)], keySchema: StructType, valueSchema: StructType, storeSchemasPrefix: Option[String] = None)(implicit sparkSession: SparkSession) extends BaseKvRdd with Product with Serializable
Value Members
- object BootstrapInfo extends Serializable
- object Comparison
- object CoveringSet extends Serializable
- object DeltaLake extends Format with Product with Serializable
- object Driver
- object EncoderUtil
- object Extensions
- object FastHashing
- object GenericRowHandler
- object GroupBy extends Serializable
- object GroupByUpload extends Serializable
- object Hive extends Format with Product with Serializable
- object Iceberg extends Format with Product with Serializable
- object JoinUtils
- object LocalDataLoader
- object LocalTableExporter
- object LogFlattenerJob extends Serializable
- object LogUtils
- object LoggingSchema extends Serializable
- object MetadataExporter
- object SemanticHashUtils
- object SparkConstants
- object SparkSessionBuilder
- object StagingQuery