matrix
0.1
matrix
API
ai.dragonfly.math.matrix
Matrix
Matrix
ai.dragonfly.math.matrix.decomposition
Cholesky
Cholesky
Eigen
Eigen
LU
LU
QR
QR
SV
SV
ai.dragonfly.math.matrix.ml.data
Data
StaticSupervisedData
StaticUnsupervisedData
StaticUnsupervisedData
SupervisedData
UnsupervisedData
ai.dragonfly.math.matrix.ml.supervized.regression
LinearRegression
LinearRegressionModel
LinearRegressionProblem
LinearRegressionProblem
LinearRegressionQR
LinearRegressionSVD
ai.dragonfly.math.matrix.ml.unsupervised.dimreduction
BasisPair
DimensionalityReducerPCA
PCA
PCA
ai.dragonfly.math.matrix.util
CannotExpressMatrixAsVector
MatrixNotSymmetricPositiveDefinite
UnsupportedMatrixDimension
matrix
/
ai.dragonfly.math.matrix.ml.data
/
Data
Data
ai.dragonfly.math.matrix.ml.data.Data
trait
Data
[
M
<:
Int
,
N
<:
Int
](
using
x$1
:
ValueOf
[
M
],
x$2
:
ValueOf
[
N
])
Attributes
Source:
Data.scala
Graph
Reset zoom
Hide graph
Show graph
Supertypes
class
Object
trait
Matchable
class
Any
Known subtypes
trait
SupervisedData
[
M
,
N
]
class
StaticSupervisedData
[
M
,
N
]
trait
UnsupervisedData
[
M
,
N
]
class
StaticUnsupervisedData
[
M
,
N
]
Clear all
Members list
Concise view
Value members
Abstract methods
def
X
:
Matrix
[
M
,
N
]
Attributes
Source:
Data.scala
def
domainComponent
(
i
:
Int
):
Interval
[
Double
]
Attributes
Source:
Data.scala
def
example
(
i
:
Int
):
Vec
[
N
]
Attributes
Source:
Data.scala
def
sampleMean
:
Vec
[
N
]
Attributes
Source:
Data.scala
def
sampleStandardDeviation
:
Vec
[
N
]
Attributes
Source:
Data.scala
def
sampleVariance
:
Vec
[
N
]
Attributes
Source:
Data.scala
Concrete methods
def
domainBias
:
Vec
[
N
]
Attributes
Source:
Data.scala
Concrete fields
val
dimension
:
Int
Attributes
Source:
Data.scala
val
sampleSize
:
Int
Attributes
Source:
Data.scala