slash.matrix.util
Members list
Type members
Classlikes
Attributes
- Source
- Exceptions.scala
- Supertypes
-
trait Producttrait Equalsclass Exceptionclass Throwabletrait Serializableclass Objecttrait Matchableclass AnyShow all
Attributes
- Source
- Exceptions.scala
- Supertypes
-
trait Producttrait Equalsclass Exceptionclass Throwabletrait Serializableclass Objecttrait Matchableclass AnyShow all
Attributes
- Source
- Exceptions.scala
- Supertypes
-
trait Producttrait Equalsclass Exceptionclass Throwabletrait Serializableclass Objecttrait Matchableclass AnyShow all
Extensions
Extensions
Solve a * x = b
Solve a * x = b
Value parameters
- b
-
right hand side
Attributes
- Returns
-
least squares solution x = Matrix[M, V] such that a * x = b
- Source
- util.scala
Matrix determinant https://en.wikipedia.org/wiki/Determinant the determinant is nonzero if and only if the matrix is invertible and the linear map represented by the matrix is an isomorphism
Matrix determinant https://en.wikipedia.org/wiki/Determinant the determinant is nonzero if and only if the matrix is invertible and the linear map represented by the matrix is an isomorphism
Attributes
- Returns
-
the determinant of this matrix.
- Source
- util.scala
https://en.wikipedia.org/wiki/Invertible_matrix
https://en.wikipedia.org/wiki/Invertible_matrix
Computes the inverse of Square Matrix m.
Attributes
- Returns
-
the inverse of matrix m
- Throws
-
RuntimeException
"Matrix is singular." )
- Source
- util.scala
Solve a * x = b
Solve a * x = b
Value parameters
- b
-
right hand side
Attributes
- Returns
-
x = Matrix[MN, V] such that a * x = b
- Source
- util.scala
Matrix condition (2 norm)
Matrix condition (2 norm)
Attributes
- Returns
-
ratio of largest to smallest singular value.
- Source
- util.scala
Solve b * m = I[N, N] m = Matrix[M, N] with M > N and Rank = N, has a left inverse b = Matrix[N, M] such that b * m = I[N, N]
Solve b * m = I[N, N] m = Matrix[M, N] with M > N and Rank = N, has a left inverse b = Matrix[N, M] such that b * m = I[N, N]
Attributes
- Returns
-
b = Matrix[N, M] the Left Inverse of Matrix m.
- Source
- util.scala
Two norm
Matrix rank
m = Matrix[M, N] with M < N and Rank = M, has a right inverse b = Matrix[N, M] such that m * b = Identity[M, M]
m = Matrix[M, N] with M < N and Rank = M, has a right inverse b = Matrix[N, M] such that m * b = Identity[M, M]
Attributes
- Returns
-
the Right Inverse of Matrix a.
- Source
- util.scala
Attributes
- Source
- util.scala
Attributes
- Source
- util.scala
Attributes
- Source
- util.scala
Attributes
- Source
- util.scala