LU

slash.matrix.decomposition.LU
See theLU companion object
class LU[M <: Int, N <: Int]

LU Decomposition Structure to access L, U and piv.

Value parameters

A

Rectangular matrix

Attributes

Companion
object
Source
LU.scala
Graph
Supertypes
class Object
trait Matchable
class Any

Members list

Value members

Concrete methods

def U: Matrix[N, N]

Return upper triangular factor

Return upper triangular factor

Attributes

Returns

U

Source
LU.scala
def determinant: Double

Determinant

Determinant

Attributes

Returns

det(A)

Throws
IllegalArgumentException

Matrix must be square

Source
LU.scala

Return pivot permutation vector as a one-dimensional double array

Return pivot permutation vector as a one-dimensional double array

Attributes

Returns

(double) piv

Source
LU.scala
def isSingular: Boolean

Is the matrix nonsingular?

Is the matrix nonsingular?

Attributes

Returns

true if U, and hence A, is nonsingular.

Source
LU.scala

Return pivot permutation vector

Return pivot permutation vector

Attributes

Returns

piv

Source
LU.scala
def solve[V <: Int](B: Matrix[M, V])(using ValueOf[V]): Matrix[N, V]

Solve A*X = B

Solve A*X = B

Value parameters

B

A Matrix with as many rows as A and as many columns as B.

Attributes

Returns

X so that LUX = B(piv,:)

Throws
IllegalArgumentException

Matrix row dimensions must agree.

RuntimeException

Matrix is singular.

Source
LU.scala

Concrete fields

lazy val L: Matrix[M, N]

Return lower triangular factor

Return lower triangular factor

Attributes

Returns

L

Source
LU.scala
val LU: Matrix[M, N]

Attributes

Source
LU.scala
val m: Int

Attributes

Source
LU.scala
val n: Int

Attributes

Source
LU.scala