Attributes
Members list
Value members
Concrete methods
Multiply a matrix by a scalar, C = A * s
Multiply a matrix by a scalar, C = A * s
Value parameters
- s
-
scalar
Attributes
- Returns
-
A * s
- Source
- Mat.scala
Add a scalar to a matrix, C = A + s
Add a scalar to a matrix, C = A + s
Value parameters
- s
-
scalar
Attributes
- Returns
-
A + s
- Source
- Mat.scala
A = A + B
A = A + d
Get a single element.
Get a single element.
Value parameters
- c
-
Column index.
- r
-
Row index.
Attributes
- Returns
-
A(i,j)
- Source
- Mat.scala
Attributes
- Source
- Mat.scala
Attributes
- Source
- package.scala
Attributes
- Source
- package.scala
Get column dimension.
Make a one-dimensional column packed copy of the internal array.
Make a one-dimensional column packed copy of the internal array.
Attributes
- Returns
-
Mat elements packed in a one-dimensional array by columns.
- Source
- Mat.scala
Value parameters
- column
-
the column of the matrix to return as a vector.
Attributes
- Returns
-
a copy of the specified matrix column in Vec[M] format.
- Source
- Mat.scala
Attributes
- Returns
-
a copy of this matrix in the form of an array of column vectors.
- Source
- Mat.scala
Attributes
- Source
- Mat.scala
Attributes
- Source
- Mat.scala
Attributes
- Source
- Mat.scala
Attributes
- Source
- Mat.scala
Mat condition (2 norm)
Mat condition (2 norm)
Attributes
- Returns
-
ratio of largest to smallest singular value.
- Source
- package.scala
Make a deep copy of a matrix
Attributes
- Source
- package.scala
Copy the internal two-dimensional array.
Copy the internal two-dimensional array.
Attributes
- Returns
-
Two-dimensional array copy of matrix elements.
- Source
- Mat.scala
Attributes
- Source
- Mat.scala
Mat determinant https://en.wikipedia.org/wiki/Determinant the determinant is nonzero if and only if the matrix is invertible and the linear map represented by the matrix is an isomorphism
Mat determinant https://en.wikipedia.org/wiki/Determinant the determinant is nonzero if and only if the matrix is invertible and the linear map represented by the matrix is an isomorphism
Attributes
- Returns
-
the determinant of this matrix.
- Source
- package.scala
Attributes
- Source
- Mat.scala
values as a Vector.
https://en.wikipedia.org/wiki/Invertible_matrix
https://en.wikipedia.org/wiki/Invertible_matrix
Computes the inverse of Square Mat m.
Attributes
- Returns
-
the inverse of matrix m
- Throws
-
RuntimeException
"Mat is singular." )
- Source
- package.scala
Solve b * m = I[N, N] m = Mat[M, N] with M > N and Rank = N, has a left inverse b = Mat[N, M] such that b * m = I[N, N]
Solve b * m = I[N, N] m = Mat[M, N] with M > N and Rank = N, has a left inverse b = Mat[N, M] such that b * m = I[N, N]
Attributes
- Returns
-
b = Mat[N, M] the Left Inverse of Mat m.
- Source
- package.scala
Attributes
- Source
- Mat.scala
Two norm
Frobenius norm
Infinity norm
Mat rank
Attributes
- Source
- Mat.scala
cast matrix as Mat[R,C]
cast matrix as Mat[R,C]
Value parameters
- C
-
new horizontal dimension
- R
-
new vertical dimension
Attributes
- Returns
-
same values, but recast to RxC
- Source
- package.scala
m = Mat[M, N] with M < N and Rank = M, has a right inverse b = Mat[N, M] such that m * b = Identity[M, M]
m = Mat[M, N] with M < N and Rank = M, has a right inverse b = Mat[N, M] such that m * b = Identity[M, M]
Attributes
- Returns
-
the Right Inverse of Mat a.
- Source
- package.scala
Get row dimension.
Make a one-dimensional row packed copy of the internal array.
Make a one-dimensional row packed copy of the internal array.
Attributes
- Returns
-
Mat elements packed in a one-dimensional array by rows.
- Source
- Mat.scala
Value parameters
- row
-
the row of the matrix to return as a vector.
Attributes
- Returns
-
a copy of the specified matrix row in Vec[N] format.
- Source
- Mat.scala
Attributes
- Returns
-
a copy of this matrix in the form of an array of row vectors.
- Source
- Mat.scala
Set a submatrix.
Set a submatrix.
Type parameters
- M1
-
Row dimension of thatMatrix
- N1
-
Column dimension of thatMatrix
Value parameters
- ValueOf[M1]
-
Row dimension of thatMatrix
- ValueOf[N1]
-
Column dimension of thatMatrix
- c0
-
Initial column index
- r0
-
Initial row index
- thatMatrix
-
a metrix of lesser or equal dimension to this matrix
Attributes
- Source
- Mat.scala
Set a submatrix.
Set a submatrix.
Value parameters
- columnIndices
-
Array of column indices.
- rowIndices
-
Array of row indices.
- thatMatrix
-
A(r(:),c(:))
Attributes
- Throws
-
ArrayIndexOutOfBoundsException
Submatrix indices
- Source
- Mat.scala
Set a submatrix.
Set a submatrix.
Value parameters
- c0
-
Initial column index
- c1
-
Final column index
- rowIndices
-
Array of row indices.
- thatMatrix
-
A(r(:),j0:j1)
Attributes
- Throws
-
ArrayIndexOutOfBoundsException
Submatrix indices
- Source
- Mat.scala
Set a submatrix.
Set a submatrix.
Value parameters
- columnIndices
-
Array of column indices.
- r0
-
Initial row index
- r1
-
Final row index
- thatMatrix
-
A(i0:i1,c(:))
Attributes
- Throws
-
ArrayIndexOutOfBoundsException
Submatrix indices
- Source
- Mat.scala
Solve a * x = b
Solve a * x = b
Value parameters
- b
-
right hand side
Attributes
- Returns
-
x = Mat[MN, V] such that a * x = b
- Source
- package.scala
Solve a * x = b
Solve a * x = b
Value parameters
- b
-
right hand side
Attributes
- Returns
-
least squares solution x = Mat[M, V] such that a * x = b
- Source
- package.scala
Attributes
- Source
- Mat.scala
Get a submatrix.
Get a submatrix.
Type parameters
- M1
-
the number of rows
- N1
-
the number of columns
Value parameters
- c0
-
Initial column index
- r0
-
Initial row index
Attributes
- Returns
-
A(i0:i1,j0:j1)
- Throws
-
ArrayIndexOutOfBoundsException
Submatrix indices
- Source
- Mat.scala
Get a submatrix.
Get a submatrix.
Value parameters
- columnIndices
-
Array of column indices.
- rowIndices
-
Array of row indices.
Attributes
- Returns
-
A(r(:),c(:))
- Throws
-
ArrayIndexOutOfBoundsException
Submatrix indices
- Source
- Mat.scala
Get a submatrix.
Get a submatrix.
Value parameters
- columnIndices
-
Array of column indices.
- r0
-
Initial row index
Attributes
- Returns
-
A(i0:i1,c(:))
- Throws
-
ArrayIndexOutOfBoundsException
Submatrix indices
- Source
- Mat.scala
Get a submatrix.
Get a submatrix.
Value parameters
- c0
-
Initial column index
- c1
-
Final column index
- r
-
Array of row indices.
Attributes
- Returns
-
A(r(:),j0:j1)
- Throws
-
ArrayIndexOutOfBoundsException
Submatrix indices
- Source
- Mat.scala
A = A - B
Multiply a matrix by a scalar in place, A = s*A
Multiply a matrix by a scalar in place, A = s*A
Value parameters
- s
-
scalar
Attributes
- Returns
-
replace A by s*A
- Source
- Mat.scala
Linear algebraic matrix multiplication, A * B
Linear algebraic matrix multiplication, A * B
Value parameters
- b
-
another matrix
Attributes
- Returns
-
Mat product, A * B
- Throws
-
IllegalArgumentException
Mat inner dimensions must agree.
- Source
- Mat.scala
Returns a string representation of the object.
Returns a string representation of the object.
The default representation is platform dependent.
Attributes
- Returns
-
a string representation of the object.
- Definition Classes
-
Any
- Source
- Mat.scala
Mat trace.
Attributes
- Source
- Mat.scala
Set a single element.
Set a single element.
Value parameters
- c
-
Column index.
- r
-
Row index.
- value
-
values(i,j).
Attributes
- Source
- Mat.scala
Attributes
- Source
- Mat.scala