@Generated(value="com.amazonaws:aws-java-sdk-code-generator") public class AbstractAmazonMachineLearningAsync extends AbstractAmazonMachineLearning implements AmazonMachineLearningAsync
AmazonMachineLearningAsync. Convenient method forms pass through to the
corresponding overload that takes a request object and an AsyncHandler, which throws an
UnsupportedOperationException.ENDPOINT_PREFIX| Modifier | Constructor and Description |
|---|---|
protected |
AbstractAmazonMachineLearningAsync() |
addTags, createBatchPrediction, createDataSourceFromRDS, createDataSourceFromRedshift, createDataSourceFromS3, createEvaluation, createMLModel, createRealtimeEndpoint, deleteBatchPrediction, deleteDataSource, deleteEvaluation, deleteMLModel, deleteRealtimeEndpoint, deleteTags, describeBatchPredictions, describeBatchPredictions, describeDataSources, describeDataSources, describeEvaluations, describeEvaluations, describeMLModels, describeMLModels, describeTags, getBatchPrediction, getCachedResponseMetadata, getDataSource, getEvaluation, getMLModel, predict, setEndpoint, setRegion, shutdown, updateBatchPrediction, updateDataSource, updateEvaluation, updateMLModel, waitersclone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, waitaddTags, createBatchPrediction, createDataSourceFromRDS, createDataSourceFromRedshift, createDataSourceFromS3, createEvaluation, createMLModel, createRealtimeEndpoint, deleteBatchPrediction, deleteDataSource, deleteEvaluation, deleteMLModel, deleteRealtimeEndpoint, deleteTags, describeBatchPredictions, describeBatchPredictions, describeDataSources, describeDataSources, describeEvaluations, describeEvaluations, describeMLModels, describeMLModels, describeTags, getBatchPrediction, getCachedResponseMetadata, getDataSource, getEvaluation, getMLModel, predict, setEndpoint, setRegion, shutdown, updateBatchPrediction, updateDataSource, updateEvaluation, updateMLModel, waitersprotected AbstractAmazonMachineLearningAsync()
public Future<AddTagsResult> addTagsAsync(AddTagsRequest request)
AmazonMachineLearningAsync
Adds one or more tags to an object, up to a limit of 10. Each tag consists of a key and an optional value. If you
add a tag using a key that is already associated with the ML object, AddTags updates the tag's
value.
addTagsAsync in interface AmazonMachineLearningAsyncpublic Future<AddTagsResult> addTagsAsync(AddTagsRequest request, AsyncHandler<AddTagsRequest,AddTagsResult> asyncHandler)
AmazonMachineLearningAsync
Adds one or more tags to an object, up to a limit of 10. Each tag consists of a key and an optional value. If you
add a tag using a key that is already associated with the ML object, AddTags updates the tag's
value.
addTagsAsync in interface AmazonMachineLearningAsyncasyncHandler - Asynchronous callback handler for events in the lifecycle of the request. Users can provide an
implementation of the callback methods in this interface to receive notification of successful or
unsuccessful completion of the operation.public Future<CreateBatchPredictionResult> createBatchPredictionAsync(CreateBatchPredictionRequest request)
AmazonMachineLearningAsync
Generates predictions for a group of observations. The observations to process exist in one or more data files
referenced by a DataSource. This operation creates a new BatchPrediction, and uses an
MLModel and the data files referenced by the DataSource as information sources.
CreateBatchPrediction is an asynchronous operation. In response to
CreateBatchPrediction, Amazon Machine Learning (Amazon ML) immediately returns and sets the
BatchPrediction status to PENDING. After the BatchPrediction completes,
Amazon ML sets the status to COMPLETED.
You can poll for status updates by using the GetBatchPrediction operation and checking the
Status parameter of the result. After the COMPLETED status appears, the results are
available in the location specified by the OutputUri parameter.
createBatchPredictionAsync in interface AmazonMachineLearningAsyncpublic Future<CreateBatchPredictionResult> createBatchPredictionAsync(CreateBatchPredictionRequest request, AsyncHandler<CreateBatchPredictionRequest,CreateBatchPredictionResult> asyncHandler)
AmazonMachineLearningAsync
Generates predictions for a group of observations. The observations to process exist in one or more data files
referenced by a DataSource. This operation creates a new BatchPrediction, and uses an
MLModel and the data files referenced by the DataSource as information sources.
CreateBatchPrediction is an asynchronous operation. In response to
CreateBatchPrediction, Amazon Machine Learning (Amazon ML) immediately returns and sets the
BatchPrediction status to PENDING. After the BatchPrediction completes,
Amazon ML sets the status to COMPLETED.
You can poll for status updates by using the GetBatchPrediction operation and checking the
Status parameter of the result. After the COMPLETED status appears, the results are
available in the location specified by the OutputUri parameter.
createBatchPredictionAsync in interface AmazonMachineLearningAsyncasyncHandler - Asynchronous callback handler for events in the lifecycle of the request. Users can provide an
implementation of the callback methods in this interface to receive notification of successful or
unsuccessful completion of the operation.public Future<CreateDataSourceFromRDSResult> createDataSourceFromRDSAsync(CreateDataSourceFromRDSRequest request)
AmazonMachineLearningAsync
Creates a DataSource object from an Amazon Relational Database
Service (Amazon RDS). A DataSource references data that can be used to perform
CreateMLModel, CreateEvaluation, or CreateBatchPrediction operations.
CreateDataSourceFromRDS is an asynchronous operation. In response to
CreateDataSourceFromRDS, Amazon Machine Learning (Amazon ML) immediately returns and sets the
DataSource status to PENDING. After the DataSource is created and ready
for use, Amazon ML sets the Status parameter to COMPLETED. DataSource in
the COMPLETED or PENDING state can be used only to perform
>CreateMLModel>, CreateEvaluation, or CreateBatchPrediction
operations.
If Amazon ML cannot accept the input source, it sets the Status parameter to FAILED and
includes an error message in the Message attribute of the GetDataSource operation
response.
createDataSourceFromRDSAsync in interface AmazonMachineLearningAsyncpublic Future<CreateDataSourceFromRDSResult> createDataSourceFromRDSAsync(CreateDataSourceFromRDSRequest request, AsyncHandler<CreateDataSourceFromRDSRequest,CreateDataSourceFromRDSResult> asyncHandler)
AmazonMachineLearningAsync
Creates a DataSource object from an Amazon Relational Database
Service (Amazon RDS). A DataSource references data that can be used to perform
CreateMLModel, CreateEvaluation, or CreateBatchPrediction operations.
CreateDataSourceFromRDS is an asynchronous operation. In response to
CreateDataSourceFromRDS, Amazon Machine Learning (Amazon ML) immediately returns and sets the
DataSource status to PENDING. After the DataSource is created and ready
for use, Amazon ML sets the Status parameter to COMPLETED. DataSource in
the COMPLETED or PENDING state can be used only to perform
>CreateMLModel>, CreateEvaluation, or CreateBatchPrediction
operations.
If Amazon ML cannot accept the input source, it sets the Status parameter to FAILED and
includes an error message in the Message attribute of the GetDataSource operation
response.
createDataSourceFromRDSAsync in interface AmazonMachineLearningAsyncasyncHandler - Asynchronous callback handler for events in the lifecycle of the request. Users can provide an
implementation of the callback methods in this interface to receive notification of successful or
unsuccessful completion of the operation.public Future<CreateDataSourceFromRedshiftResult> createDataSourceFromRedshiftAsync(CreateDataSourceFromRedshiftRequest request)
AmazonMachineLearningAsync
Creates a DataSource from a database hosted on an Amazon Redshift cluster. A DataSource
references data that can be used to perform either CreateMLModel, CreateEvaluation, or
CreateBatchPrediction operations.
CreateDataSourceFromRedshift is an asynchronous operation. In response to
CreateDataSourceFromRedshift, Amazon Machine Learning (Amazon ML) immediately returns and sets the
DataSource status to PENDING. After the DataSource is created and ready
for use, Amazon ML sets the Status parameter to COMPLETED. DataSource in
COMPLETED or PENDING states can be used to perform only CreateMLModel,
CreateEvaluation, or CreateBatchPrediction operations.
If Amazon ML can't accept the input source, it sets the Status parameter to FAILED and
includes an error message in the Message attribute of the GetDataSource operation
response.
The observations should be contained in the database hosted on an Amazon Redshift cluster and should be specified
by a SelectSqlQuery query. Amazon ML executes an Unload command in Amazon Redshift to
transfer the result set of the SelectSqlQuery query to S3StagingLocation.
After the DataSource has been created, it's ready for use in evaluations and batch predictions. If
you plan to use the DataSource to train an MLModel, the DataSource also
requires a recipe. A recipe describes how each input variable will be used in training an MLModel.
Will the variable be included or excluded from training? Will the variable be manipulated; for example, will it
be combined with another variable or will it be split apart into word combinations? The recipe provides answers
to these questions.
You can't change an existing datasource, but you can copy and modify the settings from an existing Amazon
Redshift datasource to create a new datasource. To do so, call GetDataSource for an existing
datasource and copy the values to a CreateDataSource call. Change the settings that you want to
change and make sure that all required fields have the appropriate values.
createDataSourceFromRedshiftAsync in interface AmazonMachineLearningAsyncpublic Future<CreateDataSourceFromRedshiftResult> createDataSourceFromRedshiftAsync(CreateDataSourceFromRedshiftRequest request, AsyncHandler<CreateDataSourceFromRedshiftRequest,CreateDataSourceFromRedshiftResult> asyncHandler)
AmazonMachineLearningAsync
Creates a DataSource from a database hosted on an Amazon Redshift cluster. A DataSource
references data that can be used to perform either CreateMLModel, CreateEvaluation, or
CreateBatchPrediction operations.
CreateDataSourceFromRedshift is an asynchronous operation. In response to
CreateDataSourceFromRedshift, Amazon Machine Learning (Amazon ML) immediately returns and sets the
DataSource status to PENDING. After the DataSource is created and ready
for use, Amazon ML sets the Status parameter to COMPLETED. DataSource in
COMPLETED or PENDING states can be used to perform only CreateMLModel,
CreateEvaluation, or CreateBatchPrediction operations.
If Amazon ML can't accept the input source, it sets the Status parameter to FAILED and
includes an error message in the Message attribute of the GetDataSource operation
response.
The observations should be contained in the database hosted on an Amazon Redshift cluster and should be specified
by a SelectSqlQuery query. Amazon ML executes an Unload command in Amazon Redshift to
transfer the result set of the SelectSqlQuery query to S3StagingLocation.
After the DataSource has been created, it's ready for use in evaluations and batch predictions. If
you plan to use the DataSource to train an MLModel, the DataSource also
requires a recipe. A recipe describes how each input variable will be used in training an MLModel.
Will the variable be included or excluded from training? Will the variable be manipulated; for example, will it
be combined with another variable or will it be split apart into word combinations? The recipe provides answers
to these questions.
You can't change an existing datasource, but you can copy and modify the settings from an existing Amazon
Redshift datasource to create a new datasource. To do so, call GetDataSource for an existing
datasource and copy the values to a CreateDataSource call. Change the settings that you want to
change and make sure that all required fields have the appropriate values.
createDataSourceFromRedshiftAsync in interface AmazonMachineLearningAsyncasyncHandler - Asynchronous callback handler for events in the lifecycle of the request. Users can provide an
implementation of the callback methods in this interface to receive notification of successful or
unsuccessful completion of the operation.public Future<CreateDataSourceFromS3Result> createDataSourceFromS3Async(CreateDataSourceFromS3Request request)
AmazonMachineLearningAsync
Creates a DataSource object. A DataSource references data that can be used to perform
CreateMLModel, CreateEvaluation, or CreateBatchPrediction operations.
CreateDataSourceFromS3 is an asynchronous operation. In response to
CreateDataSourceFromS3, Amazon Machine Learning (Amazon ML) immediately returns and sets the
DataSource status to PENDING. After the DataSource has been created and is
ready for use, Amazon ML sets the Status parameter to COMPLETED.
DataSource in the COMPLETED or PENDING state can be used to perform only
CreateMLModel, CreateEvaluation or CreateBatchPrediction operations.
If Amazon ML can't accept the input source, it sets the Status parameter to FAILED and
includes an error message in the Message attribute of the GetDataSource operation
response.
The observation data used in a DataSource should be ready to use; that is, it should have a
consistent structure, and missing data values should be kept to a minimum. The observation data must reside in
one or more .csv files in an Amazon Simple Storage Service (Amazon S3) location, along with a schema that
describes the data items by name and type. The same schema must be used for all of the data files referenced by
the DataSource.
After the DataSource has been created, it's ready to use in evaluations and batch predictions. If
you plan to use the DataSource to train an MLModel, the DataSource also
needs a recipe. A recipe describes how each input variable will be used in training an MLModel. Will
the variable be included or excluded from training? Will the variable be manipulated; for example, will it be
combined with another variable or will it be split apart into word combinations? The recipe provides answers to
these questions.
createDataSourceFromS3Async in interface AmazonMachineLearningAsyncpublic Future<CreateDataSourceFromS3Result> createDataSourceFromS3Async(CreateDataSourceFromS3Request request, AsyncHandler<CreateDataSourceFromS3Request,CreateDataSourceFromS3Result> asyncHandler)
AmazonMachineLearningAsync
Creates a DataSource object. A DataSource references data that can be used to perform
CreateMLModel, CreateEvaluation, or CreateBatchPrediction operations.
CreateDataSourceFromS3 is an asynchronous operation. In response to
CreateDataSourceFromS3, Amazon Machine Learning (Amazon ML) immediately returns and sets the
DataSource status to PENDING. After the DataSource has been created and is
ready for use, Amazon ML sets the Status parameter to COMPLETED.
DataSource in the COMPLETED or PENDING state can be used to perform only
CreateMLModel, CreateEvaluation or CreateBatchPrediction operations.
If Amazon ML can't accept the input source, it sets the Status parameter to FAILED and
includes an error message in the Message attribute of the GetDataSource operation
response.
The observation data used in a DataSource should be ready to use; that is, it should have a
consistent structure, and missing data values should be kept to a minimum. The observation data must reside in
one or more .csv files in an Amazon Simple Storage Service (Amazon S3) location, along with a schema that
describes the data items by name and type. The same schema must be used for all of the data files referenced by
the DataSource.
After the DataSource has been created, it's ready to use in evaluations and batch predictions. If
you plan to use the DataSource to train an MLModel, the DataSource also
needs a recipe. A recipe describes how each input variable will be used in training an MLModel. Will
the variable be included or excluded from training? Will the variable be manipulated; for example, will it be
combined with another variable or will it be split apart into word combinations? The recipe provides answers to
these questions.
createDataSourceFromS3Async in interface AmazonMachineLearningAsyncasyncHandler - Asynchronous callback handler for events in the lifecycle of the request. Users can provide an
implementation of the callback methods in this interface to receive notification of successful or
unsuccessful completion of the operation.public Future<CreateEvaluationResult> createEvaluationAsync(CreateEvaluationRequest request)
AmazonMachineLearningAsync
Creates a new Evaluation of an MLModel. An MLModel is evaluated on a set
of observations associated to a DataSource. Like a DataSource for an
MLModel, the DataSource for an Evaluation contains values for the
Target Variable. The Evaluation compares the predicted result for each observation to
the actual outcome and provides a summary so that you know how effective the MLModel functions on
the test data. Evaluation generates a relevant performance metric, such as BinaryAUC, RegressionRMSE or
MulticlassAvgFScore based on the corresponding MLModelType: BINARY,
REGRESSION or MULTICLASS.
CreateEvaluation is an asynchronous operation. In response to CreateEvaluation, Amazon
Machine Learning (Amazon ML) immediately returns and sets the evaluation status to PENDING. After
the Evaluation is created and ready for use, Amazon ML sets the status to COMPLETED.
You can use the GetEvaluation operation to check progress of the evaluation during the creation
operation.
createEvaluationAsync in interface AmazonMachineLearningAsyncpublic Future<CreateEvaluationResult> createEvaluationAsync(CreateEvaluationRequest request, AsyncHandler<CreateEvaluationRequest,CreateEvaluationResult> asyncHandler)
AmazonMachineLearningAsync
Creates a new Evaluation of an MLModel. An MLModel is evaluated on a set
of observations associated to a DataSource. Like a DataSource for an
MLModel, the DataSource for an Evaluation contains values for the
Target Variable. The Evaluation compares the predicted result for each observation to
the actual outcome and provides a summary so that you know how effective the MLModel functions on
the test data. Evaluation generates a relevant performance metric, such as BinaryAUC, RegressionRMSE or
MulticlassAvgFScore based on the corresponding MLModelType: BINARY,
REGRESSION or MULTICLASS.
CreateEvaluation is an asynchronous operation. In response to CreateEvaluation, Amazon
Machine Learning (Amazon ML) immediately returns and sets the evaluation status to PENDING. After
the Evaluation is created and ready for use, Amazon ML sets the status to COMPLETED.
You can use the GetEvaluation operation to check progress of the evaluation during the creation
operation.
createEvaluationAsync in interface AmazonMachineLearningAsyncasyncHandler - Asynchronous callback handler for events in the lifecycle of the request. Users can provide an
implementation of the callback methods in this interface to receive notification of successful or
unsuccessful completion of the operation.public Future<CreateMLModelResult> createMLModelAsync(CreateMLModelRequest request)
AmazonMachineLearningAsync
Creates a new MLModel using the DataSource and the recipe as information sources.
An MLModel is nearly immutable. Users can update only the MLModelName and the
ScoreThreshold in an MLModel without creating a new MLModel.
CreateMLModel is an asynchronous operation. In response to CreateMLModel, Amazon
Machine Learning (Amazon ML) immediately returns and sets the MLModel status to PENDING
. After the MLModel has been created and ready is for use, Amazon ML sets the status to
COMPLETED.
You can use the GetMLModel operation to check the progress of the MLModel during the
creation operation.
CreateMLModel requires a DataSource with computed statistics, which can be created by
setting ComputeStatistics to true in CreateDataSourceFromRDS,
CreateDataSourceFromS3, or CreateDataSourceFromRedshift operations.
createMLModelAsync in interface AmazonMachineLearningAsyncpublic Future<CreateMLModelResult> createMLModelAsync(CreateMLModelRequest request, AsyncHandler<CreateMLModelRequest,CreateMLModelResult> asyncHandler)
AmazonMachineLearningAsync
Creates a new MLModel using the DataSource and the recipe as information sources.
An MLModel is nearly immutable. Users can update only the MLModelName and the
ScoreThreshold in an MLModel without creating a new MLModel.
CreateMLModel is an asynchronous operation. In response to CreateMLModel, Amazon
Machine Learning (Amazon ML) immediately returns and sets the MLModel status to PENDING
. After the MLModel has been created and ready is for use, Amazon ML sets the status to
COMPLETED.
You can use the GetMLModel operation to check the progress of the MLModel during the
creation operation.
CreateMLModel requires a DataSource with computed statistics, which can be created by
setting ComputeStatistics to true in CreateDataSourceFromRDS,
CreateDataSourceFromS3, or CreateDataSourceFromRedshift operations.
createMLModelAsync in interface AmazonMachineLearningAsyncasyncHandler - Asynchronous callback handler for events in the lifecycle of the request. Users can provide an
implementation of the callback methods in this interface to receive notification of successful or
unsuccessful completion of the operation.public Future<CreateRealtimeEndpointResult> createRealtimeEndpointAsync(CreateRealtimeEndpointRequest request)
AmazonMachineLearningAsync
Creates a real-time endpoint for the MLModel. The endpoint contains the URI of the
MLModel; that is, the location to send real-time prediction requests for the specified
MLModel.
createRealtimeEndpointAsync in interface AmazonMachineLearningAsyncpublic Future<CreateRealtimeEndpointResult> createRealtimeEndpointAsync(CreateRealtimeEndpointRequest request, AsyncHandler<CreateRealtimeEndpointRequest,CreateRealtimeEndpointResult> asyncHandler)
AmazonMachineLearningAsync
Creates a real-time endpoint for the MLModel. The endpoint contains the URI of the
MLModel; that is, the location to send real-time prediction requests for the specified
MLModel.
createRealtimeEndpointAsync in interface AmazonMachineLearningAsyncasyncHandler - Asynchronous callback handler for events in the lifecycle of the request. Users can provide an
implementation of the callback methods in this interface to receive notification of successful or
unsuccessful completion of the operation.public Future<DeleteBatchPredictionResult> deleteBatchPredictionAsync(DeleteBatchPredictionRequest request)
AmazonMachineLearningAsync
Assigns the DELETED status to a BatchPrediction, rendering it unusable.
After using the DeleteBatchPrediction operation, you can use the GetBatchPrediction operation
to verify that the status of the BatchPrediction changed to DELETED.
Caution: The result of the DeleteBatchPrediction operation is irreversible.
deleteBatchPredictionAsync in interface AmazonMachineLearningAsyncpublic Future<DeleteBatchPredictionResult> deleteBatchPredictionAsync(DeleteBatchPredictionRequest request, AsyncHandler<DeleteBatchPredictionRequest,DeleteBatchPredictionResult> asyncHandler)
AmazonMachineLearningAsync
Assigns the DELETED status to a BatchPrediction, rendering it unusable.
After using the DeleteBatchPrediction operation, you can use the GetBatchPrediction operation
to verify that the status of the BatchPrediction changed to DELETED.
Caution: The result of the DeleteBatchPrediction operation is irreversible.
deleteBatchPredictionAsync in interface AmazonMachineLearningAsyncasyncHandler - Asynchronous callback handler for events in the lifecycle of the request. Users can provide an
implementation of the callback methods in this interface to receive notification of successful or
unsuccessful completion of the operation.public Future<DeleteDataSourceResult> deleteDataSourceAsync(DeleteDataSourceRequest request)
AmazonMachineLearningAsync
Assigns the DELETED status to a DataSource, rendering it unusable.
After using the DeleteDataSource operation, you can use the GetDataSource operation to verify
that the status of the DataSource changed to DELETED.
Caution: The results of the DeleteDataSource operation are irreversible.
deleteDataSourceAsync in interface AmazonMachineLearningAsyncpublic Future<DeleteDataSourceResult> deleteDataSourceAsync(DeleteDataSourceRequest request, AsyncHandler<DeleteDataSourceRequest,DeleteDataSourceResult> asyncHandler)
AmazonMachineLearningAsync
Assigns the DELETED status to a DataSource, rendering it unusable.
After using the DeleteDataSource operation, you can use the GetDataSource operation to verify
that the status of the DataSource changed to DELETED.
Caution: The results of the DeleteDataSource operation are irreversible.
deleteDataSourceAsync in interface AmazonMachineLearningAsyncasyncHandler - Asynchronous callback handler for events in the lifecycle of the request. Users can provide an
implementation of the callback methods in this interface to receive notification of successful or
unsuccessful completion of the operation.public Future<DeleteEvaluationResult> deleteEvaluationAsync(DeleteEvaluationRequest request)
AmazonMachineLearningAsync
Assigns the DELETED status to an Evaluation, rendering it unusable.
After invoking the DeleteEvaluation operation, you can use the GetEvaluation operation
to verify that the status of the Evaluation changed to DELETED.
The results of the DeleteEvaluation operation are irreversible.
deleteEvaluationAsync in interface AmazonMachineLearningAsyncpublic Future<DeleteEvaluationResult> deleteEvaluationAsync(DeleteEvaluationRequest request, AsyncHandler<DeleteEvaluationRequest,DeleteEvaluationResult> asyncHandler)
AmazonMachineLearningAsync
Assigns the DELETED status to an Evaluation, rendering it unusable.
After invoking the DeleteEvaluation operation, you can use the GetEvaluation operation
to verify that the status of the Evaluation changed to DELETED.
The results of the DeleteEvaluation operation are irreversible.
deleteEvaluationAsync in interface AmazonMachineLearningAsyncasyncHandler - Asynchronous callback handler for events in the lifecycle of the request. Users can provide an
implementation of the callback methods in this interface to receive notification of successful or
unsuccessful completion of the operation.public Future<DeleteMLModelResult> deleteMLModelAsync(DeleteMLModelRequest request)
AmazonMachineLearningAsync
Assigns the DELETED status to an MLModel, rendering it unusable.
After using the DeleteMLModel operation, you can use the GetMLModel operation to verify
that the status of the MLModel changed to DELETED.
Caution: The result of the DeleteMLModel operation is irreversible.
deleteMLModelAsync in interface AmazonMachineLearningAsyncpublic Future<DeleteMLModelResult> deleteMLModelAsync(DeleteMLModelRequest request, AsyncHandler<DeleteMLModelRequest,DeleteMLModelResult> asyncHandler)
AmazonMachineLearningAsync
Assigns the DELETED status to an MLModel, rendering it unusable.
After using the DeleteMLModel operation, you can use the GetMLModel operation to verify
that the status of the MLModel changed to DELETED.
Caution: The result of the DeleteMLModel operation is irreversible.
deleteMLModelAsync in interface AmazonMachineLearningAsyncasyncHandler - Asynchronous callback handler for events in the lifecycle of the request. Users can provide an
implementation of the callback methods in this interface to receive notification of successful or
unsuccessful completion of the operation.public Future<DeleteRealtimeEndpointResult> deleteRealtimeEndpointAsync(DeleteRealtimeEndpointRequest request)
AmazonMachineLearningAsync
Deletes a real time endpoint of an MLModel.
deleteRealtimeEndpointAsync in interface AmazonMachineLearningAsyncpublic Future<DeleteRealtimeEndpointResult> deleteRealtimeEndpointAsync(DeleteRealtimeEndpointRequest request, AsyncHandler<DeleteRealtimeEndpointRequest,DeleteRealtimeEndpointResult> asyncHandler)
AmazonMachineLearningAsync
Deletes a real time endpoint of an MLModel.
deleteRealtimeEndpointAsync in interface AmazonMachineLearningAsyncasyncHandler - Asynchronous callback handler for events in the lifecycle of the request. Users can provide an
implementation of the callback methods in this interface to receive notification of successful or
unsuccessful completion of the operation.public Future<DeleteTagsResult> deleteTagsAsync(DeleteTagsRequest request)
AmazonMachineLearningAsyncDeletes the specified tags associated with an ML object. After this operation is complete, you can't recover deleted tags.
If you specify a tag that doesn't exist, Amazon ML ignores it.
deleteTagsAsync in interface AmazonMachineLearningAsyncpublic Future<DeleteTagsResult> deleteTagsAsync(DeleteTagsRequest request, AsyncHandler<DeleteTagsRequest,DeleteTagsResult> asyncHandler)
AmazonMachineLearningAsyncDeletes the specified tags associated with an ML object. After this operation is complete, you can't recover deleted tags.
If you specify a tag that doesn't exist, Amazon ML ignores it.
deleteTagsAsync in interface AmazonMachineLearningAsyncasyncHandler - Asynchronous callback handler for events in the lifecycle of the request. Users can provide an
implementation of the callback methods in this interface to receive notification of successful or
unsuccessful completion of the operation.public Future<DescribeBatchPredictionsResult> describeBatchPredictionsAsync(DescribeBatchPredictionsRequest request)
AmazonMachineLearningAsync
Returns a list of BatchPrediction operations that match the search criteria in the request.
describeBatchPredictionsAsync in interface AmazonMachineLearningAsyncpublic Future<DescribeBatchPredictionsResult> describeBatchPredictionsAsync(DescribeBatchPredictionsRequest request, AsyncHandler<DescribeBatchPredictionsRequest,DescribeBatchPredictionsResult> asyncHandler)
AmazonMachineLearningAsync
Returns a list of BatchPrediction operations that match the search criteria in the request.
describeBatchPredictionsAsync in interface AmazonMachineLearningAsyncasyncHandler - Asynchronous callback handler for events in the lifecycle of the request. Users can provide an
implementation of the callback methods in this interface to receive notification of successful or
unsuccessful completion of the operation.public Future<DescribeBatchPredictionsResult> describeBatchPredictionsAsync()
describeBatchPredictionsAsync in interface AmazonMachineLearningAsyncdescribeBatchPredictionsAsync(DescribeBatchPredictionsRequest)public Future<DescribeBatchPredictionsResult> describeBatchPredictionsAsync(AsyncHandler<DescribeBatchPredictionsRequest,DescribeBatchPredictionsResult> asyncHandler)
describeBatchPredictionsAsync in interface AmazonMachineLearningAsyncdescribeBatchPredictionsAsync(DescribeBatchPredictionsRequest, com.amazonaws.handlers.AsyncHandler)public Future<DescribeDataSourcesResult> describeDataSourcesAsync(DescribeDataSourcesRequest request)
AmazonMachineLearningAsync
Returns a list of DataSource that match the search criteria in the request.
describeDataSourcesAsync in interface AmazonMachineLearningAsyncpublic Future<DescribeDataSourcesResult> describeDataSourcesAsync(DescribeDataSourcesRequest request, AsyncHandler<DescribeDataSourcesRequest,DescribeDataSourcesResult> asyncHandler)
AmazonMachineLearningAsync
Returns a list of DataSource that match the search criteria in the request.
describeDataSourcesAsync in interface AmazonMachineLearningAsyncasyncHandler - Asynchronous callback handler for events in the lifecycle of the request. Users can provide an
implementation of the callback methods in this interface to receive notification of successful or
unsuccessful completion of the operation.public Future<DescribeDataSourcesResult> describeDataSourcesAsync()
describeDataSourcesAsync in interface AmazonMachineLearningAsyncdescribeDataSourcesAsync(DescribeDataSourcesRequest)public Future<DescribeDataSourcesResult> describeDataSourcesAsync(AsyncHandler<DescribeDataSourcesRequest,DescribeDataSourcesResult> asyncHandler)
describeDataSourcesAsync in interface AmazonMachineLearningAsyncdescribeDataSourcesAsync(DescribeDataSourcesRequest, com.amazonaws.handlers.AsyncHandler)public Future<DescribeEvaluationsResult> describeEvaluationsAsync(DescribeEvaluationsRequest request)
AmazonMachineLearningAsync
Returns a list of DescribeEvaluations that match the search criteria in the request.
describeEvaluationsAsync in interface AmazonMachineLearningAsyncpublic Future<DescribeEvaluationsResult> describeEvaluationsAsync(DescribeEvaluationsRequest request, AsyncHandler<DescribeEvaluationsRequest,DescribeEvaluationsResult> asyncHandler)
AmazonMachineLearningAsync
Returns a list of DescribeEvaluations that match the search criteria in the request.
describeEvaluationsAsync in interface AmazonMachineLearningAsyncasyncHandler - Asynchronous callback handler for events in the lifecycle of the request. Users can provide an
implementation of the callback methods in this interface to receive notification of successful or
unsuccessful completion of the operation.public Future<DescribeEvaluationsResult> describeEvaluationsAsync()
describeEvaluationsAsync in interface AmazonMachineLearningAsyncdescribeEvaluationsAsync(DescribeEvaluationsRequest)public Future<DescribeEvaluationsResult> describeEvaluationsAsync(AsyncHandler<DescribeEvaluationsRequest,DescribeEvaluationsResult> asyncHandler)
describeEvaluationsAsync in interface AmazonMachineLearningAsyncdescribeEvaluationsAsync(DescribeEvaluationsRequest, com.amazonaws.handlers.AsyncHandler)public Future<DescribeMLModelsResult> describeMLModelsAsync(DescribeMLModelsRequest request)
AmazonMachineLearningAsync
Returns a list of MLModel that match the search criteria in the request.
describeMLModelsAsync in interface AmazonMachineLearningAsyncpublic Future<DescribeMLModelsResult> describeMLModelsAsync(DescribeMLModelsRequest request, AsyncHandler<DescribeMLModelsRequest,DescribeMLModelsResult> asyncHandler)
AmazonMachineLearningAsync
Returns a list of MLModel that match the search criteria in the request.
describeMLModelsAsync in interface AmazonMachineLearningAsyncasyncHandler - Asynchronous callback handler for events in the lifecycle of the request. Users can provide an
implementation of the callback methods in this interface to receive notification of successful or
unsuccessful completion of the operation.public Future<DescribeMLModelsResult> describeMLModelsAsync()
describeMLModelsAsync in interface AmazonMachineLearningAsyncdescribeMLModelsAsync(DescribeMLModelsRequest)public Future<DescribeMLModelsResult> describeMLModelsAsync(AsyncHandler<DescribeMLModelsRequest,DescribeMLModelsResult> asyncHandler)
describeMLModelsAsync in interface AmazonMachineLearningAsyncdescribeMLModelsAsync(DescribeMLModelsRequest, com.amazonaws.handlers.AsyncHandler)public Future<DescribeTagsResult> describeTagsAsync(DescribeTagsRequest request)
AmazonMachineLearningAsyncDescribes one or more of the tags for your Amazon ML object.
describeTagsAsync in interface AmazonMachineLearningAsyncpublic Future<DescribeTagsResult> describeTagsAsync(DescribeTagsRequest request, AsyncHandler<DescribeTagsRequest,DescribeTagsResult> asyncHandler)
AmazonMachineLearningAsyncDescribes one or more of the tags for your Amazon ML object.
describeTagsAsync in interface AmazonMachineLearningAsyncasyncHandler - Asynchronous callback handler for events in the lifecycle of the request. Users can provide an
implementation of the callback methods in this interface to receive notification of successful or
unsuccessful completion of the operation.public Future<GetBatchPredictionResult> getBatchPredictionAsync(GetBatchPredictionRequest request)
AmazonMachineLearningAsync
Returns a BatchPrediction that includes detailed metadata, status, and data file information for a
Batch Prediction request.
getBatchPredictionAsync in interface AmazonMachineLearningAsyncpublic Future<GetBatchPredictionResult> getBatchPredictionAsync(GetBatchPredictionRequest request, AsyncHandler<GetBatchPredictionRequest,GetBatchPredictionResult> asyncHandler)
AmazonMachineLearningAsync
Returns a BatchPrediction that includes detailed metadata, status, and data file information for a
Batch Prediction request.
getBatchPredictionAsync in interface AmazonMachineLearningAsyncasyncHandler - Asynchronous callback handler for events in the lifecycle of the request. Users can provide an
implementation of the callback methods in this interface to receive notification of successful or
unsuccessful completion of the operation.public Future<GetDataSourceResult> getDataSourceAsync(GetDataSourceRequest request)
AmazonMachineLearningAsync
Returns a DataSource that includes metadata and data file information, as well as the current status
of the DataSource.
GetDataSource provides results in normal or verbose format. The verbose format adds the schema
description and the list of files pointed to by the DataSource to the normal format.
getDataSourceAsync in interface AmazonMachineLearningAsyncpublic Future<GetDataSourceResult> getDataSourceAsync(GetDataSourceRequest request, AsyncHandler<GetDataSourceRequest,GetDataSourceResult> asyncHandler)
AmazonMachineLearningAsync
Returns a DataSource that includes metadata and data file information, as well as the current status
of the DataSource.
GetDataSource provides results in normal or verbose format. The verbose format adds the schema
description and the list of files pointed to by the DataSource to the normal format.
getDataSourceAsync in interface AmazonMachineLearningAsyncasyncHandler - Asynchronous callback handler for events in the lifecycle of the request. Users can provide an
implementation of the callback methods in this interface to receive notification of successful or
unsuccessful completion of the operation.public Future<GetEvaluationResult> getEvaluationAsync(GetEvaluationRequest request)
AmazonMachineLearningAsync
Returns an Evaluation that includes metadata as well as the current status of the
Evaluation.
getEvaluationAsync in interface AmazonMachineLearningAsyncpublic Future<GetEvaluationResult> getEvaluationAsync(GetEvaluationRequest request, AsyncHandler<GetEvaluationRequest,GetEvaluationResult> asyncHandler)
AmazonMachineLearningAsync
Returns an Evaluation that includes metadata as well as the current status of the
Evaluation.
getEvaluationAsync in interface AmazonMachineLearningAsyncasyncHandler - Asynchronous callback handler for events in the lifecycle of the request. Users can provide an
implementation of the callback methods in this interface to receive notification of successful or
unsuccessful completion of the operation.public Future<GetMLModelResult> getMLModelAsync(GetMLModelRequest request)
AmazonMachineLearningAsync
Returns an MLModel that includes detailed metadata, data source information, and the current status
of the MLModel.
GetMLModel provides results in normal or verbose format.
getMLModelAsync in interface AmazonMachineLearningAsyncpublic Future<GetMLModelResult> getMLModelAsync(GetMLModelRequest request, AsyncHandler<GetMLModelRequest,GetMLModelResult> asyncHandler)
AmazonMachineLearningAsync
Returns an MLModel that includes detailed metadata, data source information, and the current status
of the MLModel.
GetMLModel provides results in normal or verbose format.
getMLModelAsync in interface AmazonMachineLearningAsyncasyncHandler - Asynchronous callback handler for events in the lifecycle of the request. Users can provide an
implementation of the callback methods in this interface to receive notification of successful or
unsuccessful completion of the operation.public Future<PredictResult> predictAsync(PredictRequest request)
AmazonMachineLearningAsync
Generates a prediction for the observation using the specified ML Model.
Not all response parameters will be populated. Whether a response parameter is populated depends on the type of model requested.
predictAsync in interface AmazonMachineLearningAsyncpublic Future<PredictResult> predictAsync(PredictRequest request, AsyncHandler<PredictRequest,PredictResult> asyncHandler)
AmazonMachineLearningAsync
Generates a prediction for the observation using the specified ML Model.
Not all response parameters will be populated. Whether a response parameter is populated depends on the type of model requested.
predictAsync in interface AmazonMachineLearningAsyncasyncHandler - Asynchronous callback handler for events in the lifecycle of the request. Users can provide an
implementation of the callback methods in this interface to receive notification of successful or
unsuccessful completion of the operation.public Future<UpdateBatchPredictionResult> updateBatchPredictionAsync(UpdateBatchPredictionRequest request)
AmazonMachineLearningAsync
Updates the BatchPredictionName of a BatchPrediction.
You can use the GetBatchPrediction operation to view the contents of the updated data element.
updateBatchPredictionAsync in interface AmazonMachineLearningAsyncpublic Future<UpdateBatchPredictionResult> updateBatchPredictionAsync(UpdateBatchPredictionRequest request, AsyncHandler<UpdateBatchPredictionRequest,UpdateBatchPredictionResult> asyncHandler)
AmazonMachineLearningAsync
Updates the BatchPredictionName of a BatchPrediction.
You can use the GetBatchPrediction operation to view the contents of the updated data element.
updateBatchPredictionAsync in interface AmazonMachineLearningAsyncasyncHandler - Asynchronous callback handler for events in the lifecycle of the request. Users can provide an
implementation of the callback methods in this interface to receive notification of successful or
unsuccessful completion of the operation.public Future<UpdateDataSourceResult> updateDataSourceAsync(UpdateDataSourceRequest request)
AmazonMachineLearningAsync
Updates the DataSourceName of a DataSource.
You can use the GetDataSource operation to view the contents of the updated data element.
updateDataSourceAsync in interface AmazonMachineLearningAsyncpublic Future<UpdateDataSourceResult> updateDataSourceAsync(UpdateDataSourceRequest request, AsyncHandler<UpdateDataSourceRequest,UpdateDataSourceResult> asyncHandler)
AmazonMachineLearningAsync
Updates the DataSourceName of a DataSource.
You can use the GetDataSource operation to view the contents of the updated data element.
updateDataSourceAsync in interface AmazonMachineLearningAsyncasyncHandler - Asynchronous callback handler for events in the lifecycle of the request. Users can provide an
implementation of the callback methods in this interface to receive notification of successful or
unsuccessful completion of the operation.public Future<UpdateEvaluationResult> updateEvaluationAsync(UpdateEvaluationRequest request)
AmazonMachineLearningAsync
Updates the EvaluationName of an Evaluation.
You can use the GetEvaluation operation to view the contents of the updated data element.
updateEvaluationAsync in interface AmazonMachineLearningAsyncpublic Future<UpdateEvaluationResult> updateEvaluationAsync(UpdateEvaluationRequest request, AsyncHandler<UpdateEvaluationRequest,UpdateEvaluationResult> asyncHandler)
AmazonMachineLearningAsync
Updates the EvaluationName of an Evaluation.
You can use the GetEvaluation operation to view the contents of the updated data element.
updateEvaluationAsync in interface AmazonMachineLearningAsyncasyncHandler - Asynchronous callback handler for events in the lifecycle of the request. Users can provide an
implementation of the callback methods in this interface to receive notification of successful or
unsuccessful completion of the operation.public Future<UpdateMLModelResult> updateMLModelAsync(UpdateMLModelRequest request)
AmazonMachineLearningAsync
Updates the MLModelName and the ScoreThreshold of an MLModel.
You can use the GetMLModel operation to view the contents of the updated data element.
updateMLModelAsync in interface AmazonMachineLearningAsyncpublic Future<UpdateMLModelResult> updateMLModelAsync(UpdateMLModelRequest request, AsyncHandler<UpdateMLModelRequest,UpdateMLModelResult> asyncHandler)
AmazonMachineLearningAsync
Updates the MLModelName and the ScoreThreshold of an MLModel.
You can use the GetMLModel operation to view the contents of the updated data element.
updateMLModelAsync in interface AmazonMachineLearningAsyncasyncHandler - Asynchronous callback handler for events in the lifecycle of the request. Users can provide an
implementation of the callback methods in this interface to receive notification of successful or
unsuccessful completion of the operation.Copyright © 2020. All rights reserved.