public class CreateDataSourceFromS3Request extends AmazonWebServiceRequest implements Serializable, Cloneable
CreateDataSourceFromS3 operation.
 
 Creates a DataSource object. A DataSource
 references data that can be used to perform CreateMLModel,
 CreateEvaluation, or CreateBatchPrediction operations.
 
 CreateDataSourceFromS3 is an asynchronous operation. In
 response to CreateDataSourceFromS3 ,
 Amazon Machine Learning (Amazon ML) immediately returns and
 sets the DataSource status to PENDING .
 After the DataSource is created and ready for
 use, Amazon ML sets the Status parameter to
 COMPLETED .
 
 DataSource in COMPLETED
 or PENDING status can only be used to perform
 CreateMLModel, CreateEvaluation or CreateBatchPrediction operations.
 
 If Amazon ML cannot accept the input source, it sets the
 Status parameter to FAILED and includes an
 error message in the Message attribute of the
 GetDataSource operation response.
 
 The observation data used in a DataSource should be ready
 to use; that is, it should have a consistent structure, and missing
 data values should be kept to a minimum. The observation data must
 reside in one or more CSV files in an Amazon Simple Storage Service
 (Amazon S3) bucket, along with a schema that describes the data items
 by name and type. The same schema must be used for all of the data
 files referenced by the DataSource .
 
 After the DataSource has been created, it's ready to use
 in evaluations and batch predictions. If you plan to use the
 DataSource to train an MLModel , the
 DataSource requires another item: a recipe. A recipe
 describes the observation variables that participate in training an
 MLModel . A recipe describes how each input variable will
 be used in training. Will the variable be included or excluded from
 training? Will the variable be manipulated, for example, combined with
 another variable, or split apart into word combinations? The recipe
 provides answers to these questions. For more information, see the
  Amazon Machine Learning Developer Guide 
 .
 
NOOP| Constructor and Description | 
|---|
| CreateDataSourceFromS3Request() | 
| Modifier and Type | Method and Description | 
|---|---|
| CreateDataSourceFromS3Request | clone()Creates a shallow clone of this request. | 
| boolean | equals(Object obj) | 
| Boolean | getComputeStatistics()The compute statistics for a  DataSource. | 
| String | getDataSourceId()A user-supplied identifier that uniquely identifies the
  DataSource. | 
| String | getDataSourceName()A user-supplied name or description of the  DataSource. | 
| S3DataSpec | getDataSpec()The data specification of a  DataSource: | 
| int | hashCode() | 
| Boolean | isComputeStatistics()The compute statistics for a  DataSource. | 
| void | setComputeStatistics(Boolean computeStatistics)The compute statistics for a  DataSource. | 
| void | setDataSourceId(String dataSourceId)A user-supplied identifier that uniquely identifies the
  DataSource. | 
| void | setDataSourceName(String dataSourceName)A user-supplied name or description of the  DataSource. | 
| void | setDataSpec(S3DataSpec dataSpec)The data specification of a  DataSource: | 
| String | toString()Returns a string representation of this object; useful for testing and
 debugging. | 
| CreateDataSourceFromS3Request | withComputeStatistics(Boolean computeStatistics)The compute statistics for a  DataSource. | 
| CreateDataSourceFromS3Request | withDataSourceId(String dataSourceId)A user-supplied identifier that uniquely identifies the
  DataSource. | 
| CreateDataSourceFromS3Request | withDataSourceName(String dataSourceName)A user-supplied name or description of the  DataSource. | 
| CreateDataSourceFromS3Request | withDataSpec(S3DataSpec dataSpec)The data specification of a  DataSource: | 
copyBaseTo, getCustomRequestHeaders, getGeneralProgressListener, getReadLimit, getRequestClientOptions, getRequestCredentials, getRequestMetricCollector, putCustomRequestHeader, setGeneralProgressListener, setRequestCredentials, setRequestMetricCollector, withGeneralProgressListener, withRequestMetricCollectorpublic String getDataSourceId()
DataSource.
 
 Constraints:
 Length: 1 - 64
 Pattern: [a-zA-Z0-9_.-]+
DataSource.public void setDataSourceId(String dataSourceId)
DataSource.
 
 Constraints:
 Length: 1 - 64
 Pattern: [a-zA-Z0-9_.-]+
dataSourceId - A user-supplied identifier that uniquely identifies the
         DataSource.public CreateDataSourceFromS3Request withDataSourceId(String dataSourceId)
DataSource.
 Returns a reference to this object so that method calls can be chained together.
 Constraints:
 Length: 1 - 64
 Pattern: [a-zA-Z0-9_.-]+
dataSourceId - A user-supplied identifier that uniquely identifies the
         DataSource.public String getDataSourceName()
DataSource.
 
 Constraints:
 Length: 0 - 1024
 Pattern: .*\S.*|^$
DataSource.public void setDataSourceName(String dataSourceName)
DataSource.
 
 Constraints:
 Length: 0 - 1024
 Pattern: .*\S.*|^$
dataSourceName - A user-supplied name or description of the DataSource.public CreateDataSourceFromS3Request withDataSourceName(String dataSourceName)
DataSource.
 Returns a reference to this object so that method calls can be chained together.
 Constraints:
 Length: 0 - 1024
 Pattern: .*\S.*|^$
dataSourceName - A user-supplied name or description of the DataSource.public S3DataSpec getDataSpec()
DataSource: DataLocationS3 - Amazon Simple Storage Service (Amazon S3) location of the observation data.
DataSchemaLocationS3 -
 Amazon S3 location of the DataSchema.
DataSchema - A JSON string representing the schema. This is not
 required if DataSchemaUri is specified. 
DataRearrangement - A JSON string representing the splitting
 requirement of a Datasource. 
 
 Sample - 
 "{\"randomSeed\":\"some-random-seed\",
 \"splitting\":{\"percentBegin\":10,\"percentEnd\":60}}" 
DataSource: DataLocationS3 - Amazon Simple Storage Service (Amazon S3) location of the observation data.
DataSchemaLocationS3 -
         Amazon S3 location of the DataSchema.
DataSchema - A JSON string representing the schema. This is not
         required if DataSchemaUri is specified. 
DataRearrangement - A JSON string representing the splitting
         requirement of a Datasource. 
 
 Sample - 
         "{\"randomSeed\":\"some-random-seed\",
         \"splitting\":{\"percentBegin\":10,\"percentEnd\":60}}" 
public void setDataSpec(S3DataSpec dataSpec)
DataSource: DataLocationS3 - Amazon Simple Storage Service (Amazon S3) location of the observation data.
DataSchemaLocationS3 -
 Amazon S3 location of the DataSchema.
DataSchema - A JSON string representing the schema. This is not
 required if DataSchemaUri is specified. 
DataRearrangement - A JSON string representing the splitting
 requirement of a Datasource. 
 
 Sample - 
 "{\"randomSeed\":\"some-random-seed\",
 \"splitting\":{\"percentBegin\":10,\"percentEnd\":60}}" 
dataSpec - The data specification of a DataSource: DataLocationS3 - Amazon Simple Storage Service (Amazon S3) location of the observation data.
DataSchemaLocationS3 -
         Amazon S3 location of the DataSchema.
DataSchema - A JSON string representing the schema. This is not
         required if DataSchemaUri is specified. 
DataRearrangement - A JSON string representing the splitting
         requirement of a Datasource. 
 
 Sample - 
         "{\"randomSeed\":\"some-random-seed\",
         \"splitting\":{\"percentBegin\":10,\"percentEnd\":60}}" 
public CreateDataSourceFromS3Request withDataSpec(S3DataSpec dataSpec)
DataSource: DataLocationS3 - Amazon Simple Storage Service (Amazon S3) location of the observation data.
DataSchemaLocationS3 -
 Amazon S3 location of the DataSchema.
DataSchema - A JSON string representing the schema. This is not
 required if DataSchemaUri is specified. 
DataRearrangement - A JSON string representing the splitting
 requirement of a Datasource. 
 
 Sample - 
 "{\"randomSeed\":\"some-random-seed\",
 \"splitting\":{\"percentBegin\":10,\"percentEnd\":60}}" 
Returns a reference to this object so that method calls can be chained together.
dataSpec - The data specification of a DataSource: DataLocationS3 - Amazon Simple Storage Service (Amazon S3) location of the observation data.
DataSchemaLocationS3 -
         Amazon S3 location of the DataSchema.
DataSchema - A JSON string representing the schema. This is not
         required if DataSchemaUri is specified. 
DataRearrangement - A JSON string representing the splitting
         requirement of a Datasource. 
 
 Sample - 
         "{\"randomSeed\":\"some-random-seed\",
         \"splitting\":{\"percentBegin\":10,\"percentEnd\":60}}" 
public Boolean isComputeStatistics()
DataSource. The statistics
 are generated from the observation data referenced by a
 DataSource. Amazon ML uses the statistics internally
 during an MLModel training. This parameter must be set to
 true if the MLModel trainingDataSource. The statistics
         are generated from the observation data referenced by a
         DataSource. Amazon ML uses the statistics internally
         during an MLModel training. This parameter must be set to
         true if the MLModel trainingpublic void setComputeStatistics(Boolean computeStatistics)
DataSource. The statistics
 are generated from the observation data referenced by a
 DataSource. Amazon ML uses the statistics internally
 during an MLModel training. This parameter must be set to
 true if the MLModel trainingcomputeStatistics - The compute statistics for a DataSource. The statistics
         are generated from the observation data referenced by a
         DataSource. Amazon ML uses the statistics internally
         during an MLModel training. This parameter must be set to
         true if the MLModel trainingpublic CreateDataSourceFromS3Request withComputeStatistics(Boolean computeStatistics)
DataSource. The statistics
 are generated from the observation data referenced by a
 DataSource. Amazon ML uses the statistics internally
 during an MLModel training. This parameter must be set to
 true if the MLModel training
 Returns a reference to this object so that method calls can be chained together.
computeStatistics - The compute statistics for a DataSource. The statistics
         are generated from the observation data referenced by a
         DataSource. Amazon ML uses the statistics internally
         during an MLModel training. This parameter must be set to
         true if the MLModel trainingpublic Boolean getComputeStatistics()
DataSource. The statistics
 are generated from the observation data referenced by a
 DataSource. Amazon ML uses the statistics internally
 during an MLModel training. This parameter must be set to
 true if the MLModel trainingDataSource. The statistics
         are generated from the observation data referenced by a
         DataSource. Amazon ML uses the statistics internally
         during an MLModel training. This parameter must be set to
         true if the MLModel trainingpublic String toString()
toString in class ObjectObject.toString()public CreateDataSourceFromS3Request clone()
AmazonWebServiceRequestclone in class AmazonWebServiceRequestObject.clone()Copyright © 2015. All rights reserved.