| Package | Description |
|---|---|
| com.amazonaws.services.machinelearning |
Synchronous and asynchronous client classes for accessing AmazonMachineLearning.
|
| com.amazonaws.services.machinelearning.model |
Classes modeling the various types represented by AmazonMachineLearning.
|
| Modifier and Type | Method and Description |
|---|---|
CreateMLModelResult |
AmazonMachineLearningClient.createMLModel(CreateMLModelRequest createMLModelRequest)
Creates a new
MLModel using the data files and the
recipe as information sources. |
CreateMLModelResult |
AmazonMachineLearning.createMLModel(CreateMLModelRequest createMLModelRequest)
Creates a new
MLModel using the data files and the
recipe as information sources. |
| Modifier and Type | Method and Description |
|---|---|
Future<CreateMLModelResult> |
AmazonMachineLearningAsyncClient.createMLModelAsync(CreateMLModelRequest createMLModelRequest)
Creates a new
MLModel using the data files and the
recipe as information sources. |
Future<CreateMLModelResult> |
AmazonMachineLearningAsync.createMLModelAsync(CreateMLModelRequest createMLModelRequest)
Creates a new
MLModel using the data files and the
recipe as information sources. |
Future<CreateMLModelResult> |
AmazonMachineLearningAsyncClient.createMLModelAsync(CreateMLModelRequest createMLModelRequest,
AsyncHandler<CreateMLModelRequest,CreateMLModelResult> asyncHandler)
Creates a new
MLModel using the data files and the
recipe as information sources. |
Future<CreateMLModelResult> |
AmazonMachineLearningAsync.createMLModelAsync(CreateMLModelRequest createMLModelRequest,
AsyncHandler<CreateMLModelRequest,CreateMLModelResult> asyncHandler)
Creates a new
MLModel using the data files and the
recipe as information sources. |
| Modifier and Type | Method and Description |
|---|---|
Future<CreateMLModelResult> |
AmazonMachineLearningAsyncClient.createMLModelAsync(CreateMLModelRequest createMLModelRequest,
AsyncHandler<CreateMLModelRequest,CreateMLModelResult> asyncHandler)
Creates a new
MLModel using the data files and the
recipe as information sources. |
Future<CreateMLModelResult> |
AmazonMachineLearningAsync.createMLModelAsync(CreateMLModelRequest createMLModelRequest,
AsyncHandler<CreateMLModelRequest,CreateMLModelResult> asyncHandler)
Creates a new
MLModel using the data files and the
recipe as information sources. |
| Modifier and Type | Method and Description |
|---|---|
CreateMLModelResult |
CreateMLModelResult.clone() |
CreateMLModelResult |
CreateMLModelResult.withMLModelId(String mLModelId)
A user-supplied ID that uniquely identifies the
MLModel. |
Copyright © 2015. All rights reserved.