public interface AmazonMachineLearningAsync extends AmazonMachineLearning
AsyncHandler can be used to receive
 notification when an asynchronous operation completes.
 Definition of the public APIs exposed by Amazon Machine Learning
ENDPOINT_PREFIX| Modifier and Type | Method and Description | 
|---|---|
| Future<AddTagsResult> | addTagsAsync(AddTagsRequest addTagsRequest)
 Adds one or more tags to an object, up to a limit of 10. | 
| Future<AddTagsResult> | addTagsAsync(AddTagsRequest addTagsRequest,
            AsyncHandler<AddTagsRequest,AddTagsResult> asyncHandler)
 Adds one or more tags to an object, up to a limit of 10. | 
| Future<CreateBatchPredictionResult> | createBatchPredictionAsync(CreateBatchPredictionRequest createBatchPredictionRequest)
 Generates predictions for a group of observations. | 
| Future<CreateBatchPredictionResult> | createBatchPredictionAsync(CreateBatchPredictionRequest createBatchPredictionRequest,
                          AsyncHandler<CreateBatchPredictionRequest,CreateBatchPredictionResult> asyncHandler)
 Generates predictions for a group of observations. | 
| Future<CreateDataSourceFromRDSResult> | createDataSourceFromRDSAsync(CreateDataSourceFromRDSRequest createDataSourceFromRDSRequest)
 Creates a  DataSourceobject from an  Amazon Relational Database
 Service (Amazon RDS). | 
| Future<CreateDataSourceFromRDSResult> | createDataSourceFromRDSAsync(CreateDataSourceFromRDSRequest createDataSourceFromRDSRequest,
                            AsyncHandler<CreateDataSourceFromRDSRequest,CreateDataSourceFromRDSResult> asyncHandler)
 Creates a  DataSourceobject from an  Amazon Relational Database
 Service (Amazon RDS). | 
| Future<CreateDataSourceFromRedshiftResult> | createDataSourceFromRedshiftAsync(CreateDataSourceFromRedshiftRequest createDataSourceFromRedshiftRequest)
 Creates a  DataSourcefrom a database hosted on an Amazon Redshift cluster. | 
| Future<CreateDataSourceFromRedshiftResult> | createDataSourceFromRedshiftAsync(CreateDataSourceFromRedshiftRequest createDataSourceFromRedshiftRequest,
                                 AsyncHandler<CreateDataSourceFromRedshiftRequest,CreateDataSourceFromRedshiftResult> asyncHandler)
 Creates a  DataSourcefrom a database hosted on an Amazon Redshift cluster. | 
| Future<CreateDataSourceFromS3Result> | createDataSourceFromS3Async(CreateDataSourceFromS3Request createDataSourceFromS3Request)
 Creates a  DataSourceobject. | 
| Future<CreateDataSourceFromS3Result> | createDataSourceFromS3Async(CreateDataSourceFromS3Request createDataSourceFromS3Request,
                           AsyncHandler<CreateDataSourceFromS3Request,CreateDataSourceFromS3Result> asyncHandler)
 Creates a  DataSourceobject. | 
| Future<CreateEvaluationResult> | createEvaluationAsync(CreateEvaluationRequest createEvaluationRequest)
 Creates a new  Evaluationof anMLModel. | 
| Future<CreateEvaluationResult> | createEvaluationAsync(CreateEvaluationRequest createEvaluationRequest,
                     AsyncHandler<CreateEvaluationRequest,CreateEvaluationResult> asyncHandler)
 Creates a new  Evaluationof anMLModel. | 
| Future<CreateMLModelResult> | createMLModelAsync(CreateMLModelRequest createMLModelRequest)
 Creates a new  MLModelusing theDataSourceand the recipe as information sources. | 
| Future<CreateMLModelResult> | createMLModelAsync(CreateMLModelRequest createMLModelRequest,
                  AsyncHandler<CreateMLModelRequest,CreateMLModelResult> asyncHandler)
 Creates a new  MLModelusing theDataSourceand the recipe as information sources. | 
| Future<CreateRealtimeEndpointResult> | createRealtimeEndpointAsync(CreateRealtimeEndpointRequest createRealtimeEndpointRequest)
 Creates a real-time endpoint for the  MLModel. | 
| Future<CreateRealtimeEndpointResult> | createRealtimeEndpointAsync(CreateRealtimeEndpointRequest createRealtimeEndpointRequest,
                           AsyncHandler<CreateRealtimeEndpointRequest,CreateRealtimeEndpointResult> asyncHandler)
 Creates a real-time endpoint for the  MLModel. | 
| Future<DeleteBatchPredictionResult> | deleteBatchPredictionAsync(DeleteBatchPredictionRequest deleteBatchPredictionRequest)
 Assigns the DELETED status to a  BatchPrediction, rendering it unusable. | 
| Future<DeleteBatchPredictionResult> | deleteBatchPredictionAsync(DeleteBatchPredictionRequest deleteBatchPredictionRequest,
                          AsyncHandler<DeleteBatchPredictionRequest,DeleteBatchPredictionResult> asyncHandler)
 Assigns the DELETED status to a  BatchPrediction, rendering it unusable. | 
| Future<DeleteDataSourceResult> | deleteDataSourceAsync(DeleteDataSourceRequest deleteDataSourceRequest)
 Assigns the DELETED status to a  DataSource, rendering it unusable. | 
| Future<DeleteDataSourceResult> | deleteDataSourceAsync(DeleteDataSourceRequest deleteDataSourceRequest,
                     AsyncHandler<DeleteDataSourceRequest,DeleteDataSourceResult> asyncHandler)
 Assigns the DELETED status to a  DataSource, rendering it unusable. | 
| Future<DeleteEvaluationResult> | deleteEvaluationAsync(DeleteEvaluationRequest deleteEvaluationRequest)
 Assigns the  DELETEDstatus to anEvaluation, rendering it unusable. | 
| Future<DeleteEvaluationResult> | deleteEvaluationAsync(DeleteEvaluationRequest deleteEvaluationRequest,
                     AsyncHandler<DeleteEvaluationRequest,DeleteEvaluationResult> asyncHandler)
 Assigns the  DELETEDstatus to anEvaluation, rendering it unusable. | 
| Future<DeleteMLModelResult> | deleteMLModelAsync(DeleteMLModelRequest deleteMLModelRequest)
 Assigns the  DELETEDstatus to anMLModel, rendering it unusable. | 
| Future<DeleteMLModelResult> | deleteMLModelAsync(DeleteMLModelRequest deleteMLModelRequest,
                  AsyncHandler<DeleteMLModelRequest,DeleteMLModelResult> asyncHandler)
 Assigns the  DELETEDstatus to anMLModel, rendering it unusable. | 
| Future<DeleteRealtimeEndpointResult> | deleteRealtimeEndpointAsync(DeleteRealtimeEndpointRequest deleteRealtimeEndpointRequest)
 Deletes a real time endpoint of an  MLModel. | 
| Future<DeleteRealtimeEndpointResult> | deleteRealtimeEndpointAsync(DeleteRealtimeEndpointRequest deleteRealtimeEndpointRequest,
                           AsyncHandler<DeleteRealtimeEndpointRequest,DeleteRealtimeEndpointResult> asyncHandler)
 Deletes a real time endpoint of an  MLModel. | 
| Future<DeleteTagsResult> | deleteTagsAsync(DeleteTagsRequest deleteTagsRequest)
 Deletes the specified tags associated with an ML object. | 
| Future<DeleteTagsResult> | deleteTagsAsync(DeleteTagsRequest deleteTagsRequest,
               AsyncHandler<DeleteTagsRequest,DeleteTagsResult> asyncHandler)
 Deletes the specified tags associated with an ML object. | 
| Future<DescribeBatchPredictionsResult> | describeBatchPredictionsAsync()Simplified method form for invoking the DescribeBatchPredictions operation. | 
| Future<DescribeBatchPredictionsResult> | describeBatchPredictionsAsync(AsyncHandler<DescribeBatchPredictionsRequest,DescribeBatchPredictionsResult> asyncHandler)Simplified method form for invoking the DescribeBatchPredictions operation with an AsyncHandler. | 
| Future<DescribeBatchPredictionsResult> | describeBatchPredictionsAsync(DescribeBatchPredictionsRequest describeBatchPredictionsRequest)
 Returns a list of  BatchPredictionoperations that match the search criteria in the request. | 
| Future<DescribeBatchPredictionsResult> | describeBatchPredictionsAsync(DescribeBatchPredictionsRequest describeBatchPredictionsRequest,
                             AsyncHandler<DescribeBatchPredictionsRequest,DescribeBatchPredictionsResult> asyncHandler)
 Returns a list of  BatchPredictionoperations that match the search criteria in the request. | 
| Future<DescribeDataSourcesResult> | describeDataSourcesAsync()Simplified method form for invoking the DescribeDataSources operation. | 
| Future<DescribeDataSourcesResult> | describeDataSourcesAsync(AsyncHandler<DescribeDataSourcesRequest,DescribeDataSourcesResult> asyncHandler)Simplified method form for invoking the DescribeDataSources operation with an AsyncHandler. | 
| Future<DescribeDataSourcesResult> | describeDataSourcesAsync(DescribeDataSourcesRequest describeDataSourcesRequest)
 Returns a list of  DataSourcethat match the search criteria in the request. | 
| Future<DescribeDataSourcesResult> | describeDataSourcesAsync(DescribeDataSourcesRequest describeDataSourcesRequest,
                        AsyncHandler<DescribeDataSourcesRequest,DescribeDataSourcesResult> asyncHandler)
 Returns a list of  DataSourcethat match the search criteria in the request. | 
| Future<DescribeEvaluationsResult> | describeEvaluationsAsync()Simplified method form for invoking the DescribeEvaluations operation. | 
| Future<DescribeEvaluationsResult> | describeEvaluationsAsync(AsyncHandler<DescribeEvaluationsRequest,DescribeEvaluationsResult> asyncHandler)Simplified method form for invoking the DescribeEvaluations operation with an AsyncHandler. | 
| Future<DescribeEvaluationsResult> | describeEvaluationsAsync(DescribeEvaluationsRequest describeEvaluationsRequest)
 Returns a list of  DescribeEvaluationsthat match the search criteria in the request. | 
| Future<DescribeEvaluationsResult> | describeEvaluationsAsync(DescribeEvaluationsRequest describeEvaluationsRequest,
                        AsyncHandler<DescribeEvaluationsRequest,DescribeEvaluationsResult> asyncHandler)
 Returns a list of  DescribeEvaluationsthat match the search criteria in the request. | 
| Future<DescribeMLModelsResult> | describeMLModelsAsync()Simplified method form for invoking the DescribeMLModels operation. | 
| Future<DescribeMLModelsResult> | describeMLModelsAsync(AsyncHandler<DescribeMLModelsRequest,DescribeMLModelsResult> asyncHandler)Simplified method form for invoking the DescribeMLModels operation with an AsyncHandler. | 
| Future<DescribeMLModelsResult> | describeMLModelsAsync(DescribeMLModelsRequest describeMLModelsRequest)
 Returns a list of  MLModelthat match the search criteria in the request. | 
| Future<DescribeMLModelsResult> | describeMLModelsAsync(DescribeMLModelsRequest describeMLModelsRequest,
                     AsyncHandler<DescribeMLModelsRequest,DescribeMLModelsResult> asyncHandler)
 Returns a list of  MLModelthat match the search criteria in the request. | 
| Future<DescribeTagsResult> | describeTagsAsync(DescribeTagsRequest describeTagsRequest)
 Describes one or more of the tags for your Amazon ML object. | 
| Future<DescribeTagsResult> | describeTagsAsync(DescribeTagsRequest describeTagsRequest,
                 AsyncHandler<DescribeTagsRequest,DescribeTagsResult> asyncHandler)
 Describes one or more of the tags for your Amazon ML object. | 
| Future<GetBatchPredictionResult> | getBatchPredictionAsync(GetBatchPredictionRequest getBatchPredictionRequest)
 Returns a  BatchPredictionthat includes detailed metadata, status, and data file information for aBatch Predictionrequest. | 
| Future<GetBatchPredictionResult> | getBatchPredictionAsync(GetBatchPredictionRequest getBatchPredictionRequest,
                       AsyncHandler<GetBatchPredictionRequest,GetBatchPredictionResult> asyncHandler)
 Returns a  BatchPredictionthat includes detailed metadata, status, and data file information for aBatch Predictionrequest. | 
| Future<GetDataSourceResult> | getDataSourceAsync(GetDataSourceRequest getDataSourceRequest)
 Returns a  DataSourcethat includes metadata and data file information, as well as the current status
 of theDataSource. | 
| Future<GetDataSourceResult> | getDataSourceAsync(GetDataSourceRequest getDataSourceRequest,
                  AsyncHandler<GetDataSourceRequest,GetDataSourceResult> asyncHandler)
 Returns a  DataSourcethat includes metadata and data file information, as well as the current status
 of theDataSource. | 
| Future<GetEvaluationResult> | getEvaluationAsync(GetEvaluationRequest getEvaluationRequest)
 Returns an  Evaluationthat includes metadata as well as the current status of theEvaluation. | 
| Future<GetEvaluationResult> | getEvaluationAsync(GetEvaluationRequest getEvaluationRequest,
                  AsyncHandler<GetEvaluationRequest,GetEvaluationResult> asyncHandler)
 Returns an  Evaluationthat includes metadata as well as the current status of theEvaluation. | 
| Future<GetMLModelResult> | getMLModelAsync(GetMLModelRequest getMLModelRequest)
 Returns an  MLModelthat includes detailed metadata, data source information, and the current status
 of theMLModel. | 
| Future<GetMLModelResult> | getMLModelAsync(GetMLModelRequest getMLModelRequest,
               AsyncHandler<GetMLModelRequest,GetMLModelResult> asyncHandler)
 Returns an  MLModelthat includes detailed metadata, data source information, and the current status
 of theMLModel. | 
| Future<PredictResult> | predictAsync(PredictRequest predictRequest)
 Generates a prediction for the observation using the specified  ML Model. | 
| Future<PredictResult> | predictAsync(PredictRequest predictRequest,
            AsyncHandler<PredictRequest,PredictResult> asyncHandler)
 Generates a prediction for the observation using the specified  ML Model. | 
| Future<UpdateBatchPredictionResult> | updateBatchPredictionAsync(UpdateBatchPredictionRequest updateBatchPredictionRequest)
 Updates the  BatchPredictionNameof aBatchPrediction. | 
| Future<UpdateBatchPredictionResult> | updateBatchPredictionAsync(UpdateBatchPredictionRequest updateBatchPredictionRequest,
                          AsyncHandler<UpdateBatchPredictionRequest,UpdateBatchPredictionResult> asyncHandler)
 Updates the  BatchPredictionNameof aBatchPrediction. | 
| Future<UpdateDataSourceResult> | updateDataSourceAsync(UpdateDataSourceRequest updateDataSourceRequest)
 Updates the  DataSourceNameof aDataSource. | 
| Future<UpdateDataSourceResult> | updateDataSourceAsync(UpdateDataSourceRequest updateDataSourceRequest,
                     AsyncHandler<UpdateDataSourceRequest,UpdateDataSourceResult> asyncHandler)
 Updates the  DataSourceNameof aDataSource. | 
| Future<UpdateEvaluationResult> | updateEvaluationAsync(UpdateEvaluationRequest updateEvaluationRequest)
 Updates the  EvaluationNameof anEvaluation. | 
| Future<UpdateEvaluationResult> | updateEvaluationAsync(UpdateEvaluationRequest updateEvaluationRequest,
                     AsyncHandler<UpdateEvaluationRequest,UpdateEvaluationResult> asyncHandler)
 Updates the  EvaluationNameof anEvaluation. | 
| Future<UpdateMLModelResult> | updateMLModelAsync(UpdateMLModelRequest updateMLModelRequest)
 Updates the  MLModelNameand theScoreThresholdof anMLModel. | 
| Future<UpdateMLModelResult> | updateMLModelAsync(UpdateMLModelRequest updateMLModelRequest,
                  AsyncHandler<UpdateMLModelRequest,UpdateMLModelResult> asyncHandler)
 Updates the  MLModelNameand theScoreThresholdof anMLModel. | 
addTags, createBatchPrediction, createDataSourceFromRDS, createDataSourceFromRedshift, createDataSourceFromS3, createEvaluation, createMLModel, createRealtimeEndpoint, deleteBatchPrediction, deleteDataSource, deleteEvaluation, deleteMLModel, deleteRealtimeEndpoint, deleteTags, describeBatchPredictions, describeBatchPredictions, describeDataSources, describeDataSources, describeEvaluations, describeEvaluations, describeMLModels, describeMLModels, describeTags, getBatchPrediction, getCachedResponseMetadata, getDataSource, getEvaluation, getMLModel, predict, setEndpoint, setRegion, shutdown, updateBatchPrediction, updateDataSource, updateEvaluation, updateMLModel, waitersFuture<AddTagsResult> addTagsAsync(AddTagsRequest addTagsRequest)
 Adds one or more tags to an object, up to a limit of 10. Each tag consists of a key and an optional value. If you
 add a tag using a key that is already associated with the ML object, AddTags updates the tag's
 value.
 
addTagsRequest - Future<AddTagsResult> addTagsAsync(AddTagsRequest addTagsRequest, AsyncHandler<AddTagsRequest,AddTagsResult> asyncHandler)
 Adds one or more tags to an object, up to a limit of 10. Each tag consists of a key and an optional value. If you
 add a tag using a key that is already associated with the ML object, AddTags updates the tag's
 value.
 
addTagsRequest - asyncHandler - Asynchronous callback handler for events in the lifecycle of the request. Users can provide an
        implementation of the callback methods in this interface to receive notification of successful or
        unsuccessful completion of the operation.Future<CreateBatchPredictionResult> createBatchPredictionAsync(CreateBatchPredictionRequest createBatchPredictionRequest)
 Generates predictions for a group of observations. The observations to process exist in one or more data files
 referenced by a DataSource. This operation creates a new BatchPrediction, and uses an
 MLModel and the data files referenced by the DataSource as information sources.
 
 CreateBatchPrediction is an asynchronous operation. In response to
 CreateBatchPrediction, Amazon Machine Learning (Amazon ML) immediately returns and sets the
 BatchPrediction status to PENDING. After the BatchPrediction completes,
 Amazon ML sets the status to COMPLETED.
 
 You can poll for status updates by using the GetBatchPrediction operation and checking the
 Status parameter of the result. After the COMPLETED status appears, the results are
 available in the location specified by the OutputUri parameter.
 
createBatchPredictionRequest - Future<CreateBatchPredictionResult> createBatchPredictionAsync(CreateBatchPredictionRequest createBatchPredictionRequest, AsyncHandler<CreateBatchPredictionRequest,CreateBatchPredictionResult> asyncHandler)
 Generates predictions for a group of observations. The observations to process exist in one or more data files
 referenced by a DataSource. This operation creates a new BatchPrediction, and uses an
 MLModel and the data files referenced by the DataSource as information sources.
 
 CreateBatchPrediction is an asynchronous operation. In response to
 CreateBatchPrediction, Amazon Machine Learning (Amazon ML) immediately returns and sets the
 BatchPrediction status to PENDING. After the BatchPrediction completes,
 Amazon ML sets the status to COMPLETED.
 
 You can poll for status updates by using the GetBatchPrediction operation and checking the
 Status parameter of the result. After the COMPLETED status appears, the results are
 available in the location specified by the OutputUri parameter.
 
createBatchPredictionRequest - asyncHandler - Asynchronous callback handler for events in the lifecycle of the request. Users can provide an
        implementation of the callback methods in this interface to receive notification of successful or
        unsuccessful completion of the operation.Future<CreateDataSourceFromRDSResult> createDataSourceFromRDSAsync(CreateDataSourceFromRDSRequest createDataSourceFromRDSRequest)
 Creates a DataSource object from an  Amazon Relational Database
 Service (Amazon RDS). A DataSource references data that can be used to perform
 CreateMLModel, CreateEvaluation, or CreateBatchPrediction operations.
 
 CreateDataSourceFromRDS is an asynchronous operation. In response to
 CreateDataSourceFromRDS, Amazon Machine Learning (Amazon ML) immediately returns and sets the
 DataSource status to PENDING. After the DataSource is created and ready
 for use, Amazon ML sets the Status parameter to COMPLETED. DataSource in
 the COMPLETED or PENDING state can be used only to perform
 >CreateMLModel>, CreateEvaluation, or CreateBatchPrediction
 operations.
 
 If Amazon ML cannot accept the input source, it sets the Status parameter to FAILED and
 includes an error message in the Message attribute of the GetDataSource operation
 response.
 
createDataSourceFromRDSRequest - Future<CreateDataSourceFromRDSResult> createDataSourceFromRDSAsync(CreateDataSourceFromRDSRequest createDataSourceFromRDSRequest, AsyncHandler<CreateDataSourceFromRDSRequest,CreateDataSourceFromRDSResult> asyncHandler)
 Creates a DataSource object from an  Amazon Relational Database
 Service (Amazon RDS). A DataSource references data that can be used to perform
 CreateMLModel, CreateEvaluation, or CreateBatchPrediction operations.
 
 CreateDataSourceFromRDS is an asynchronous operation. In response to
 CreateDataSourceFromRDS, Amazon Machine Learning (Amazon ML) immediately returns and sets the
 DataSource status to PENDING. After the DataSource is created and ready
 for use, Amazon ML sets the Status parameter to COMPLETED. DataSource in
 the COMPLETED or PENDING state can be used only to perform
 >CreateMLModel>, CreateEvaluation, or CreateBatchPrediction
 operations.
 
 If Amazon ML cannot accept the input source, it sets the Status parameter to FAILED and
 includes an error message in the Message attribute of the GetDataSource operation
 response.
 
createDataSourceFromRDSRequest - asyncHandler - Asynchronous callback handler for events in the lifecycle of the request. Users can provide an
        implementation of the callback methods in this interface to receive notification of successful or
        unsuccessful completion of the operation.Future<CreateDataSourceFromRedshiftResult> createDataSourceFromRedshiftAsync(CreateDataSourceFromRedshiftRequest createDataSourceFromRedshiftRequest)
 Creates a DataSource from a database hosted on an Amazon Redshift cluster. A DataSource
 references data that can be used to perform either CreateMLModel, CreateEvaluation, or
 CreateBatchPrediction operations.
 
 CreateDataSourceFromRedshift is an asynchronous operation. In response to
 CreateDataSourceFromRedshift, Amazon Machine Learning (Amazon ML) immediately returns and sets the
 DataSource status to PENDING. After the DataSource is created and ready
 for use, Amazon ML sets the Status parameter to COMPLETED. DataSource in
 COMPLETED or PENDING states can be used to perform only CreateMLModel,
 CreateEvaluation, or CreateBatchPrediction operations.
 
 If Amazon ML can't accept the input source, it sets the Status parameter to FAILED and
 includes an error message in the Message attribute of the GetDataSource operation
 response.
 
 The observations should be contained in the database hosted on an Amazon Redshift cluster and should be specified
 by a SelectSqlQuery query. Amazon ML executes an Unload command in Amazon Redshift to
 transfer the result set of the SelectSqlQuery query to S3StagingLocation.
 
 After the DataSource has been created, it's ready for use in evaluations and batch predictions. If
 you plan to use the DataSource to train an MLModel, the DataSource also
 requires a recipe. A recipe describes how each input variable will be used in training an MLModel.
 Will the variable be included or excluded from training? Will the variable be manipulated; for example, will it
 be combined with another variable or will it be split apart into word combinations? The recipe provides answers
 to these questions.
 
 You can't change an existing datasource, but you can copy and modify the settings from an existing Amazon
 Redshift datasource to create a new datasource. To do so, call GetDataSource for an existing
 datasource and copy the values to a CreateDataSource call. Change the settings that you want to
 change and make sure that all required fields have the appropriate values.
 
createDataSourceFromRedshiftRequest - Future<CreateDataSourceFromRedshiftResult> createDataSourceFromRedshiftAsync(CreateDataSourceFromRedshiftRequest createDataSourceFromRedshiftRequest, AsyncHandler<CreateDataSourceFromRedshiftRequest,CreateDataSourceFromRedshiftResult> asyncHandler)
 Creates a DataSource from a database hosted on an Amazon Redshift cluster. A DataSource
 references data that can be used to perform either CreateMLModel, CreateEvaluation, or
 CreateBatchPrediction operations.
 
 CreateDataSourceFromRedshift is an asynchronous operation. In response to
 CreateDataSourceFromRedshift, Amazon Machine Learning (Amazon ML) immediately returns and sets the
 DataSource status to PENDING. After the DataSource is created and ready
 for use, Amazon ML sets the Status parameter to COMPLETED. DataSource in
 COMPLETED or PENDING states can be used to perform only CreateMLModel,
 CreateEvaluation, or CreateBatchPrediction operations.
 
 If Amazon ML can't accept the input source, it sets the Status parameter to FAILED and
 includes an error message in the Message attribute of the GetDataSource operation
 response.
 
 The observations should be contained in the database hosted on an Amazon Redshift cluster and should be specified
 by a SelectSqlQuery query. Amazon ML executes an Unload command in Amazon Redshift to
 transfer the result set of the SelectSqlQuery query to S3StagingLocation.
 
 After the DataSource has been created, it's ready for use in evaluations and batch predictions. If
 you plan to use the DataSource to train an MLModel, the DataSource also
 requires a recipe. A recipe describes how each input variable will be used in training an MLModel.
 Will the variable be included or excluded from training? Will the variable be manipulated; for example, will it
 be combined with another variable or will it be split apart into word combinations? The recipe provides answers
 to these questions.
 
 You can't change an existing datasource, but you can copy and modify the settings from an existing Amazon
 Redshift datasource to create a new datasource. To do so, call GetDataSource for an existing
 datasource and copy the values to a CreateDataSource call. Change the settings that you want to
 change and make sure that all required fields have the appropriate values.
 
createDataSourceFromRedshiftRequest - asyncHandler - Asynchronous callback handler for events in the lifecycle of the request. Users can provide an
        implementation of the callback methods in this interface to receive notification of successful or
        unsuccessful completion of the operation.Future<CreateDataSourceFromS3Result> createDataSourceFromS3Async(CreateDataSourceFromS3Request createDataSourceFromS3Request)
 Creates a DataSource object. A DataSource references data that can be used to perform
 CreateMLModel, CreateEvaluation, or CreateBatchPrediction operations.
 
 CreateDataSourceFromS3 is an asynchronous operation. In response to
 CreateDataSourceFromS3, Amazon Machine Learning (Amazon ML) immediately returns and sets the
 DataSource status to PENDING. After the DataSource has been created and is
 ready for use, Amazon ML sets the Status parameter to COMPLETED.
 DataSource in the COMPLETED or PENDING state can be used to perform only
 CreateMLModel, CreateEvaluation or CreateBatchPrediction operations.
 
 If Amazon ML can't accept the input source, it sets the Status parameter to FAILED and
 includes an error message in the Message attribute of the GetDataSource operation
 response.
 
 The observation data used in a DataSource should be ready to use; that is, it should have a
 consistent structure, and missing data values should be kept to a minimum. The observation data must reside in
 one or more .csv files in an Amazon Simple Storage Service (Amazon S3) location, along with a schema that
 describes the data items by name and type. The same schema must be used for all of the data files referenced by
 the DataSource.
 
 After the DataSource has been created, it's ready to use in evaluations and batch predictions. If
 you plan to use the DataSource to train an MLModel, the DataSource also
 needs a recipe. A recipe describes how each input variable will be used in training an MLModel. Will
 the variable be included or excluded from training? Will the variable be manipulated; for example, will it be
 combined with another variable or will it be split apart into word combinations? The recipe provides answers to
 these questions.
 
createDataSourceFromS3Request - Future<CreateDataSourceFromS3Result> createDataSourceFromS3Async(CreateDataSourceFromS3Request createDataSourceFromS3Request, AsyncHandler<CreateDataSourceFromS3Request,CreateDataSourceFromS3Result> asyncHandler)
 Creates a DataSource object. A DataSource references data that can be used to perform
 CreateMLModel, CreateEvaluation, or CreateBatchPrediction operations.
 
 CreateDataSourceFromS3 is an asynchronous operation. In response to
 CreateDataSourceFromS3, Amazon Machine Learning (Amazon ML) immediately returns and sets the
 DataSource status to PENDING. After the DataSource has been created and is
 ready for use, Amazon ML sets the Status parameter to COMPLETED.
 DataSource in the COMPLETED or PENDING state can be used to perform only
 CreateMLModel, CreateEvaluation or CreateBatchPrediction operations.
 
 If Amazon ML can't accept the input source, it sets the Status parameter to FAILED and
 includes an error message in the Message attribute of the GetDataSource operation
 response.
 
 The observation data used in a DataSource should be ready to use; that is, it should have a
 consistent structure, and missing data values should be kept to a minimum. The observation data must reside in
 one or more .csv files in an Amazon Simple Storage Service (Amazon S3) location, along with a schema that
 describes the data items by name and type. The same schema must be used for all of the data files referenced by
 the DataSource.
 
 After the DataSource has been created, it's ready to use in evaluations and batch predictions. If
 you plan to use the DataSource to train an MLModel, the DataSource also
 needs a recipe. A recipe describes how each input variable will be used in training an MLModel. Will
 the variable be included or excluded from training? Will the variable be manipulated; for example, will it be
 combined with another variable or will it be split apart into word combinations? The recipe provides answers to
 these questions.
 
createDataSourceFromS3Request - asyncHandler - Asynchronous callback handler for events in the lifecycle of the request. Users can provide an
        implementation of the callback methods in this interface to receive notification of successful or
        unsuccessful completion of the operation.Future<CreateEvaluationResult> createEvaluationAsync(CreateEvaluationRequest createEvaluationRequest)
 Creates a new Evaluation of an MLModel. An MLModel is evaluated on a set
 of observations associated to a DataSource. Like a DataSource for an
 MLModel, the DataSource for an Evaluation contains values for the
 Target Variable. The Evaluation compares the predicted result for each observation to
 the actual outcome and provides a summary so that you know how effective the MLModel functions on
 the test data. Evaluation generates a relevant performance metric, such as BinaryAUC, RegressionRMSE or
 MulticlassAvgFScore based on the corresponding MLModelType: BINARY,
 REGRESSION or MULTICLASS.
 
 CreateEvaluation is an asynchronous operation. In response to CreateEvaluation, Amazon
 Machine Learning (Amazon ML) immediately returns and sets the evaluation status to PENDING. After
 the Evaluation is created and ready for use, Amazon ML sets the status to COMPLETED.
 
 You can use the GetEvaluation operation to check progress of the evaluation during the creation
 operation.
 
createEvaluationRequest - Future<CreateEvaluationResult> createEvaluationAsync(CreateEvaluationRequest createEvaluationRequest, AsyncHandler<CreateEvaluationRequest,CreateEvaluationResult> asyncHandler)
 Creates a new Evaluation of an MLModel. An MLModel is evaluated on a set
 of observations associated to a DataSource. Like a DataSource for an
 MLModel, the DataSource for an Evaluation contains values for the
 Target Variable. The Evaluation compares the predicted result for each observation to
 the actual outcome and provides a summary so that you know how effective the MLModel functions on
 the test data. Evaluation generates a relevant performance metric, such as BinaryAUC, RegressionRMSE or
 MulticlassAvgFScore based on the corresponding MLModelType: BINARY,
 REGRESSION or MULTICLASS.
 
 CreateEvaluation is an asynchronous operation. In response to CreateEvaluation, Amazon
 Machine Learning (Amazon ML) immediately returns and sets the evaluation status to PENDING. After
 the Evaluation is created and ready for use, Amazon ML sets the status to COMPLETED.
 
 You can use the GetEvaluation operation to check progress of the evaluation during the creation
 operation.
 
createEvaluationRequest - asyncHandler - Asynchronous callback handler for events in the lifecycle of the request. Users can provide an
        implementation of the callback methods in this interface to receive notification of successful or
        unsuccessful completion of the operation.Future<CreateMLModelResult> createMLModelAsync(CreateMLModelRequest createMLModelRequest)
 Creates a new MLModel using the DataSource and the recipe as information sources.
 
 An MLModel is nearly immutable. Users can update only the MLModelName and the
 ScoreThreshold in an MLModel without creating a new MLModel.
 
 CreateMLModel is an asynchronous operation. In response to CreateMLModel, Amazon
 Machine Learning (Amazon ML) immediately returns and sets the MLModel status to PENDING
 . After the MLModel has been created and ready is for use, Amazon ML sets the status to
 COMPLETED.
 
 You can use the GetMLModel operation to check the progress of the MLModel during the
 creation operation.
 
 CreateMLModel requires a DataSource with computed statistics, which can be created by
 setting ComputeStatistics to true in CreateDataSourceFromRDS,
 CreateDataSourceFromS3, or CreateDataSourceFromRedshift operations.
 
createMLModelRequest - Future<CreateMLModelResult> createMLModelAsync(CreateMLModelRequest createMLModelRequest, AsyncHandler<CreateMLModelRequest,CreateMLModelResult> asyncHandler)
 Creates a new MLModel using the DataSource and the recipe as information sources.
 
 An MLModel is nearly immutable. Users can update only the MLModelName and the
 ScoreThreshold in an MLModel without creating a new MLModel.
 
 CreateMLModel is an asynchronous operation. In response to CreateMLModel, Amazon
 Machine Learning (Amazon ML) immediately returns and sets the MLModel status to PENDING
 . After the MLModel has been created and ready is for use, Amazon ML sets the status to
 COMPLETED.
 
 You can use the GetMLModel operation to check the progress of the MLModel during the
 creation operation.
 
 CreateMLModel requires a DataSource with computed statistics, which can be created by
 setting ComputeStatistics to true in CreateDataSourceFromRDS,
 CreateDataSourceFromS3, or CreateDataSourceFromRedshift operations.
 
createMLModelRequest - asyncHandler - Asynchronous callback handler for events in the lifecycle of the request. Users can provide an
        implementation of the callback methods in this interface to receive notification of successful or
        unsuccessful completion of the operation.Future<CreateRealtimeEndpointResult> createRealtimeEndpointAsync(CreateRealtimeEndpointRequest createRealtimeEndpointRequest)
 Creates a real-time endpoint for the MLModel. The endpoint contains the URI of the
 MLModel; that is, the location to send real-time prediction requests for the specified
 MLModel.
 
createRealtimeEndpointRequest - Future<CreateRealtimeEndpointResult> createRealtimeEndpointAsync(CreateRealtimeEndpointRequest createRealtimeEndpointRequest, AsyncHandler<CreateRealtimeEndpointRequest,CreateRealtimeEndpointResult> asyncHandler)
 Creates a real-time endpoint for the MLModel. The endpoint contains the URI of the
 MLModel; that is, the location to send real-time prediction requests for the specified
 MLModel.
 
createRealtimeEndpointRequest - asyncHandler - Asynchronous callback handler for events in the lifecycle of the request. Users can provide an
        implementation of the callback methods in this interface to receive notification of successful or
        unsuccessful completion of the operation.Future<DeleteBatchPredictionResult> deleteBatchPredictionAsync(DeleteBatchPredictionRequest deleteBatchPredictionRequest)
 Assigns the DELETED status to a BatchPrediction, rendering it unusable.
 
 After using the DeleteBatchPrediction operation, you can use the GetBatchPrediction operation
 to verify that the status of the BatchPrediction changed to DELETED.
 
 Caution: The result of the DeleteBatchPrediction operation is irreversible.
 
deleteBatchPredictionRequest - Future<DeleteBatchPredictionResult> deleteBatchPredictionAsync(DeleteBatchPredictionRequest deleteBatchPredictionRequest, AsyncHandler<DeleteBatchPredictionRequest,DeleteBatchPredictionResult> asyncHandler)
 Assigns the DELETED status to a BatchPrediction, rendering it unusable.
 
 After using the DeleteBatchPrediction operation, you can use the GetBatchPrediction operation
 to verify that the status of the BatchPrediction changed to DELETED.
 
 Caution: The result of the DeleteBatchPrediction operation is irreversible.
 
deleteBatchPredictionRequest - asyncHandler - Asynchronous callback handler for events in the lifecycle of the request. Users can provide an
        implementation of the callback methods in this interface to receive notification of successful or
        unsuccessful completion of the operation.Future<DeleteDataSourceResult> deleteDataSourceAsync(DeleteDataSourceRequest deleteDataSourceRequest)
 Assigns the DELETED status to a DataSource, rendering it unusable.
 
 After using the DeleteDataSource operation, you can use the GetDataSource operation to verify
 that the status of the DataSource changed to DELETED.
 
 Caution: The results of the DeleteDataSource operation are irreversible.
 
deleteDataSourceRequest - Future<DeleteDataSourceResult> deleteDataSourceAsync(DeleteDataSourceRequest deleteDataSourceRequest, AsyncHandler<DeleteDataSourceRequest,DeleteDataSourceResult> asyncHandler)
 Assigns the DELETED status to a DataSource, rendering it unusable.
 
 After using the DeleteDataSource operation, you can use the GetDataSource operation to verify
 that the status of the DataSource changed to DELETED.
 
 Caution: The results of the DeleteDataSource operation are irreversible.
 
deleteDataSourceRequest - asyncHandler - Asynchronous callback handler for events in the lifecycle of the request. Users can provide an
        implementation of the callback methods in this interface to receive notification of successful or
        unsuccessful completion of the operation.Future<DeleteEvaluationResult> deleteEvaluationAsync(DeleteEvaluationRequest deleteEvaluationRequest)
 Assigns the DELETED status to an Evaluation, rendering it unusable.
 
 After invoking the DeleteEvaluation operation, you can use the GetEvaluation operation
 to verify that the status of the Evaluation changed to DELETED.
 
 The results of the DeleteEvaluation operation are irreversible.
 
deleteEvaluationRequest - Future<DeleteEvaluationResult> deleteEvaluationAsync(DeleteEvaluationRequest deleteEvaluationRequest, AsyncHandler<DeleteEvaluationRequest,DeleteEvaluationResult> asyncHandler)
 Assigns the DELETED status to an Evaluation, rendering it unusable.
 
 After invoking the DeleteEvaluation operation, you can use the GetEvaluation operation
 to verify that the status of the Evaluation changed to DELETED.
 
 The results of the DeleteEvaluation operation are irreversible.
 
deleteEvaluationRequest - asyncHandler - Asynchronous callback handler for events in the lifecycle of the request. Users can provide an
        implementation of the callback methods in this interface to receive notification of successful or
        unsuccessful completion of the operation.Future<DeleteMLModelResult> deleteMLModelAsync(DeleteMLModelRequest deleteMLModelRequest)
 Assigns the DELETED status to an MLModel, rendering it unusable.
 
 After using the DeleteMLModel operation, you can use the GetMLModel operation to verify
 that the status of the MLModel changed to DELETED.
 
 Caution: The result of the DeleteMLModel operation is irreversible.
 
deleteMLModelRequest - Future<DeleteMLModelResult> deleteMLModelAsync(DeleteMLModelRequest deleteMLModelRequest, AsyncHandler<DeleteMLModelRequest,DeleteMLModelResult> asyncHandler)
 Assigns the DELETED status to an MLModel, rendering it unusable.
 
 After using the DeleteMLModel operation, you can use the GetMLModel operation to verify
 that the status of the MLModel changed to DELETED.
 
 Caution: The result of the DeleteMLModel operation is irreversible.
 
deleteMLModelRequest - asyncHandler - Asynchronous callback handler for events in the lifecycle of the request. Users can provide an
        implementation of the callback methods in this interface to receive notification of successful or
        unsuccessful completion of the operation.Future<DeleteRealtimeEndpointResult> deleteRealtimeEndpointAsync(DeleteRealtimeEndpointRequest deleteRealtimeEndpointRequest)
 Deletes a real time endpoint of an MLModel.
 
deleteRealtimeEndpointRequest - Future<DeleteRealtimeEndpointResult> deleteRealtimeEndpointAsync(DeleteRealtimeEndpointRequest deleteRealtimeEndpointRequest, AsyncHandler<DeleteRealtimeEndpointRequest,DeleteRealtimeEndpointResult> asyncHandler)
 Deletes a real time endpoint of an MLModel.
 
deleteRealtimeEndpointRequest - asyncHandler - Asynchronous callback handler for events in the lifecycle of the request. Users can provide an
        implementation of the callback methods in this interface to receive notification of successful or
        unsuccessful completion of the operation.Future<DeleteTagsResult> deleteTagsAsync(DeleteTagsRequest deleteTagsRequest)
Deletes the specified tags associated with an ML object. After this operation is complete, you can't recover deleted tags.
If you specify a tag that doesn't exist, Amazon ML ignores it.
deleteTagsRequest - Future<DeleteTagsResult> deleteTagsAsync(DeleteTagsRequest deleteTagsRequest, AsyncHandler<DeleteTagsRequest,DeleteTagsResult> asyncHandler)
Deletes the specified tags associated with an ML object. After this operation is complete, you can't recover deleted tags.
If you specify a tag that doesn't exist, Amazon ML ignores it.
deleteTagsRequest - asyncHandler - Asynchronous callback handler for events in the lifecycle of the request. Users can provide an
        implementation of the callback methods in this interface to receive notification of successful or
        unsuccessful completion of the operation.Future<DescribeBatchPredictionsResult> describeBatchPredictionsAsync(DescribeBatchPredictionsRequest describeBatchPredictionsRequest)
 Returns a list of BatchPrediction operations that match the search criteria in the request.
 
describeBatchPredictionsRequest - Future<DescribeBatchPredictionsResult> describeBatchPredictionsAsync(DescribeBatchPredictionsRequest describeBatchPredictionsRequest, AsyncHandler<DescribeBatchPredictionsRequest,DescribeBatchPredictionsResult> asyncHandler)
 Returns a list of BatchPrediction operations that match the search criteria in the request.
 
describeBatchPredictionsRequest - asyncHandler - Asynchronous callback handler for events in the lifecycle of the request. Users can provide an
        implementation of the callback methods in this interface to receive notification of successful or
        unsuccessful completion of the operation.Future<DescribeBatchPredictionsResult> describeBatchPredictionsAsync()
Future<DescribeBatchPredictionsResult> describeBatchPredictionsAsync(AsyncHandler<DescribeBatchPredictionsRequest,DescribeBatchPredictionsResult> asyncHandler)
Future<DescribeDataSourcesResult> describeDataSourcesAsync(DescribeDataSourcesRequest describeDataSourcesRequest)
 Returns a list of DataSource that match the search criteria in the request.
 
describeDataSourcesRequest - Future<DescribeDataSourcesResult> describeDataSourcesAsync(DescribeDataSourcesRequest describeDataSourcesRequest, AsyncHandler<DescribeDataSourcesRequest,DescribeDataSourcesResult> asyncHandler)
 Returns a list of DataSource that match the search criteria in the request.
 
describeDataSourcesRequest - asyncHandler - Asynchronous callback handler for events in the lifecycle of the request. Users can provide an
        implementation of the callback methods in this interface to receive notification of successful or
        unsuccessful completion of the operation.Future<DescribeDataSourcesResult> describeDataSourcesAsync()
Future<DescribeDataSourcesResult> describeDataSourcesAsync(AsyncHandler<DescribeDataSourcesRequest,DescribeDataSourcesResult> asyncHandler)
Future<DescribeEvaluationsResult> describeEvaluationsAsync(DescribeEvaluationsRequest describeEvaluationsRequest)
 Returns a list of DescribeEvaluations that match the search criteria in the request.
 
describeEvaluationsRequest - Future<DescribeEvaluationsResult> describeEvaluationsAsync(DescribeEvaluationsRequest describeEvaluationsRequest, AsyncHandler<DescribeEvaluationsRequest,DescribeEvaluationsResult> asyncHandler)
 Returns a list of DescribeEvaluations that match the search criteria in the request.
 
describeEvaluationsRequest - asyncHandler - Asynchronous callback handler for events in the lifecycle of the request. Users can provide an
        implementation of the callback methods in this interface to receive notification of successful or
        unsuccessful completion of the operation.Future<DescribeEvaluationsResult> describeEvaluationsAsync()
Future<DescribeEvaluationsResult> describeEvaluationsAsync(AsyncHandler<DescribeEvaluationsRequest,DescribeEvaluationsResult> asyncHandler)
Future<DescribeMLModelsResult> describeMLModelsAsync(DescribeMLModelsRequest describeMLModelsRequest)
 Returns a list of MLModel that match the search criteria in the request.
 
describeMLModelsRequest - Future<DescribeMLModelsResult> describeMLModelsAsync(DescribeMLModelsRequest describeMLModelsRequest, AsyncHandler<DescribeMLModelsRequest,DescribeMLModelsResult> asyncHandler)
 Returns a list of MLModel that match the search criteria in the request.
 
describeMLModelsRequest - asyncHandler - Asynchronous callback handler for events in the lifecycle of the request. Users can provide an
        implementation of the callback methods in this interface to receive notification of successful or
        unsuccessful completion of the operation.Future<DescribeMLModelsResult> describeMLModelsAsync()
Future<DescribeMLModelsResult> describeMLModelsAsync(AsyncHandler<DescribeMLModelsRequest,DescribeMLModelsResult> asyncHandler)
Future<DescribeTagsResult> describeTagsAsync(DescribeTagsRequest describeTagsRequest)
Describes one or more of the tags for your Amazon ML object.
describeTagsRequest - Future<DescribeTagsResult> describeTagsAsync(DescribeTagsRequest describeTagsRequest, AsyncHandler<DescribeTagsRequest,DescribeTagsResult> asyncHandler)
Describes one or more of the tags for your Amazon ML object.
describeTagsRequest - asyncHandler - Asynchronous callback handler for events in the lifecycle of the request. Users can provide an
        implementation of the callback methods in this interface to receive notification of successful or
        unsuccessful completion of the operation.Future<GetBatchPredictionResult> getBatchPredictionAsync(GetBatchPredictionRequest getBatchPredictionRequest)
 Returns a BatchPrediction that includes detailed metadata, status, and data file information for a
 Batch Prediction request.
 
getBatchPredictionRequest - Future<GetBatchPredictionResult> getBatchPredictionAsync(GetBatchPredictionRequest getBatchPredictionRequest, AsyncHandler<GetBatchPredictionRequest,GetBatchPredictionResult> asyncHandler)
 Returns a BatchPrediction that includes detailed metadata, status, and data file information for a
 Batch Prediction request.
 
getBatchPredictionRequest - asyncHandler - Asynchronous callback handler for events in the lifecycle of the request. Users can provide an
        implementation of the callback methods in this interface to receive notification of successful or
        unsuccessful completion of the operation.Future<GetDataSourceResult> getDataSourceAsync(GetDataSourceRequest getDataSourceRequest)
 Returns a DataSource that includes metadata and data file information, as well as the current status
 of the DataSource.
 
 GetDataSource provides results in normal or verbose format. The verbose format adds the schema
 description and the list of files pointed to by the DataSource to the normal format.
 
getDataSourceRequest - Future<GetDataSourceResult> getDataSourceAsync(GetDataSourceRequest getDataSourceRequest, AsyncHandler<GetDataSourceRequest,GetDataSourceResult> asyncHandler)
 Returns a DataSource that includes metadata and data file information, as well as the current status
 of the DataSource.
 
 GetDataSource provides results in normal or verbose format. The verbose format adds the schema
 description and the list of files pointed to by the DataSource to the normal format.
 
getDataSourceRequest - asyncHandler - Asynchronous callback handler for events in the lifecycle of the request. Users can provide an
        implementation of the callback methods in this interface to receive notification of successful or
        unsuccessful completion of the operation.Future<GetEvaluationResult> getEvaluationAsync(GetEvaluationRequest getEvaluationRequest)
 Returns an Evaluation that includes metadata as well as the current status of the
 Evaluation.
 
getEvaluationRequest - Future<GetEvaluationResult> getEvaluationAsync(GetEvaluationRequest getEvaluationRequest, AsyncHandler<GetEvaluationRequest,GetEvaluationResult> asyncHandler)
 Returns an Evaluation that includes metadata as well as the current status of the
 Evaluation.
 
getEvaluationRequest - asyncHandler - Asynchronous callback handler for events in the lifecycle of the request. Users can provide an
        implementation of the callback methods in this interface to receive notification of successful or
        unsuccessful completion of the operation.Future<GetMLModelResult> getMLModelAsync(GetMLModelRequest getMLModelRequest)
 Returns an MLModel that includes detailed metadata, data source information, and the current status
 of the MLModel.
 
 GetMLModel provides results in normal or verbose format.
 
getMLModelRequest - Future<GetMLModelResult> getMLModelAsync(GetMLModelRequest getMLModelRequest, AsyncHandler<GetMLModelRequest,GetMLModelResult> asyncHandler)
 Returns an MLModel that includes detailed metadata, data source information, and the current status
 of the MLModel.
 
 GetMLModel provides results in normal or verbose format.
 
getMLModelRequest - asyncHandler - Asynchronous callback handler for events in the lifecycle of the request. Users can provide an
        implementation of the callback methods in this interface to receive notification of successful or
        unsuccessful completion of the operation.Future<PredictResult> predictAsync(PredictRequest predictRequest)
 Generates a prediction for the observation using the specified ML Model.
 
Not all response parameters will be populated. Whether a response parameter is populated depends on the type of model requested.
predictRequest - Future<PredictResult> predictAsync(PredictRequest predictRequest, AsyncHandler<PredictRequest,PredictResult> asyncHandler)
 Generates a prediction for the observation using the specified ML Model.
 
Not all response parameters will be populated. Whether a response parameter is populated depends on the type of model requested.
predictRequest - asyncHandler - Asynchronous callback handler for events in the lifecycle of the request. Users can provide an
        implementation of the callback methods in this interface to receive notification of successful or
        unsuccessful completion of the operation.Future<UpdateBatchPredictionResult> updateBatchPredictionAsync(UpdateBatchPredictionRequest updateBatchPredictionRequest)
 Updates the BatchPredictionName of a BatchPrediction.
 
 You can use the GetBatchPrediction operation to view the contents of the updated data element.
 
updateBatchPredictionRequest - Future<UpdateBatchPredictionResult> updateBatchPredictionAsync(UpdateBatchPredictionRequest updateBatchPredictionRequest, AsyncHandler<UpdateBatchPredictionRequest,UpdateBatchPredictionResult> asyncHandler)
 Updates the BatchPredictionName of a BatchPrediction.
 
 You can use the GetBatchPrediction operation to view the contents of the updated data element.
 
updateBatchPredictionRequest - asyncHandler - Asynchronous callback handler for events in the lifecycle of the request. Users can provide an
        implementation of the callback methods in this interface to receive notification of successful or
        unsuccessful completion of the operation.Future<UpdateDataSourceResult> updateDataSourceAsync(UpdateDataSourceRequest updateDataSourceRequest)
 Updates the DataSourceName of a DataSource.
 
 You can use the GetDataSource operation to view the contents of the updated data element.
 
updateDataSourceRequest - Future<UpdateDataSourceResult> updateDataSourceAsync(UpdateDataSourceRequest updateDataSourceRequest, AsyncHandler<UpdateDataSourceRequest,UpdateDataSourceResult> asyncHandler)
 Updates the DataSourceName of a DataSource.
 
 You can use the GetDataSource operation to view the contents of the updated data element.
 
updateDataSourceRequest - asyncHandler - Asynchronous callback handler for events in the lifecycle of the request. Users can provide an
        implementation of the callback methods in this interface to receive notification of successful or
        unsuccessful completion of the operation.Future<UpdateEvaluationResult> updateEvaluationAsync(UpdateEvaluationRequest updateEvaluationRequest)
 Updates the EvaluationName of an Evaluation.
 
 You can use the GetEvaluation operation to view the contents of the updated data element.
 
updateEvaluationRequest - Future<UpdateEvaluationResult> updateEvaluationAsync(UpdateEvaluationRequest updateEvaluationRequest, AsyncHandler<UpdateEvaluationRequest,UpdateEvaluationResult> asyncHandler)
 Updates the EvaluationName of an Evaluation.
 
 You can use the GetEvaluation operation to view the contents of the updated data element.
 
updateEvaluationRequest - asyncHandler - Asynchronous callback handler for events in the lifecycle of the request. Users can provide an
        implementation of the callback methods in this interface to receive notification of successful or
        unsuccessful completion of the operation.Future<UpdateMLModelResult> updateMLModelAsync(UpdateMLModelRequest updateMLModelRequest)
 Updates the MLModelName and the ScoreThreshold of an MLModel.
 
 You can use the GetMLModel operation to view the contents of the updated data element.
 
updateMLModelRequest - Future<UpdateMLModelResult> updateMLModelAsync(UpdateMLModelRequest updateMLModelRequest, AsyncHandler<UpdateMLModelRequest,UpdateMLModelResult> asyncHandler)
 Updates the MLModelName and the ScoreThreshold of an MLModel.
 
 You can use the GetMLModel operation to view the contents of the updated data element.
 
updateMLModelRequest - asyncHandler - Asynchronous callback handler for events in the lifecycle of the request. Users can provide an
        implementation of the callback methods in this interface to receive notification of successful or
        unsuccessful completion of the operation.Copyright © 2013 Amazon Web Services, Inc. All Rights Reserved.