@Generated(value="com.amazonaws:aws-java-sdk-code-generator") public class AlgorithmSpecification extends Object implements Serializable, Cloneable, StructuredPojo
Specifies the training algorithm to use in a CreateTrainingJob request.
For more information about algorithms provided by SageMaker, see Algorithms. For information about using your own algorithms, see Using Your Own Algorithms with Amazon SageMaker.
| Constructor and Description | 
|---|
| AlgorithmSpecification() | 
| Modifier and Type | Method and Description | 
|---|---|
| AlgorithmSpecification | clone() | 
| boolean | equals(Object obj) | 
| String | getAlgorithmName()
 The name of the algorithm resource to use for the training job. | 
| List<String> | getContainerArguments()
 The arguments for a container used to run a training job. | 
| List<String> | getContainerEntrypoint()
 The entrypoint script for a Docker container used
 to run a training job. | 
| Boolean | getEnableSageMakerMetricsTimeSeries()
 To generate and save time-series metrics during training, set to  true. | 
| List<MetricDefinition> | getMetricDefinitions()
 A list of metric definition objects. | 
| String | getTrainingImage()
 The registry path of the Docker image that contains the training algorithm. | 
| TrainingImageConfig | getTrainingImageConfig()
 The configuration to use an image from a private Docker registry for a training job. | 
| String | getTrainingInputMode() | 
| int | hashCode() | 
| Boolean | isEnableSageMakerMetricsTimeSeries()
 To generate and save time-series metrics during training, set to  true. | 
| void | marshall(ProtocolMarshaller protocolMarshaller)Marshalls this structured data using the given  ProtocolMarshaller. | 
| void | setAlgorithmName(String algorithmName)
 The name of the algorithm resource to use for the training job. | 
| void | setContainerArguments(Collection<String> containerArguments)
 The arguments for a container used to run a training job. | 
| void | setContainerEntrypoint(Collection<String> containerEntrypoint)
 The entrypoint script for a Docker container used
 to run a training job. | 
| void | setEnableSageMakerMetricsTimeSeries(Boolean enableSageMakerMetricsTimeSeries)
 To generate and save time-series metrics during training, set to  true. | 
| void | setMetricDefinitions(Collection<MetricDefinition> metricDefinitions)
 A list of metric definition objects. | 
| void | setTrainingImage(String trainingImage)
 The registry path of the Docker image that contains the training algorithm. | 
| void | setTrainingImageConfig(TrainingImageConfig trainingImageConfig)
 The configuration to use an image from a private Docker registry for a training job. | 
| void | setTrainingInputMode(String trainingInputMode) | 
| String | toString()Returns a string representation of this object. | 
| AlgorithmSpecification | withAlgorithmName(String algorithmName)
 The name of the algorithm resource to use for the training job. | 
| AlgorithmSpecification | withContainerArguments(Collection<String> containerArguments)
 The arguments for a container used to run a training job. | 
| AlgorithmSpecification | withContainerArguments(String... containerArguments)
 The arguments for a container used to run a training job. | 
| AlgorithmSpecification | withContainerEntrypoint(Collection<String> containerEntrypoint)
 The entrypoint script for a Docker container used
 to run a training job. | 
| AlgorithmSpecification | withContainerEntrypoint(String... containerEntrypoint)
 The entrypoint script for a Docker container used
 to run a training job. | 
| AlgorithmSpecification | withEnableSageMakerMetricsTimeSeries(Boolean enableSageMakerMetricsTimeSeries)
 To generate and save time-series metrics during training, set to  true. | 
| AlgorithmSpecification | withMetricDefinitions(Collection<MetricDefinition> metricDefinitions)
 A list of metric definition objects. | 
| AlgorithmSpecification | withMetricDefinitions(MetricDefinition... metricDefinitions)
 A list of metric definition objects. | 
| AlgorithmSpecification | withTrainingImage(String trainingImage)
 The registry path of the Docker image that contains the training algorithm. | 
| AlgorithmSpecification | withTrainingImageConfig(TrainingImageConfig trainingImageConfig)
 The configuration to use an image from a private Docker registry for a training job. | 
| AlgorithmSpecification | withTrainingInputMode(String trainingInputMode) | 
| AlgorithmSpecification | withTrainingInputMode(TrainingInputMode trainingInputMode) | 
public void setTrainingImage(String trainingImage)
 The registry path of the Docker image that contains the training algorithm. For information about docker registry
 paths for SageMaker built-in algorithms, see Docker Registry
 Paths and Example Code in the Amazon SageMaker developer guide. SageMaker supports both
 registry/repository[:tag] and registry/repository[@digest] image path formats. For more
 information about using your custom training container, see Using Your Own Algorithms with Amazon
 SageMaker.
 
 You must specify either the algorithm name to the AlgorithmName parameter or the image URI of the
 algorithm container to the TrainingImage parameter.
 
 For more information, see the note in the AlgorithmName parameter description.
 
trainingImage - The registry path of the Docker image that contains the training algorithm. For information about docker
        registry paths for SageMaker built-in algorithms, see Docker
        Registry Paths and Example Code in the Amazon SageMaker developer guide. SageMaker supports
        both registry/repository[:tag] and registry/repository[@digest] image path
        formats. For more information about using your custom training container, see Using Your Own Algorithms with
        Amazon SageMaker. 
        You must specify either the algorithm name to the AlgorithmName parameter or the image URI of
        the algorithm container to the TrainingImage parameter.
        
        For more information, see the note in the AlgorithmName parameter description.
        
public String getTrainingImage()
 The registry path of the Docker image that contains the training algorithm. For information about docker registry
 paths for SageMaker built-in algorithms, see Docker Registry
 Paths and Example Code in the Amazon SageMaker developer guide. SageMaker supports both
 registry/repository[:tag] and registry/repository[@digest] image path formats. For more
 information about using your custom training container, see Using Your Own Algorithms with Amazon
 SageMaker.
 
 You must specify either the algorithm name to the AlgorithmName parameter or the image URI of the
 algorithm container to the TrainingImage parameter.
 
 For more information, see the note in the AlgorithmName parameter description.
 
registry/repository[:tag] and registry/repository[@digest] image path
         formats. For more information about using your custom training container, see Using Your Own Algorithms
         with Amazon SageMaker. 
         You must specify either the algorithm name to the AlgorithmName parameter or the image URI
         of the algorithm container to the TrainingImage parameter.
         
         For more information, see the note in the AlgorithmName parameter description.
         
public AlgorithmSpecification withTrainingImage(String trainingImage)
 The registry path of the Docker image that contains the training algorithm. For information about docker registry
 paths for SageMaker built-in algorithms, see Docker Registry
 Paths and Example Code in the Amazon SageMaker developer guide. SageMaker supports both
 registry/repository[:tag] and registry/repository[@digest] image path formats. For more
 information about using your custom training container, see Using Your Own Algorithms with Amazon
 SageMaker.
 
 You must specify either the algorithm name to the AlgorithmName parameter or the image URI of the
 algorithm container to the TrainingImage parameter.
 
 For more information, see the note in the AlgorithmName parameter description.
 
trainingImage - The registry path of the Docker image that contains the training algorithm. For information about docker
        registry paths for SageMaker built-in algorithms, see Docker
        Registry Paths and Example Code in the Amazon SageMaker developer guide. SageMaker supports
        both registry/repository[:tag] and registry/repository[@digest] image path
        formats. For more information about using your custom training container, see Using Your Own Algorithms with
        Amazon SageMaker. 
        You must specify either the algorithm name to the AlgorithmName parameter or the image URI of
        the algorithm container to the TrainingImage parameter.
        
        For more information, see the note in the AlgorithmName parameter description.
        
public void setAlgorithmName(String algorithmName)
The name of the algorithm resource to use for the training job. This must be an algorithm resource that you created or subscribe to on Amazon Web Services Marketplace.
 You must specify either the algorithm name to the AlgorithmName parameter or the image URI of the
 algorithm container to the TrainingImage parameter.
 
 Note that the AlgorithmName parameter is mutually exclusive with the TrainingImage
 parameter. If you specify a value for the AlgorithmName parameter, you can't specify a value for
 TrainingImage, and vice versa.
 
 If you specify values for both parameters, the training job might break; if you don't specify any value for both
 parameters, the training job might raise a null error.
 
algorithmName - The name of the algorithm resource to use for the training job. This must be an algorithm resource that
        you created or subscribe to on Amazon Web Services Marketplace. 
        You must specify either the algorithm name to the AlgorithmName parameter or the image URI of
        the algorithm container to the TrainingImage parameter.
        
        Note that the AlgorithmName parameter is mutually exclusive with the
        TrainingImage parameter. If you specify a value for the AlgorithmName parameter,
        you can't specify a value for TrainingImage, and vice versa.
        
        If you specify values for both parameters, the training job might break; if you don't specify any value
        for both parameters, the training job might raise a null error.
        
public String getAlgorithmName()
The name of the algorithm resource to use for the training job. This must be an algorithm resource that you created or subscribe to on Amazon Web Services Marketplace.
 You must specify either the algorithm name to the AlgorithmName parameter or the image URI of the
 algorithm container to the TrainingImage parameter.
 
 Note that the AlgorithmName parameter is mutually exclusive with the TrainingImage
 parameter. If you specify a value for the AlgorithmName parameter, you can't specify a value for
 TrainingImage, and vice versa.
 
 If you specify values for both parameters, the training job might break; if you don't specify any value for both
 parameters, the training job might raise a null error.
 
         You must specify either the algorithm name to the AlgorithmName parameter or the image URI
         of the algorithm container to the TrainingImage parameter.
         
         Note that the AlgorithmName parameter is mutually exclusive with the
         TrainingImage parameter. If you specify a value for the AlgorithmName
         parameter, you can't specify a value for TrainingImage, and vice versa.
         
         If you specify values for both parameters, the training job might break; if you don't specify any value
         for both parameters, the training job might raise a null error.
         
public AlgorithmSpecification withAlgorithmName(String algorithmName)
The name of the algorithm resource to use for the training job. This must be an algorithm resource that you created or subscribe to on Amazon Web Services Marketplace.
 You must specify either the algorithm name to the AlgorithmName parameter or the image URI of the
 algorithm container to the TrainingImage parameter.
 
 Note that the AlgorithmName parameter is mutually exclusive with the TrainingImage
 parameter. If you specify a value for the AlgorithmName parameter, you can't specify a value for
 TrainingImage, and vice versa.
 
 If you specify values for both parameters, the training job might break; if you don't specify any value for both
 parameters, the training job might raise a null error.
 
algorithmName - The name of the algorithm resource to use for the training job. This must be an algorithm resource that
        you created or subscribe to on Amazon Web Services Marketplace. 
        You must specify either the algorithm name to the AlgorithmName parameter or the image URI of
        the algorithm container to the TrainingImage parameter.
        
        Note that the AlgorithmName parameter is mutually exclusive with the
        TrainingImage parameter. If you specify a value for the AlgorithmName parameter,
        you can't specify a value for TrainingImage, and vice versa.
        
        If you specify values for both parameters, the training job might break; if you don't specify any value
        for both parameters, the training job might raise a null error.
        
public void setTrainingInputMode(String trainingInputMode)
trainingInputMode - TrainingInputModepublic String getTrainingInputMode()
TrainingInputModepublic AlgorithmSpecification withTrainingInputMode(String trainingInputMode)
trainingInputMode - TrainingInputModepublic AlgorithmSpecification withTrainingInputMode(TrainingInputMode trainingInputMode)
trainingInputMode - TrainingInputModepublic List<MetricDefinition> getMetricDefinitions()
A list of metric definition objects. Each object specifies the metric name and regular expressions used to parse algorithm logs. SageMaker publishes each metric to Amazon CloudWatch.
public void setMetricDefinitions(Collection<MetricDefinition> metricDefinitions)
A list of metric definition objects. Each object specifies the metric name and regular expressions used to parse algorithm logs. SageMaker publishes each metric to Amazon CloudWatch.
metricDefinitions - A list of metric definition objects. Each object specifies the metric name and regular expressions used to
        parse algorithm logs. SageMaker publishes each metric to Amazon CloudWatch.public AlgorithmSpecification withMetricDefinitions(MetricDefinition... metricDefinitions)
A list of metric definition objects. Each object specifies the metric name and regular expressions used to parse algorithm logs. SageMaker publishes each metric to Amazon CloudWatch.
 NOTE: This method appends the values to the existing list (if any). Use
 setMetricDefinitions(java.util.Collection) or withMetricDefinitions(java.util.Collection) if
 you want to override the existing values.
 
metricDefinitions - A list of metric definition objects. Each object specifies the metric name and regular expressions used to
        parse algorithm logs. SageMaker publishes each metric to Amazon CloudWatch.public AlgorithmSpecification withMetricDefinitions(Collection<MetricDefinition> metricDefinitions)
A list of metric definition objects. Each object specifies the metric name and regular expressions used to parse algorithm logs. SageMaker publishes each metric to Amazon CloudWatch.
metricDefinitions - A list of metric definition objects. Each object specifies the metric name and regular expressions used to
        parse algorithm logs. SageMaker publishes each metric to Amazon CloudWatch.public void setEnableSageMakerMetricsTimeSeries(Boolean enableSageMakerMetricsTimeSeries)
 To generate and save time-series metrics during training, set to true. The default is
 false and time-series metrics aren't generated except in the following cases:
 
You use one of the SageMaker built-in algorithms
You use one of the following Prebuilt SageMaker Docker Images:
Tensorflow (version >= 1.15)
MXNet (version >= 1.6)
PyTorch (version >= 1.3)
You specify at least one MetricDefinition
enableSageMakerMetricsTimeSeries - To generate and save time-series metrics during training, set to true. The default is
        false and time-series metrics aren't generated except in the following cases:
        You use one of the SageMaker built-in algorithms
You use one of the following Prebuilt SageMaker Docker Images:
Tensorflow (version >= 1.15)
MXNet (version >= 1.6)
PyTorch (version >= 1.3)
You specify at least one MetricDefinition
public Boolean getEnableSageMakerMetricsTimeSeries()
 To generate and save time-series metrics during training, set to true. The default is
 false and time-series metrics aren't generated except in the following cases:
 
You use one of the SageMaker built-in algorithms
You use one of the following Prebuilt SageMaker Docker Images:
Tensorflow (version >= 1.15)
MXNet (version >= 1.6)
PyTorch (version >= 1.3)
You specify at least one MetricDefinition
true. The default is
         false and time-series metrics aren't generated except in the following cases:
         You use one of the SageMaker built-in algorithms
You use one of the following Prebuilt SageMaker Docker Images:
Tensorflow (version >= 1.15)
MXNet (version >= 1.6)
PyTorch (version >= 1.3)
You specify at least one MetricDefinition
public AlgorithmSpecification withEnableSageMakerMetricsTimeSeries(Boolean enableSageMakerMetricsTimeSeries)
 To generate and save time-series metrics during training, set to true. The default is
 false and time-series metrics aren't generated except in the following cases:
 
You use one of the SageMaker built-in algorithms
You use one of the following Prebuilt SageMaker Docker Images:
Tensorflow (version >= 1.15)
MXNet (version >= 1.6)
PyTorch (version >= 1.3)
You specify at least one MetricDefinition
enableSageMakerMetricsTimeSeries - To generate and save time-series metrics during training, set to true. The default is
        false and time-series metrics aren't generated except in the following cases:
        You use one of the SageMaker built-in algorithms
You use one of the following Prebuilt SageMaker Docker Images:
Tensorflow (version >= 1.15)
MXNet (version >= 1.6)
PyTorch (version >= 1.3)
You specify at least one MetricDefinition
public Boolean isEnableSageMakerMetricsTimeSeries()
 To generate and save time-series metrics during training, set to true. The default is
 false and time-series metrics aren't generated except in the following cases:
 
You use one of the SageMaker built-in algorithms
You use one of the following Prebuilt SageMaker Docker Images:
Tensorflow (version >= 1.15)
MXNet (version >= 1.6)
PyTorch (version >= 1.3)
You specify at least one MetricDefinition
true. The default is
         false and time-series metrics aren't generated except in the following cases:
         You use one of the SageMaker built-in algorithms
You use one of the following Prebuilt SageMaker Docker Images:
Tensorflow (version >= 1.15)
MXNet (version >= 1.6)
PyTorch (version >= 1.3)
You specify at least one MetricDefinition
public List<String> getContainerEntrypoint()
The entrypoint script for a Docker container used to run a training job. This script takes precedence over the default train processing instructions. See How Amazon SageMaker Runs Your Training Image for more information.
public void setContainerEntrypoint(Collection<String> containerEntrypoint)
The entrypoint script for a Docker container used to run a training job. This script takes precedence over the default train processing instructions. See How Amazon SageMaker Runs Your Training Image for more information.
containerEntrypoint - The entrypoint script for a Docker
        container used to run a training job. This script takes precedence over the default train processing
        instructions. See How
        Amazon SageMaker Runs Your Training Image for more information.public AlgorithmSpecification withContainerEntrypoint(String... containerEntrypoint)
The entrypoint script for a Docker container used to run a training job. This script takes precedence over the default train processing instructions. See How Amazon SageMaker Runs Your Training Image for more information.
 NOTE: This method appends the values to the existing list (if any). Use
 setContainerEntrypoint(java.util.Collection) or withContainerEntrypoint(java.util.Collection)
 if you want to override the existing values.
 
containerEntrypoint - The entrypoint script for a Docker
        container used to run a training job. This script takes precedence over the default train processing
        instructions. See How
        Amazon SageMaker Runs Your Training Image for more information.public AlgorithmSpecification withContainerEntrypoint(Collection<String> containerEntrypoint)
The entrypoint script for a Docker container used to run a training job. This script takes precedence over the default train processing instructions. See How Amazon SageMaker Runs Your Training Image for more information.
containerEntrypoint - The entrypoint script for a Docker
        container used to run a training job. This script takes precedence over the default train processing
        instructions. See How
        Amazon SageMaker Runs Your Training Image for more information.public List<String> getContainerArguments()
The arguments for a container used to run a training job. See How Amazon SageMaker Runs Your Training Image for additional information.
public void setContainerArguments(Collection<String> containerArguments)
The arguments for a container used to run a training job. See How Amazon SageMaker Runs Your Training Image for additional information.
containerArguments - The arguments for a container used to run a training job. See How
        Amazon SageMaker Runs Your Training Image for additional information.public AlgorithmSpecification withContainerArguments(String... containerArguments)
The arguments for a container used to run a training job. See How Amazon SageMaker Runs Your Training Image for additional information.
 NOTE: This method appends the values to the existing list (if any). Use
 setContainerArguments(java.util.Collection) or withContainerArguments(java.util.Collection) if
 you want to override the existing values.
 
containerArguments - The arguments for a container used to run a training job. See How
        Amazon SageMaker Runs Your Training Image for additional information.public AlgorithmSpecification withContainerArguments(Collection<String> containerArguments)
The arguments for a container used to run a training job. See How Amazon SageMaker Runs Your Training Image for additional information.
containerArguments - The arguments for a container used to run a training job. See How
        Amazon SageMaker Runs Your Training Image for additional information.public void setTrainingImageConfig(TrainingImageConfig trainingImageConfig)
The configuration to use an image from a private Docker registry for a training job.
trainingImageConfig - The configuration to use an image from a private Docker registry for a training job.public TrainingImageConfig getTrainingImageConfig()
The configuration to use an image from a private Docker registry for a training job.
public AlgorithmSpecification withTrainingImageConfig(TrainingImageConfig trainingImageConfig)
The configuration to use an image from a private Docker registry for a training job.
trainingImageConfig - The configuration to use an image from a private Docker registry for a training job.public String toString()
toString in class ObjectObject.toString()public AlgorithmSpecification clone()
public void marshall(ProtocolMarshaller protocolMarshaller)
StructuredPojoProtocolMarshaller.marshall in interface StructuredPojoprotocolMarshaller - Implementation of ProtocolMarshaller used to marshall this object's data.