com.github.cloudml.zen.ml.clustering

LDA

Related Docs: class LDA | package clustering

object LDA extends Serializable

Linear Supertypes
Serializable, Serializable, AnyRef, Any
Ordering
  1. Alphabetic
  2. By inheritance
Inherited
  1. LDA
  2. Serializable
  3. Serializable
  4. AnyRef
  5. Any
  1. Hide All
  2. Show all
Learn more about member selection
Visibility
  1. Public
  2. All

Value Members

  1. final def !=(arg0: Any): Boolean

    Definition Classes
    AnyRef → Any
  2. final def ##(): Int

    Definition Classes
    AnyRef → Any
  3. final def ==(arg0: Any): Boolean

    Definition Classes
    AnyRef → Any
  4. final def asInstanceOf[T0]: T0

    Definition Classes
    Any
  5. def clone(): AnyRef

    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  6. final def eq(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  7. def equals(arg0: Any): Boolean

    Definition Classes
    AnyRef → Any
  8. def finalize(): Unit

    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  9. final def getClass(): Class[_]

    Definition Classes
    AnyRef → Any
  10. def hashCode(): Int

    Definition Classes
    AnyRef → Any
  11. def incrementalTrain(docs: RDD[(Long, Vector)], computedModel: LocalLDAModel, alphaAS: Double = 0.1, totalIter: Int = 150, useLightLDA: Boolean = false): DistributedLDAModel

    incremental train

    incremental train

    docs
    computedModel
    alphaAS
    totalIter
    useLightLDA
    returns

  12. final def isInstanceOf[T0]: Boolean

    Definition Classes
    Any
  13. final def ne(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  14. final def notify(): Unit

    Definition Classes
    AnyRef
  15. final def notifyAll(): Unit

    Definition Classes
    AnyRef
  16. final def synchronized[T0](arg0: ⇒ T0): T0

    Definition Classes
    AnyRef
  17. def toString(): String

    Definition Classes
    AnyRef → Any
  18. def train(docs: RDD[(Long, Vector)], totalIter: Int = 150, numTopics: Int = 2048, alpha: Double = 0.001, beta: Double = 0.01, alphaAS: Double = 0.1, useLightLDA: Boolean = false): DistributedLDAModel

    LDA training

    LDA training

    docs

    RDD of documents, which are term (word) count vectors paired with IDs. The term count vectors are "bags of words" with a fixed-size vocabulary (where the vocabulary size is the length of the vector). Document IDs must be unique and >= 0.

    totalIter

    the number of iterations

    numTopics

    the number of topics (5000+ for large data)

    alpha

    recommend to be (5.0 /numTopics)

    beta

    recommend to be in range 0.001 - 0.1

    alphaAS

    recommend to be in range 0.01 - 1.0

    useLightLDA

    use LightLDA sampling algorithm or not, recommend false for short text

    returns

    DistributedLDAModel

  19. final def wait(): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  20. final def wait(arg0: Long, arg1: Int): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  21. final def wait(arg0: Long): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )

Inherited from Serializable

Inherited from Serializable

Inherited from AnyRef

Inherited from Any

Ungrouped