com.github.cloudml.zen.ml.clustering

LDA

Related Docs: object LDA | package clustering

abstract class LDA extends Serializable with Logging

Linear Supertypes
Logging, Serializable, Serializable, AnyRef, Any
Known Subclasses
Ordering
  1. Alphabetic
  2. By inheritance
Inherited
  1. LDA
  2. Logging
  3. Serializable
  4. Serializable
  5. AnyRef
  6. Any
  1. Hide All
  2. Show all
Learn more about member selection
Visibility
  1. Public
  2. All

Abstract Value Members

  1. abstract def sampleTokens(graph: Graph[VD, ED], totalTopicCounter: DenseVector[Count], innerIter: Long, numTokens: Double, numTopics: Double, numTerms: Double, alpha: Double, alphaAS: Double, beta: Double): Graph[VD, ED]

    Attributes
    protected

Concrete Value Members

  1. final def !=(arg0: Any): Boolean

    Definition Classes
    AnyRef → Any
  2. final def ##(): Int

    Definition Classes
    AnyRef → Any
  3. final def ==(arg0: Any): Boolean

    Definition Classes
    AnyRef → Any
  4. final def asInstanceOf[T0]: T0

    Definition Classes
    Any
  5. def clone(): AnyRef

    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  6. final def eq(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  7. def equals(arg0: Any): Boolean

    Definition Classes
    AnyRef → Any
  8. def finalize(): Unit

    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  9. final def getClass(): Class[_]

    Definition Classes
    AnyRef → Any
  10. def getCorpus: Graph[VD, ED]

  11. def hashCode(): Int

    Definition Classes
    AnyRef → Any
  12. final def isInstanceOf[T0]: Boolean

    Definition Classes
    Any
  13. def isTraceEnabled(): Boolean

    Attributes
    protected
    Definition Classes
    Logging
  14. def log: Logger

    Attributes
    protected
    Definition Classes
    Logging
  15. def logDebug(msg: ⇒ String, throwable: Throwable): Unit

    Attributes
    protected
    Definition Classes
    Logging
  16. def logDebug(msg: ⇒ String): Unit

    Attributes
    protected
    Definition Classes
    Logging
  17. def logError(msg: ⇒ String, throwable: Throwable): Unit

    Attributes
    protected
    Definition Classes
    Logging
  18. def logError(msg: ⇒ String): Unit

    Attributes
    protected
    Definition Classes
    Logging
  19. def logInfo(msg: ⇒ String, throwable: Throwable): Unit

    Attributes
    protected
    Definition Classes
    Logging
  20. def logInfo(msg: ⇒ String): Unit

    Attributes
    protected
    Definition Classes
    Logging
  21. def logName: String

    Attributes
    protected
    Definition Classes
    Logging
  22. def logTrace(msg: ⇒ String, throwable: Throwable): Unit

    Attributes
    protected
    Definition Classes
    Logging
  23. def logTrace(msg: ⇒ String): Unit

    Attributes
    protected
    Definition Classes
    Logging
  24. def logWarning(msg: ⇒ String, throwable: Throwable): Unit

    Attributes
    protected
    Definition Classes
    Logging
  25. def logWarning(msg: ⇒ String): Unit

    Attributes
    protected
    Definition Classes
    Logging
  26. def mergeDuplicateTopic(threshold: Double = 0.95D): Map[Int, Int]

  27. final def ne(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  28. final def notify(): Unit

    Definition Classes
    AnyRef
  29. final def notifyAll(): Unit

    Definition Classes
    AnyRef
  30. val numDocs: Long

    Doc number in corpus

  31. val numTokens: Long

    Token number in corpus

  32. def perplexity(): Double

    the multiplcation between word distribution among all topics and the corresponding doc distribution among all topics: p(w)=\sum_{k}{p(k|d)*p(w|k)}= \sum_{k}{\frac{{n}_{kw}+{\beta }_{w}} {{n}_{k}+\bar{\beta }} \frac{{n}_{kd}+{\alpha }_{k}}{\sum{{n}_{k}}+ \bar{\alpha }}}

    the multiplcation between word distribution among all topics and the corresponding doc distribution among all topics: p(w)=\sum_{k}{p(k|d)*p(w|k)}= \sum_{k}{\frac{{n}_{kw}+{\beta }_{w}} {{n}_{k}+\bar{\beta }} \frac{{n}_{kd}+{\alpha }_{k}}{\sum{{n}_{k}}+ \bar{\alpha }}}

    \sum_{k} \frac{{\alpha }_{k}{\beta }_{w} + {n}_{kw}{\alpha }_{k} + {n}_{kd}{\beta }_{w} + {n}_{kw}{n}_{kd}} {{n}_{k}+\bar{\beta }} \frac{1}{\sum{{n}_{k}}+\bar{\alpha }}} \exp^{-(\sum{\log(p(w))})/N} N is the number of tokens in corpus

    \bar{\alpha }}} \sum_{k} \frac{{\alpha }_{k}{\beta }_{w} + {n}_{kw}{\alpha }_{k} + {n}_{kd}{\beta }_{w} + {n}_{kw}{n}_{kd}} {{n}_{k}+\bar{\beta }} \frac{1}{\sum{{n}_{k}}+\bar{\alpha }}} \exp^{-(\sum{\log(p(w))})/N} N is the number of tokens in corpus

  33. def runGibbsSampling(iterations: Int): Unit

  34. def saveModel(totalIter: Int = 1): DistributedLDAModel

  35. def setAlpha(alpha: Double): LDA.this.type

  36. def setAlphaAS(alphaAS: Double): LDA.this.type

  37. def setBeta(beta: Double): LDA.this.type

  38. def setSeed(newSeed: Int): LDA.this.type

  39. def setStorageLevel(newStorageLevel: StorageLevel): LDA.this.type

  40. final def synchronized[T0](arg0: ⇒ T0): T0

    Definition Classes
    AnyRef
  41. def toString(): String

    Definition Classes
    AnyRef → Any
  42. final def wait(): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  43. final def wait(arg0: Long, arg1: Int): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  44. final def wait(arg0: Long): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )

Inherited from Logging

Inherited from Serializable

Inherited from Serializable

Inherited from AnyRef

Inherited from Any

Ungrouped