object Basis
- Alphabetic
- By Inheritance
- Basis
- AnyRef
- Any
- Hide All
- Show All
- Public
- All
Value Members
-
final
def
!=(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
final
def
##(): Int
- Definition Classes
- AnyRef → Any
-
final
def
==(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
final
def
asInstanceOf[T0]: T0
- Definition Classes
- Any
-
def
bs(x: DenseVector[Double], degree: Int = 3, intercept: Boolean = false)(intKnots: Seq[Double] = List(), lb: Double = min(x), ub: Double = max(x)): DenseMatrix[Double]
Construct a B-spline covariate matrix using input vector
x
.Construct a B-spline covariate matrix using input vector
x
.- x
A covariate vector.
- degree
The degree of the required B-spline basis (3 for cubic, default).
- intercept
Include first basis function?
- intKnots
Interior knots.
- lb
Lower boundary knot.
- ub
Upper boundary knot.
-
def
bspline(x: Double, i: Int, deg: Int, knots: Vector[Double]): Double
B-spline basis function.
B-spline basis function. Evaluated using the de Boor recurrence.
- x
The argument of the B-spline function.
- i
The index of the B-spline function (starting from 0).
- deg
The degree of the B-spline.
- knots
The knot sequence.
- returns
The value of the B-spline function at
x
.
-
def
clone(): AnyRef
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws( ... ) @native()
-
def
cosine(x: Double, j: Int): Double
Cosine orthogonal basis function.
Cosine orthogonal basis function. Normalised with sqrt(2).
- x
The argument of the cosine function, nominally between 0 and 1.
- j
The order of the basis function (assumed >= 1).
- returns
The value of the cosine basis function at
x
.
-
def
cosine(x: DenseVector[Double], n: Int): DenseMatrix[Double]
Construct a cosine series basis matrix with
n
columns using input vectorx
.Construct a cosine series basis matrix with
n
columns using input vectorx
.- x
A covariate vector.
- n
The number of cosine series basis functions required.
- returns
A matrix with rows matching the length of
x
andn
columns.
-
final
def
eq(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
def
equals(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
def
finalize(): Unit
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws( classOf[java.lang.Throwable] )
-
final
def
getClass(): Class[_]
- Definition Classes
- AnyRef → Any
- Annotations
- @native()
-
def
hashCode(): Int
- Definition Classes
- AnyRef → Any
- Annotations
- @native()
-
final
def
isInstanceOf[T0]: Boolean
- Definition Classes
- Any
-
def
legendre(x: Double, n: Int): Double
Legendre orthogonal polynomial function.
Legendre orthogonal polynomial function. Evaluated using Bonnet's recursion.
- x
The argument of the polynomial, nominally between -1 and 1.
- n
The degree of the polynomial.
- returns
The value of the
n
th polynomial atx
.
-
final
def
ne(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
final
def
notify(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native()
-
final
def
notifyAll(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native()
-
def
poly(x: DenseVector[Double], degree: Int, raw: Boolean = false): DenseMatrix[Double]
Construct a polynomial basis matrix with
degree
columns using input vectorx
.Construct a polynomial basis matrix with
degree
columns using input vectorx
. Defaults to orthogonal Legendre polynomials, butraw
monomials can be requested.- x
A covariate vector.
- degree
The maximum degree of the polynomial basis.
- raw
Raw monomial basis (true) or orthogonal polynomials (false, default).
- returns
A matrix with rows matching the length of
x
anddegree
columns.
-
final
def
synchronized[T0](arg0: ⇒ T0): T0
- Definition Classes
- AnyRef
-
def
toString(): String
- Definition Classes
- AnyRef → Any
-
final
def
wait(): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long, arg1: Int): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... ) @native()