case class Pca(mat: DenseMatrix[Double], colNames: Seq[String]) extends Product with Serializable
Principal components analysis
Computed using SVD of the centred data matrix rather than from the spectral decomposition of the covariance matrix. eg. More like the R function "prcomp" than the R function "princomp".
NOTE: .loadings are transposed relative to the PCA function in Breeze
- mat
Data matrix with rows corresponding to observations and columns corresponding to variables
- colNames
Sequence of column names of mat
- returns
An object of type Pca with methods such as .loadings, .scores, .sdev and .summary
- Alphabetic
- By Inheritance
- Pca
- Serializable
- Serializable
- Product
- Equals
- AnyRef
- Any
- Hide All
- Show All
- Public
- All
Instance Constructors
Value Members
-
final
def
!=(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
final
def
##(): Int
- Definition Classes
- AnyRef → Any
-
final
def
==(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
val
SVD: DenseSVD
Breeze SVD object for the centred data matrix
-
final
def
asInstanceOf[T0]: T0
- Definition Classes
- Any
-
def
clone(): AnyRef
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws( ... ) @native()
- val colNames: Seq[String]
-
lazy val
cumuvar: DenseVector[Double]
Cumulative variance of the principal components
-
final
def
eq(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
def
finalize(): Unit
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws( classOf[java.lang.Throwable] )
-
final
def
getClass(): Class[_]
- Definition Classes
- AnyRef → Any
- Annotations
- @native()
-
final
def
isInstanceOf[T0]: Boolean
- Definition Classes
- Any
-
val
loadings: DenseMatrix[Double]
Loadings/rotation matrix.
Loadings/rotation matrix. Note that this is the TRANSPOSE of the corresponding Breeze method. But this is the usual way the rotations are reported. See how the .summary method labels the rows and columns if you are confused.
- val mat: DenseMatrix[Double]
-
val
n: Int
Number of observations
-
val
names: List[String]
Column names (as a List)
-
final
def
ne(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
final
def
notify(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native()
-
final
def
notifyAll(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native()
-
val
p: Int
Number of variables
-
def
plots: Figure
Diagnostic plots for the PCA
-
lazy val
propvar: DenseVector[Double]
Proportion of variance explained by each principal component
-
lazy val
scores: DenseMatrix[Double]
n x p matrix of scores - the rotated data
-
val
sdev: DenseVector[Double]
Standard deviations of the principal components
-
def
summary: Unit
Prints a summary of the PCA to console
-
final
def
synchronized[T0](arg0: ⇒ T0): T0
- Definition Classes
- AnyRef
-
lazy val
totVar: Double
The total variance of the principal components
-
lazy val
variance: DenseVector[Double]
Variances of the principal components
-
final
def
wait(): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long, arg1: Int): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... ) @native()
-
val
x: DenseMatrix[Double]
Centred data matrix
-
val
xBar: DenseVector[Double]
Column means (for centring)