Package | Description |
---|---|
smile.classification |
Classification algorithms.
|
smile.feature |
Feature generation, normalization and selection.
|
smile.validation |
Model validation.
|
Class and Description |
---|
AdaBoost
AdaBoost (Adaptive Boosting) classifier with decision trees.
|
Classifier
A classifier assigns an input object into one of a given number of categories.
|
ClassifierTrainer
Abstract classifier trainer.
|
DecisionTree
Decision tree for classification.
|
DecisionTree.SplitRule
The criterion to choose variable to split instances.
|
FLD
Fisher's linear discriminant.
|
GradientTreeBoost
Gradient boosting for classification.
|
KNN
K-nearest neighbor classifier.
|
LDA
Linear discriminant analysis.
|
LogisticRegression
Logistic regression.
|
Maxent
Maximum Entropy Classifier.
|
NaiveBayes
Naive Bayes classifier.
|
NaiveBayes.Model
The generation models of naive Bayes classifier.
|
NeuralNetwork
Multilayer perceptron neural network.
|
NeuralNetwork.ActivationFunction
The types of activation functions in output layer.
|
NeuralNetwork.ErrorFunction
The types of error functions.
|
OnlineClassifier
Classifier with online learning capability.
|
QDA
Quadratic discriminant analysis.
|
RandomForest
Random forest for classification.
|
RBFNetwork
Radial basis function networks.
|
RDA
Regularized discriminant analysis.
|
SVM
Support vector machines for classification.
|
SVM.Multiclass
The type of multi-class SVMs.
|
Class and Description |
---|
ClassifierTrainer
Abstract classifier trainer.
|
Class and Description |
---|
Classifier
A classifier assigns an input object into one of a given number of categories.
|
ClassifierTrainer
Abstract classifier trainer.
|
Copyright © 2015. All rights reserved.