public static class GaussianProcessRegression.Trainer<T> extends RegressionTrainer<T>
Constructor and Description |
---|
GaussianProcessRegression.Trainer(MercerKernel<T> kernel,
double lambda)
Constructor.
|
Modifier and Type | Method and Description |
---|---|
GaussianProcessRegression<T> |
train(T[] x,
double[] y)
Learns a regression model with given training data.
|
GaussianProcessRegression<T> |
train(T[] x,
double[] y,
T[] t)
Learns a Gaussian Process with given subset of regressors.
|
setAttributes
public GaussianProcessRegression.Trainer(MercerKernel<T> kernel, double lambda)
kernel
- the Mercer kernel.lambda
- the shrinkage/regularization parameter.public GaussianProcessRegression<T> train(T[] x, double[] y)
RegressionTrainer
train
in class RegressionTrainer<T>
x
- the training instances.y
- the training response values.public GaussianProcessRegression<T> train(T[] x, double[] y, T[] t)
x
- training samples.y
- training labels in [0, k), where k is the number of classes.t
- the inducing input, which are pre-selected or inducing samples
acting as active set of regressors. Commonly, these can be chosen as
the centers of k-means clustering.Copyright © 2015. All rights reserved.