public class Validation extends Object
Constructor and Description |
---|
Validation() |
Modifier and Type | Method and Description |
---|---|
static <T> double[] |
bootstrap(int k,
ClassifierTrainer<T> trainer,
T[] x,
int[] y)
Bootstrap accuracy estimation of a classification model.
|
static <T> double[] |
bootstrap(int k,
ClassifierTrainer<T> trainer,
T[] x,
int[] y,
ClassificationMeasure measure)
Bootstrap performance estimation of a classification model.
|
static <T> double[][] |
bootstrap(int k,
ClassifierTrainer<T> trainer,
T[] x,
int[] y,
ClassificationMeasure[] measures)
Bootstrap performance estimation of a classification model.
|
static <T> double[] |
bootstrap(int k,
RegressionTrainer<T> trainer,
T[] x,
double[] y)
Bootstrap RMSE estimation of a regression model.
|
static <T> double[] |
bootstrap(int k,
RegressionTrainer<T> trainer,
T[] x,
double[] y,
RegressionMeasure measure)
Bootstrap performance estimation of a regression model.
|
static <T> double[][] |
bootstrap(int k,
RegressionTrainer<T> trainer,
T[] x,
double[] y,
RegressionMeasure[] measures)
Bootstrap performance estimation of a regression model.
|
static <T> double |
cv(int k,
ClassifierTrainer<T> trainer,
T[] x,
int[] y)
Cross validation of a classification model.
|
static <T> double |
cv(int k,
ClassifierTrainer<T> trainer,
T[] x,
int[] y,
ClassificationMeasure measure)
Cross validation of a classification model.
|
static <T> double[] |
cv(int k,
ClassifierTrainer<T> trainer,
T[] x,
int[] y,
ClassificationMeasure[] measures)
Cross validation of a classification model.
|
static <T> double |
cv(int k,
RegressionTrainer<T> trainer,
T[] x,
double[] y)
Cross validation of a regression model.
|
static <T> double |
cv(int k,
RegressionTrainer<T> trainer,
T[] x,
double[] y,
RegressionMeasure measure)
Cross validation of a regression model.
|
static <T> double[] |
cv(int k,
RegressionTrainer<T> trainer,
T[] x,
double[] y,
RegressionMeasure[] measures)
Cross validation of a regression model.
|
static <T> double |
loocv(ClassifierTrainer<T> trainer,
T[] x,
int[] y)
Leave-one-out cross validation of a classification model.
|
static <T> double |
loocv(ClassifierTrainer<T> trainer,
T[] x,
int[] y,
ClassificationMeasure measure)
Leave-one-out cross validation of a classification model.
|
static <T> double[] |
loocv(ClassifierTrainer<T> trainer,
T[] x,
int[] y,
ClassificationMeasure[] measures)
Leave-one-out cross validation of a classification model.
|
static <T> double |
loocv(RegressionTrainer<T> trainer,
T[] x,
double[] y)
Leave-one-out cross validation of a regression model.
|
static <T> double |
loocv(RegressionTrainer<T> trainer,
T[] x,
double[] y,
RegressionMeasure measure)
Leave-one-out cross validation of a regression model.
|
static <T> double[] |
loocv(RegressionTrainer<T> trainer,
T[] x,
double[] y,
RegressionMeasure[] measures)
Leave-one-out cross validation of a regression model.
|
static <T> double |
test(Classifier<T> classifier,
T[] x,
int[] y)
Tests a classifier on a validation set.
|
static <T> double |
test(Classifier<T> classifier,
T[] x,
int[] y,
ClassificationMeasure measure)
Tests a classifier on a validation set.
|
static <T> double[] |
test(Classifier<T> classifier,
T[] x,
int[] y,
ClassificationMeasure[] measures)
Tests a classifier on a validation set.
|
static <T> double |
test(Regression<T> regression,
T[] x,
double[] y)
Tests a regression model on a validation set.
|
static <T> double |
test(Regression<T> regression,
T[] x,
double[] y,
RegressionMeasure measure)
Tests a regression model on a validation set.
|
static <T> double[] |
test(Regression<T> regression,
T[] x,
double[] y,
RegressionMeasure[] measures)
Tests a regression model on a validation set.
|
public static <T> double test(Classifier<T> classifier, T[] x, int[] y)
T
- the data type of input objects.classifier
- a trained classifier to be tested.x
- the test data set.y
- the test data labels.public static <T> double test(Regression<T> regression, T[] x, double[] y)
T
- the data type of input objects.regression
- a trained regression model to be tested.x
- the test data set.y
- the test data response values.public static <T> double test(Classifier<T> classifier, T[] x, int[] y, ClassificationMeasure measure)
T
- the data type of input objects.classifier
- a trained classifier to be tested.x
- the test data set.y
- the test data labels.measure
- the performance measures of classification.public static <T> double[] test(Classifier<T> classifier, T[] x, int[] y, ClassificationMeasure[] measures)
T
- the data type of input objects.classifier
- a trained classifier to be tested.x
- the test data set.y
- the test data labels.measures
- the performance measures of classification.public static <T> double test(Regression<T> regression, T[] x, double[] y, RegressionMeasure measure)
T
- the data type of input objects.regression
- a trained regression model to be tested.x
- the test data set.y
- the test data response values.measure
- the performance measure of regression.public static <T> double[] test(Regression<T> regression, T[] x, double[] y, RegressionMeasure[] measures)
T
- the data type of input objects.regression
- a trained regression model to be tested.x
- the test data set.y
- the test data response values.measures
- the performance measures of regression.public static <T> double loocv(ClassifierTrainer<T> trainer, T[] x, int[] y)
T
- the data type of input objects.trainer
- a classifier trainer that is properly parameterized.x
- the test data set.y
- the test data labels.public static <T> double loocv(RegressionTrainer<T> trainer, T[] x, double[] y)
T
- the data type of input objects.trainer
- a regression model trainer that is properly parameterized.x
- the test data set.y
- the test data response values.public static <T> double loocv(ClassifierTrainer<T> trainer, T[] x, int[] y, ClassificationMeasure measure)
T
- the data type of input objects.trainer
- a classifier trainer that is properly parameterized.x
- the test data set.y
- the test data labels.measure
- the performance measure of classification.public static <T> double[] loocv(ClassifierTrainer<T> trainer, T[] x, int[] y, ClassificationMeasure[] measures)
T
- the data type of input objects.trainer
- a classifier trainer that is properly parameterized.x
- the test data set.y
- the test data labels.measures
- the performance measures of classification.public static <T> double loocv(RegressionTrainer<T> trainer, T[] x, double[] y, RegressionMeasure measure)
T
- the data type of input objects.trainer
- a regression model trainer that is properly parameterized.x
- the test data set.y
- the test data response values.measure
- the performance measure of regression.public static <T> double[] loocv(RegressionTrainer<T> trainer, T[] x, double[] y, RegressionMeasure[] measures)
T
- the data type of input objects.trainer
- a regression model trainer that is properly parameterized.x
- the test data set.y
- the test data response values.measures
- the performance measures of regression.public static <T> double cv(int k, ClassifierTrainer<T> trainer, T[] x, int[] y)
T
- the data type of input objects.k
- k-fold cross validation.trainer
- a classifier trainer that is properly parameterized.x
- the test data set.y
- the test data labels.public static <T> double cv(int k, RegressionTrainer<T> trainer, T[] x, double[] y)
T
- the data type of input objects.k
- k-fold cross validation.trainer
- a regression model trainer that is properly parameterized.x
- the test data set.y
- the test data response values.public static <T> double cv(int k, ClassifierTrainer<T> trainer, T[] x, int[] y, ClassificationMeasure measure)
T
- the data type of input objects.k
- k-fold cross validation.trainer
- a classifier trainer that is properly parameterized.x
- the test data set.y
- the test data labels.measure
- the performance measure of classification.public static <T> double[] cv(int k, ClassifierTrainer<T> trainer, T[] x, int[] y, ClassificationMeasure[] measures)
T
- the data type of input objects.k
- k-fold cross validation.trainer
- a classifier trainer that is properly parameterized.x
- the test data set.y
- the test data labels.measures
- the performance measures of classification.public static <T> double cv(int k, RegressionTrainer<T> trainer, T[] x, double[] y, RegressionMeasure measure)
T
- the data type of input objects.k
- k-fold cross validation.trainer
- a regression model trainer that is properly parameterized.x
- the test data set.y
- the test data response values.measure
- the performance measure of regression.public static <T> double[] cv(int k, RegressionTrainer<T> trainer, T[] x, double[] y, RegressionMeasure[] measures)
T
- the data type of input objects.k
- k-fold cross validation.trainer
- a regression model trainer that is properly parameterized.x
- the test data set.y
- the test data response values.measures
- the performance measures of regression.public static <T> double[] bootstrap(int k, ClassifierTrainer<T> trainer, T[] x, int[] y)
T
- the data type of input objects.k
- k-round bootstrap estimation.trainer
- a classifier trainer that is properly parameterized.x
- the test data set.y
- the test data labels.public static <T> double[] bootstrap(int k, RegressionTrainer<T> trainer, T[] x, double[] y)
T
- the data type of input objects.k
- k-round bootstrap estimation.trainer
- a regression model trainer that is properly parameterized.x
- the test data set.y
- the test data response values.public static <T> double[] bootstrap(int k, ClassifierTrainer<T> trainer, T[] x, int[] y, ClassificationMeasure measure)
T
- the data type of input objects.k
- k-fold bootstrap estimation.trainer
- a classifier trainer that is properly parameterized.x
- the test data set.y
- the test data labels.measure
- the performance measures of classification.public static <T> double[][] bootstrap(int k, ClassifierTrainer<T> trainer, T[] x, int[] y, ClassificationMeasure[] measures)
T
- the data type of input objects.k
- k-fold bootstrap estimation.trainer
- a classifier trainer that is properly parameterized.x
- the test data set.y
- the test data labels.measures
- the performance measures of classification.public static <T> double[] bootstrap(int k, RegressionTrainer<T> trainer, T[] x, double[] y, RegressionMeasure measure)
T
- the data type of input objects.k
- k-fold bootstrap estimation.trainer
- a regression model trainer that is properly parameterized.x
- the test data set.y
- the test data response values.measure
- the performance measure of regression.public static <T> double[][] bootstrap(int k, RegressionTrainer<T> trainer, T[] x, double[] y, RegressionMeasure[] measures)
T
- the data type of input objects.k
- k-fold bootstrap estimation.trainer
- a regression model trainer that is properly parameterized.x
- the test data set.y
- the test data response values.measures
- the performance measures of regression.Copyright © 2015. All rights reserved.