public class RDA extends Object implements Classifier<double[]>
Modifier and Type | Class and Description |
---|---|
static class |
RDA.Trainer
Trainer for regularized discriminant analysis.
|
Constructor and Description |
---|
RDA(double[][] x,
int[] y,
double alpha)
Constructor.
|
RDA(double[][] x,
int[] y,
double[] priori,
double alpha)
Constructor.
|
RDA(double[][] x,
int[] y,
double[] priori,
double alpha,
double tol)
Constructor.
|
Modifier and Type | Method and Description |
---|---|
double[] |
getPriori()
Returns a priori probabilities.
|
int |
predict(double[] x)
Predicts the class label of an instance.
|
int |
predict(double[] x,
double[] posteriori)
Predicts the class label of an instance and also calculate a posteriori
probabilities.
|
public RDA(double[][] x, int[] y, double alpha)
x
- training samples.y
- training labels in [0, k), where k is the number of classes.alpha
- regularization factor in [0, 1] allows a continuum of models
between LDA and QDA.public RDA(double[][] x, int[] y, double[] priori, double alpha)
x
- training samples.y
- training labels in [0, k), where k is the number of classes.alpha
- regularization factor in [0, 1] allows a continuum of models
between LDA and QDA.priori
- the priori probability of each class.public RDA(double[][] x, int[] y, double[] priori, double alpha, double tol)
x
- training samples.y
- training labels in [0, k), where k is the number of classes.alpha
- regularization factor in [0, 1] allows a continuum of models
between LDA and QDA.priori
- the priori probability of each class.tol
- tolerance to decide if a covariance matrix is singular; it
will reject variables whose variance is less than tol2.public double[] getPriori()
public int predict(double[] x)
Classifier
predict
in interface Classifier<double[]>
x
- the instance to be classified.public int predict(double[] x, double[] posteriori)
Classifier
predict
in interface Classifier<double[]>
x
- the instance to be classified.posteriori
- the array to store a posteriori probabilities on output.Copyright © 2015. All rights reserved.