public class PPCA extends Object implements Projection<double[]>
y ∼ W * x + μ + εwhere latent variables x ∼ N(0, I), error (or noise) ε ∼ N(0, Ψ), and μ is the location term (mean). In PPCA, an isotropic noise model is used, i.e., noise variances constrained to be equal (Ψi = σ2). A close form of estimation of above parameters can be obtained by maximum likelihood method.
PCA
Constructor and Description |
---|
PPCA(double[][] data,
int k)
Constructor.
|
Modifier and Type | Method and Description |
---|---|
double[] |
getCenter()
Returns the center of data.
|
double[][] |
getLoadings()
Returns the variable loading matrix, ordered from largest to smallest
by corresponding eigenvalues.
|
double |
getNoiseVariance()
Returns the variance of noise.
|
double[][] |
getProjection()
Returns the projection matrix.
|
double[] |
project(double[] x)
Project a data point to the feature space.
|
double[][] |
project(double[][] x)
Project a set of data toe the feature space.
|
public PPCA(double[][] data, int k)
data
- training data of which each row is a sample.k
- the number of principal component to learn.public double[][] getLoadings()
public double[] getCenter()
public double getNoiseVariance()
public double[][] getProjection()
public double[] project(double[] x)
Projection
project
in interface Projection<double[]>
public double[][] project(double[][] x)
Projection
project
in interface Projection<double[]>
Copyright © 2015. All rights reserved.