Package | Description |
---|---|
smile.feature |
Feature generation, normalization and selection.
|
smile.regression |
Regression analysis.
|
smile.validation |
Model validation.
|
Modifier and Type | Method and Description |
---|---|
BitString[] |
GAFeatureSelection.learn(int size,
int generation,
RegressionTrainer<double[]> trainer,
RegressionMeasure measure,
double[][] x,
double[] y,
double[][] testx,
double[] testy)
Genetic algorithm based feature selection for regression.
|
BitString[] |
GAFeatureSelection.learn(int size,
int generation,
RegressionTrainer<double[]> trainer,
RegressionMeasure measure,
double[][] x,
double[] y,
int k)
Genetic algorithm based feature selection for regression.
|
Modifier and Type | Class and Description |
---|---|
static class |
GaussianProcessRegression.Trainer<T>
Trainer for Gaussian Process for Regression.
|
static class |
GradientTreeBoost.Trainer
Trainer for GradientTreeBoost regression.
|
static class |
LASSO.Trainer
Trainer for LASSO regression.
|
static class |
OLS.Trainer
Trainer for linear regression by ordinary least squares.
|
static class |
RandomForest.Trainer
Trainer for random forest.
|
static class |
RBFNetwork.Trainer<T>
Trainer for RBF networks.
|
static class |
RegressionTree.Trainer
Trainer for regression tree.
|
static class |
RidgeRegression.Trainer
Trainer for ridge regression.
|
static class |
SVR.Trainer<T>
Trainer for support vector regression.
|
Modifier and Type | Method and Description |
---|---|
static <T> double[] |
Validation.bootstrap(int k,
RegressionTrainer<T> trainer,
T[] x,
double[] y)
Bootstrap RMSE estimation of a regression model.
|
static <T> double[] |
Validation.bootstrap(int k,
RegressionTrainer<T> trainer,
T[] x,
double[] y,
RegressionMeasure measure)
Bootstrap performance estimation of a regression model.
|
static <T> double[][] |
Validation.bootstrap(int k,
RegressionTrainer<T> trainer,
T[] x,
double[] y,
RegressionMeasure[] measures)
Bootstrap performance estimation of a regression model.
|
static <T> double |
Validation.cv(int k,
RegressionTrainer<T> trainer,
T[] x,
double[] y)
Cross validation of a regression model.
|
static <T> double |
Validation.cv(int k,
RegressionTrainer<T> trainer,
T[] x,
double[] y,
RegressionMeasure measure)
Cross validation of a regression model.
|
static <T> double[] |
Validation.cv(int k,
RegressionTrainer<T> trainer,
T[] x,
double[] y,
RegressionMeasure[] measures)
Cross validation of a regression model.
|
static <T> double |
Validation.loocv(RegressionTrainer<T> trainer,
T[] x,
double[] y)
Leave-one-out cross validation of a regression model.
|
static <T> double |
Validation.loocv(RegressionTrainer<T> trainer,
T[] x,
double[] y,
RegressionMeasure measure)
Leave-one-out cross validation of a regression model.
|
static <T> double[] |
Validation.loocv(RegressionTrainer<T> trainer,
T[] x,
double[] y,
RegressionMeasure[] measures)
Leave-one-out cross validation of a regression model.
|
Copyright © 2015. All rights reserved.