Package | Description |
---|---|
smile.classification |
Classification algorithms.
|
smile.validation |
Model validation.
|
Modifier and Type | Interface and Description |
---|---|
interface |
OnlineClassifier<T>
Classifier with online learning capability.
|
Modifier and Type | Class and Description |
---|---|
class |
AdaBoost
AdaBoost (Adaptive Boosting) classifier with decision trees.
|
class |
DecisionTree
Decision tree for classification.
|
class |
FLD
Fisher's linear discriminant.
|
class |
GradientTreeBoost
Gradient boosting for classification.
|
class |
KNN<T>
K-nearest neighbor classifier.
|
class |
LDA
Linear discriminant analysis.
|
class |
LogisticRegression
Logistic regression.
|
class |
Maxent
Maximum Entropy Classifier.
|
class |
NaiveBayes
Naive Bayes classifier.
|
class |
NeuralNetwork
Multilayer perceptron neural network.
|
class |
QDA
Quadratic discriminant analysis.
|
class |
RandomForest
Random forest for classification.
|
class |
RBFNetwork<T>
Radial basis function networks.
|
class |
RDA
Regularized discriminant analysis.
|
class |
SVM<T>
Support vector machines for classification.
|
Modifier and Type | Method and Description |
---|---|
abstract Classifier<T> |
ClassifierTrainer.train(T[] x,
int[] y)
Learns a classifier with given training data.
|
Modifier and Type | Method and Description |
---|---|
static <T> double |
Validation.test(Classifier<T> classifier,
T[] x,
int[] y)
Tests a classifier on a validation set.
|
static <T> double |
Validation.test(Classifier<T> classifier,
T[] x,
int[] y,
ClassificationMeasure measure)
Tests a classifier on a validation set.
|
static <T> double[] |
Validation.test(Classifier<T> classifier,
T[] x,
int[] y,
ClassificationMeasure[] measures)
Tests a classifier on a validation set.
|
Copyright © 2015. All rights reserved.