Package | Description |
---|---|
smile.classification |
Classification algorithms.
|
smile.feature |
Feature generation, normalization and selection.
|
smile.validation |
Model validation.
|
Modifier and Type | Class and Description |
---|---|
static class |
AdaBoost.Trainer
Trainer for AdaBoost classifiers.
|
static class |
DecisionTree.Trainer
Trainer for decision tree classifiers.
|
static class |
FLD.Trainer
Trainer for Fisher's linear discriminant.
|
static class |
GradientTreeBoost.Trainer
Trainer for GradientTreeBoost classifiers.
|
static class |
KNN.Trainer<T>
Trainer for KNN classifier.
|
static class |
LDA.Trainer
Trainer for linear discriminant analysis.
|
static class |
LogisticRegression.Trainer
Trainer for logistic regression.
|
static class |
Maxent.Trainer
Trainer for maximum entropy classifier.
|
static class |
NaiveBayes.Trainer
Trainer for naive Bayes classifier for document classification.
|
static class |
NeuralNetwork.Trainer
Trainer for neural networks.
|
static class |
QDA.Trainer
Trainer for quadratic discriminant analysis.
|
static class |
RandomForest.Trainer
Trainer for random forest classifiers.
|
static class |
RBFNetwork.Trainer<T>
Trainer for RBF networks.
|
static class |
RDA.Trainer
Trainer for regularized discriminant analysis.
|
static class |
SVM.Trainer<T>
Trainer for support vector machines.
|
Modifier and Type | Method and Description |
---|---|
BitString[] |
GAFeatureSelection.learn(int size,
int generation,
ClassifierTrainer<double[]> trainer,
ClassificationMeasure measure,
double[][] x,
int[] y,
double[][] testx,
int[] testy)
Genetic algorithm based feature selection for classification.
|
BitString[] |
GAFeatureSelection.learn(int size,
int generation,
ClassifierTrainer<double[]> trainer,
ClassificationMeasure measure,
double[][] x,
int[] y,
int k)
Genetic algorithm based feature selection for classification.
|
Modifier and Type | Method and Description |
---|---|
static <T> double[] |
Validation.bootstrap(int k,
ClassifierTrainer<T> trainer,
T[] x,
int[] y)
Bootstrap accuracy estimation of a classification model.
|
static <T> double[] |
Validation.bootstrap(int k,
ClassifierTrainer<T> trainer,
T[] x,
int[] y,
ClassificationMeasure measure)
Bootstrap performance estimation of a classification model.
|
static <T> double[][] |
Validation.bootstrap(int k,
ClassifierTrainer<T> trainer,
T[] x,
int[] y,
ClassificationMeasure[] measures)
Bootstrap performance estimation of a classification model.
|
static <T> double |
Validation.cv(int k,
ClassifierTrainer<T> trainer,
T[] x,
int[] y)
Cross validation of a classification model.
|
static <T> double |
Validation.cv(int k,
ClassifierTrainer<T> trainer,
T[] x,
int[] y,
ClassificationMeasure measure)
Cross validation of a classification model.
|
static <T> double[] |
Validation.cv(int k,
ClassifierTrainer<T> trainer,
T[] x,
int[] y,
ClassificationMeasure[] measures)
Cross validation of a classification model.
|
static <T> double |
Validation.loocv(ClassifierTrainer<T> trainer,
T[] x,
int[] y)
Leave-one-out cross validation of a classification model.
|
static <T> double |
Validation.loocv(ClassifierTrainer<T> trainer,
T[] x,
int[] y,
ClassificationMeasure measure)
Leave-one-out cross validation of a classification model.
|
static <T> double[] |
Validation.loocv(ClassifierTrainer<T> trainer,
T[] x,
int[] y,
ClassificationMeasure[] measures)
Leave-one-out cross validation of a classification model.
|
Copyright © 2015. All rights reserved.