public class RegressionTree extends Object implements Regression<double[]>
Classification and Regression Tree techniques have a number of advantages over many of those alternative techniques.
Some techniques such as bagging, boosting, and random forest use more than one decision tree for their analysis.
GradientTreeBoost,
RandomForest| Modifier and Type | Class and Description |
|---|---|
static interface |
RegressionTree.NodeOutput
An interface to calculate node output.
|
static class |
RegressionTree.Trainer
Trainer for regression tree.
|
| Constructor and Description |
|---|
RegressionTree(Attribute[] attributes,
double[][] x,
double[] y,
int J)
Constructor.
|
RegressionTree(Attribute[] attributes,
double[][] x,
double[] y,
int J,
int[][] order,
int[] samples,
RegressionTree.NodeOutput output)
Constructor.
|
RegressionTree(double[][] x,
double[] y,
int J)
Constructor.
|
RegressionTree(int numFeatures,
int[][] x,
double[] y,
int J)
Constructor.
|
RegressionTree(int numFeatures,
int[][] x,
double[] y,
int J,
int[] samples,
RegressionTree.NodeOutput output)
Constructor.
|
| Modifier and Type | Method and Description |
|---|---|
double[] |
importance()
Returns the variable importance.
|
double |
predict(double[] x)
Predicts the dependent variable of an instance.
|
double |
predict(int[] x)
Predicts the dependent variable of an instance with sparse binary features.
|
public RegressionTree(double[][] x,
double[] y,
int J)
x - the training instances.y - the response variable.J - the maximum number of leaf nodes in the tree.public RegressionTree(Attribute[] attributes, double[][] x, double[] y, int J)
attributes - the attribute properties.x - the training instances.y - the response variable.J - the maximum number of leaf nodes in the tree.public RegressionTree(Attribute[] attributes, double[][] x, double[] y, int J, int[][] order, int[] samples, RegressionTree.NodeOutput output)
attributes - the attribute properties.x - the training instances.y - the response variable.order - the index of training values in ascending order. Note
that only numeric attributes need be sorted.J - the maximum number of leaf nodes in the tree.samples - the sample set of instances for stochastic learning.
samples[i] should be 0 or 1 to indicate if the instance is used for training.public RegressionTree(int numFeatures,
int[][] x,
double[] y,
int J)
numFeatures - the number of sparse binary features.x - the training instances of sparse binary features.y - the response variable.J - the maximum number of leaf nodes in the tree.public RegressionTree(int numFeatures,
int[][] x,
double[] y,
int J,
int[] samples,
RegressionTree.NodeOutput output)
numFeatures - the number of sparse binary features.x - the training instances.y - the response variable.J - the maximum number of leaf nodes in the tree.samples - the sample set of instances for stochastic learning.
samples[i] should be 0 or 1 to indicate if the instance is used for training.public double[] importance()
public double predict(double[] x)
Regressionpredict in interface Regression<double[]>x - the instance.public double predict(int[] x)
x - the instance.Copyright © 2015. All rights reserved.