- calculate(int[]) - Method in interface smile.regression.RegressionTree.NodeOutput
-
Calculate the node output.
- centroids() - Method in class smile.clustering.BIRCH
-
Returns the representatives of clusters.
- centroids() - Method in class smile.clustering.KMeans
-
Returns the centroids.
- centroids() - Method in class smile.clustering.SIB
-
Returns the centroids.
- Chromosome - Interface in smile.gap
-
Artificial chromosomes in genetic algorithm/programming encoding candidate
solutions to an optimization problem.
- CLARANS<T> - Class in smile.clustering
-
Clustering Large Applications based upon RANdomized Search.
- CLARANS(T[], Distance<T>, int) - Constructor for class smile.clustering.CLARANS
-
Constructor.
- CLARANS(T[], Distance<T>, int, int) - Constructor for class smile.clustering.CLARANS
-
Constructor.
- CLARANS(T[], Distance<T>, int, int, int) - Constructor for class smile.clustering.CLARANS
-
Constructor.
- ClassificationMeasure - Interface in smile.validation
-
An abstract interface to measure the classification performance.
- Classifier<T> - Interface in smile.classification
-
A classifier assigns an input object into one of a given number of categories.
- ClassifierTrainer<T> - Class in smile.classification
-
Abstract classifier trainer.
- ClassifierTrainer() - Constructor for class smile.classification.ClassifierTrainer
-
Constructor.
- ClassifierTrainer(Attribute[]) - Constructor for class smile.classification.ClassifierTrainer
-
Constructor.
- clone() - Method in class smile.classification.NeuralNetwork
-
- cluster - Variable in class smile.clustering.SOM.Neuron
-
Cluster id of this neuron.
- Clustering<T> - Interface in smile.clustering
-
Clustering interface.
- ClusterMeasure - Interface in smile.validation
-
An abstract interface to measure the clustering performance.
- coefficients() - Method in class smile.regression.GaussianProcessRegression
-
Returns the coefficients.
- coefficients() - Method in class smile.regression.LASSO
-
Returns the linear coefficients.
- coefficients() - Method in class smile.regression.OLS
-
Returns the linear coefficients (without intercept).
- coefficients() - Method in class smile.regression.RidgeRegression
-
Returns the (scaled) linear coefficients.
- CoifletWavelet - Class in smile.wavelet
-
Coiflet wavelets.
- CoifletWavelet(int) - Constructor for class smile.wavelet.CoifletWavelet
-
Constructor.
- compareTo(Chromosome) - Method in class smile.gap.BitString
-
- compareTo(Neighbor<K, V>) - Method in class smile.neighbor.Neighbor
-
- CompleteLinkage - Class in smile.clustering.linkage
-
Complete linkage.
- CompleteLinkage(double[][]) - Constructor for class smile.clustering.linkage.CompleteLinkage
-
Constructor.
- Concept - Class in smile.taxonomy
-
Concept is a set of synonyms, i.e.
- Concept(Concept) - Constructor for class smile.taxonomy.Concept
-
Constructor.
- Concept(Concept, String) - Constructor for class smile.taxonomy.Concept
-
Constructor.
- Concept(Concept, String[]) - Constructor for class smile.taxonomy.Concept
-
Constructor.
- Concept(Concept, List<String>) - Constructor for class smile.taxonomy.Concept
-
Constructor.
- confidence - Variable in class smile.association.AssociationRule
-
The confidence value.
- ConfusionMatrix - Class in smile.validation
-
Generates the confusion matrix based on truth and prediction vectors
- ConfusionMatrix(int[], int[]) - Constructor for class smile.validation.ConfusionMatrix
-
- consequent - Variable in class smile.association.AssociationRule
-
Consequent itemset.
- CoverTree<E> - Class in smile.neighbor
-
Cover tree is a data structure for generic nearest neighbor search, which
is especially efficient in spaces with small intrinsic dimension.
- CoverTree(E[], Metric<E>) - Constructor for class smile.neighbor.CoverTree
-
Constructor.
- CoverTree(E[], Metric<E>, double) - Constructor for class smile.neighbor.CoverTree
-
Constructor.
- CRF - Class in smile.sequence
-
First-order linear conditional random field.
- CRF.Trainer - Class in smile.sequence
-
Trainer for CRF.
- CRF.Trainer(Attribute[], int) - Constructor for class smile.sequence.CRF.Trainer
-
Constructor.
- CRF.Trainer(int, int) - Constructor for class smile.sequence.CRF.Trainer
-
Constructor.
- crossover(Chromosome) - Method in class smile.gap.BitString
-
- crossover(Chromosome) - Method in interface smile.gap.Chromosome
-
Returns a pair of offsprings by crossovering this one with another one
according to the crossover rate, which determines how often will be
crossover performed.
- CrossValidation - Class in smile.validation
-
Cross-validation is a technique for assessing how the results of a
statistical analysis will generalize to an independent data set.
- CrossValidation(int, int) - Constructor for class smile.validation.CrossValidation
-
Constructor.
- cv(int, ClassifierTrainer<T>, T[], int[]) - Static method in class smile.validation.Validation
-
Cross validation of a classification model.
- cv(int, RegressionTrainer<T>, T[], double[]) - Static method in class smile.validation.Validation
-
Cross validation of a regression model.
- cv(int, ClassifierTrainer<T>, T[], int[], ClassificationMeasure) - Static method in class smile.validation.Validation
-
Cross validation of a classification model.
- cv(int, ClassifierTrainer<T>, T[], int[], ClassificationMeasure[]) - Static method in class smile.validation.Validation
-
Cross validation of a classification model.
- cv(int, RegressionTrainer<T>, T[], double[], RegressionMeasure) - Static method in class smile.validation.Validation
-
Cross validation of a regression model.
- cv(int, RegressionTrainer<T>, T[], double[], RegressionMeasure[]) - Static method in class smile.validation.Validation
-
Cross validation of a regression model.
- f(double[], int) - Method in class smile.feature.DateFeature
-
- f(T, int) - Method in interface smile.feature.Feature
-
Generates a feature for given object.
- f(T) - Method in class smile.feature.FeatureSet
-
Returns generated feature values.
- f(T[]) - Method in class smile.feature.FeatureSet
-
Returns a dataset with generated features.
- f(Dataset<T>) - Method in class smile.feature.FeatureSet
-
Returns an attribute dataset with generated features.
- f(double[], int) - Method in class smile.feature.Nominal2Binary
-
- f(double[]) - Method in class smile.feature.Nominal2SparseBinary
-
Generates the compact representation of sparse binary features for given object.
- f(double[], int) - Method in class smile.feature.NumericAttributeFeature
-
- f(T[], int) - Method in interface smile.feature.SequenceFeature
-
Generates the feature set of sequence at given index.
- Fallout - Class in smile.validation
-
Fall-out, false alarm rate, or false positive rate (FPR)
- Fallout() - Constructor for class smile.validation.Fallout
-
- FDR - Class in smile.validation
-
The false discovery rate (FDR) is ratio of false positives
to combined true and false positives, which is actually 1 - precision.
- FDR() - Constructor for class smile.validation.FDR
-
- feature(T[]) - Method in class smile.feature.Bag
-
Returns the bag-of-words features of a document.
- Feature<T> - Interface in smile.feature
-
Feature generator.
- FeatureRanking - Interface in smile.feature
-
Univariate feature ranking metric.
- FeatureSet<T> - Class in smile.feature
-
A set of feature generators.
- FeatureSet() - Constructor for class smile.feature.FeatureSet
-
Constructor.
- featureset(double[], int) - Method in class smile.sequence.CRF
-
Returns a feature set with the class label of previous position.
- featureset(int[], int) - Method in class smile.sequence.CRF
-
Returns a feature set with the class label of previous position.
- finish() - Method in class smile.classification.SVM
-
Process support vectors until converge.
- fit(T) - Method in interface smile.gap.FitnessMeasure
-
Returns the non-negative fitness value of a chromosome.
- fitness() - Method in class smile.gap.BitString
-
- fitness() - Method in interface smile.gap.Chromosome
-
Returns the fitness of chromosome.
- FitnessMeasure<T extends Chromosome> - Interface in smile.gap
-
A measure to evaluate the fitness of chromosomes.
- FLD - Class in smile.classification
-
Fisher's linear discriminant.
- FLD(double[][], int[]) - Constructor for class smile.classification.FLD
-
Constructor.
- FLD(double[][], int[], int) - Constructor for class smile.classification.FLD
-
Constructor.
- FLD(double[][], int[], int, double) - Constructor for class smile.classification.FLD
-
Constructor.
- FLD.Trainer - Class in smile.classification
-
Trainer for Fisher's linear discriminant.
- FLD.Trainer() - Constructor for class smile.classification.FLD.Trainer
-
Constructor.
- FMeasure - Class in smile.validation
-
The F-measure (also F1 score or F-score) considers both the precision p and
the recall r of the test to compute the score.
- FMeasure() - Constructor for class smile.validation.FMeasure
-
- FPGrowth - Class in smile.association
-
Frequent item set mining based on the FP-growth (frequent pattern growth)
algorithm, which employs an extended prefix-tree (FP-tree) structure to
store the database in a compressed form.
- FPGrowth(int[], int) - Constructor for class smile.association.FPGrowth
-
Constructor.
- FPGrowth(int[][], double) - Constructor for class smile.association.FPGrowth
-
Constructor.
- FPGrowth(int[][], int) - Constructor for class smile.association.FPGrowth
-
Constructor.
- ftest() - Method in class smile.regression.OLS
-
Returns the F-statistic of goodness-of-fit.
- GAFeatureSelection - Class in smile.feature
-
Genetic algorithm based feature selection.
- GAFeatureSelection() - Constructor for class smile.feature.GAFeatureSelection
-
Constructor.
- GAFeatureSelection(GeneticAlgorithm.Selection, BitString.Crossover, double, double) - Constructor for class smile.feature.GAFeatureSelection
-
Constructor.
- GaussianProcessRegression<T> - Class in smile.regression
-
Gaussian Process for Regression.
- GaussianProcessRegression(T[], double[], MercerKernel<T>, double) - Constructor for class smile.regression.GaussianProcessRegression
-
Constructor.
- GaussianProcessRegression(T[], double[], T[], MercerKernel<T>, double) - Constructor for class smile.regression.GaussianProcessRegression
-
Constructor.
- GaussianProcessRegression.Trainer<T> - Class in smile.regression
-
Trainer for Gaussian Process for Regression.
- GaussianProcessRegression.Trainer(MercerKernel<T>, double) - Constructor for class smile.regression.GaussianProcessRegression.Trainer
-
Constructor.
- GeneticAlgorithm<T extends Chromosome> - Class in smile.gap
-
A genetic algorithm (GA) is a search heuristic that mimics the process of
natural evolution.
- GeneticAlgorithm(T[]) - Constructor for class smile.gap.GeneticAlgorithm
-
Constructor.
- GeneticAlgorithm(T[], GeneticAlgorithm.Selection) - Constructor for class smile.gap.GeneticAlgorithm
-
Constructor.
- GeneticAlgorithm.Selection - Enum in smile.gap
-
The way to select chromosomes from the population as parents to crossover.
- getAlpha() - Method in class smile.clustering.DeterministicAnnealing
-
Returns the annealing parameter.
- getBrachingFactor() - Method in class smile.clustering.BIRCH
-
Returns the branching factor, which is the maximum number of children nodes.
- getC() - Method in class smile.regression.SVR
-
Returns the soft margin penalty parameter.
- getCenter() - Method in class smile.projection.PCA
-
Returns the center of data.
- getCenter() - Method in class smile.projection.PPCA
-
Returns the center of data.
- getChildren() - Method in class smile.taxonomy.Concept
-
Get all children concepts.
- getClusterLabel() - Method in class smile.clustering.PartitionClustering
-
Returns the cluster labels of data.
- getClusterLabel() - Method in class smile.clustering.SpectralClustering
-
Returns the cluster labels of data.
- getClusterSize() - Method in class smile.clustering.PartitionClustering
-
Returns the size of clusters.
- getClusterSize() - Method in class smile.clustering.SpectralClustering
-
Returns the size of clusters.
- getConcept(String) - Method in class smile.taxonomy.Taxonomy
-
Returns a concept node which synset contains the keyword.
- getConcepts() - Method in class smile.taxonomy.Taxonomy
-
Returns all named concepts from this taxonomy
- getCoordinates() - Method in class smile.manifold.IsoMap
-
Returns the coordinates of projected data.
- getCoordinates() - Method in class smile.manifold.LaplacianEigenmap
-
Returns the coordinates of projected data.
- getCoordinates() - Method in class smile.manifold.LLE
-
Returns the coordinates of projected data.
- getCoordinates() - Method in class smile.mds.IsotonicMDS
-
Returns the coordinates of projected data.
- getCoordinates() - Method in class smile.mds.MDS
-
Returns the principal coordinates of projected data.
- getCoordinates() - Method in class smile.mds.SammonMapping
-
Returns the coordinates of projected data.
- getCoordinates() - Method in class smile.projection.KPCA
-
Returns the nonlinear principal component scores, i.e., the representation
of learning data in the nonlinear principal component space.
- getCumulativeVarianceProportion() - Method in class smile.projection.PCA
-
Returns the cumulative proportion of variance contained in principal components,
ordered from largest to smallest.
- getDensityAttractors() - Method in class smile.clustering.DENCLUE
-
Returns the density attractors of cluster.
- getDimension() - Method in class smile.classification.Maxent
-
Returns the dimension of input space.
- getEigenValues() - Method in class smile.mds.MDS
-
Returns the component scores, ordered from largest to smallest.
- getElitism() - Method in class smile.gap.GeneticAlgorithm
-
Returns the number of best chromosomes to copy to new population.
- getEpsilon() - Method in class smile.regression.SVR
-
Returns the loss function error threshold.
- getGaussianKernelWidth() - Method in class smile.clustering.SpectralClustering
-
Returns the width of Gaussian kernel.
- getHeatKernelWidth() - Method in class smile.manifold.LaplacianEigenmap
-
Returns the width of heat kernel.
- getHeight() - Method in class smile.clustering.HierarchicalClustering
-
Returns a set of n-1 non-decreasing real values, which are the clustering height,
i.e., the value of the criterion associated with the clustering method
for the particular agglomeration.
- getIndex() - Method in class smile.manifold.IsoMap
-
Returns the original sample index.
- getIndex() - Method in class smile.manifold.LaplacianEigenmap
-
Returns the original sample index.
- getIndex() - Method in class smile.manifold.LLE
-
Returns the original sample index.
- getInitialStateProbabilities() - Method in class smile.sequence.HMM
-
Returns the initial state probabilities.
- getKeywords() - Method in class smile.taxonomy.Concept
-
Returns the concept synonym set.
- getLearningRate() - Method in class smile.classification.NeuralNetwork
-
Returns the learning rate.
- getLearningRate() - Method in class smile.projection.GHA
-
Returns the learning rate.
- getLoadings() - Method in class smile.projection.PCA
-
Returns the variable loading matrix, ordered from largest to smallest
by corresponding eigenvalues.
- getLoadings() - Method in class smile.projection.PPCA
-
Returns the variable loading matrix, ordered from largest to smallest
by corresponding eigenvalues.
- getLocalSearchSteps() - Method in class smile.gap.GeneticAlgorithm
-
Gets the number of iterations of local search for Lamarckian algorithm.
- getLossFunction() - Method in class smile.regression.GradientTreeBoost
-
Returns the loss function.
- getMatrix() - Method in class smile.validation.ConfusionMatrix
-
- getMaxNeighbor() - Method in class smile.clustering.CLARANS
-
Returns the maximum number of neighbors examined during a search of local minima.
- getMaxRadius() - Method in class smile.clustering.BIRCH
-
Returns the maximum radius of a sub-cluster.
- getMinPts() - Method in class smile.clustering.DBScan
-
Returns the parameter of minimum number of neighbors.
- getMomentum() - Method in class smile.classification.NeuralNetwork
-
Returns the momentum factor.
- getNearestNeighborGraph() - Method in class smile.manifold.IsoMap
-
Returns the nearest neighbor graph.
- getNearestNeighborGraph() - Method in class smile.manifold.LaplacianEigenmap
-
Returns the nearest neighbor graph.
- getNearestNeighborGraph() - Method in class smile.manifold.LLE
-
Returns the nearest neighbor graph.
- getNoiseVariance() - Method in class smile.projection.PPCA
-
Returns the variance of noise.
- getNumClusters() - Method in class smile.clustering.PartitionClustering
-
Returns the number of clusters.
- getNumClusters() - Method in class smile.clustering.SpectralClustering
-
Returns the number of clusters.
- getNumLeaves() - Method in class smile.regression.GradientTreeBoost
-
Returns the (maximum) number of leaves in decision tree.
- getNumLocalMinima() - Method in class smile.clustering.CLARANS
-
Returns the number of local minima to search for.
- getPathFromRoot() - Method in class smile.taxonomy.Concept
-
Returns the path from root to the given node.
- getPathToRoot() - Method in class smile.taxonomy.Concept
-
Returns the path from the given node to the root.
- getPriori() - Method in class smile.classification.LDA
-
Returns a priori probabilities.
- getPriori() - Method in class smile.classification.NaiveBayes
-
Returns a priori probabilities.
- getPriori() - Method in class smile.classification.QDA
-
Returns a priori probabilities.
- getPriori() - Method in class smile.classification.RDA
-
Returns a priori probabilities.
- getProjection() - Method in class smile.classification.FLD
-
Returns the projection matrix W.
- getProjection() - Method in class smile.projection.GHA
-
Returns the projection matrix.
- getProjection() - Method in class smile.projection.KPCA
-
Returns the projection matrix.
- getProjection() - Method in class smile.projection.PCA
-
Returns the projection matrix W.
- getProjection() - Method in class smile.projection.PPCA
-
Returns the projection matrix.
- getProjection() - Method in class smile.projection.RandomProjection
-
Returns the projection matrix.
- getProportion() - Method in class smile.mds.MDS
-
Returns the proportion of variance contained in each eigenvectors,
ordered from largest to smallest.
- getProximity() - Method in class smile.clustering.linkage.Linkage
-
Returns the proximity matrix.
- getRadius() - Method in class smile.clustering.DBScan
-
Returns the radius of neighborhood.
- getRadius() - Method in class smile.clustering.MEC
-
Returns the radius of neighborhood.
- getRoot() - Method in class smile.taxonomy.Taxonomy
-
Returns the root node of taxonomy tree.
- getSamplingRate() - Method in class smile.regression.GradientTreeBoost
-
Returns the sampling rate for stochastic gradient tree boosting.
- getSigma() - Method in class smile.clustering.DENCLUE
-
Returns the smooth (standard deviation) parameter in the Gaussian kernel.
- getStateTransitionProbabilities() - Method in class smile.sequence.HMM
-
Returns the state transition probabilities.
- getStress() - Method in class smile.mds.IsotonicMDS
-
Returns the final stress achieved.
- getStress() - Method in class smile.mds.SammonMapping
-
Returns the final stress achieved.
- getSymbolEmissionProbabilities() - Method in class smile.sequence.HMM
-
Returns the symbol emission probabilities.
- getThreadPoolSize() - Static method in class smile.util.MulticoreExecutor
-
Returns the number of threads in the thread pool.
- getTolerance() - Method in class smile.regression.SVR
-
Returns the tolerance of convergence test.
- getTournamentProbability() - Method in class smile.gap.GeneticAlgorithm
-
Returns the best-player-wins probability in tournament selection.
- getTournamentSize() - Method in class smile.gap.GeneticAlgorithm
-
Returns the tournament size in tournament selection.
- getTree() - Method in class smile.clustering.HierarchicalClustering
-
Returns an n-1 by 2 matrix of which row i describes the merging of clusters at
step i of the clustering.
- getVariance() - Method in class smile.projection.PCA
-
Returns the principal component variances, ordered from largest to smallest,
which are the eigenvalues of the covariance or correlation matrix of learning data.
- getVarianceProportion() - Method in class smile.projection.PCA
-
Returns the proportion of variance contained in each principal component,
ordered from largest to smallest.
- getVariances() - Method in class smile.projection.KPCA
-
Returns the eigenvalues of kernel principal components, ordered from largest to smallest.
- getWeightDecay() - Method in class smile.classification.NeuralNetwork
-
Returns the weight decay factor.
- GHA - Class in smile.projection
-
Generalized Hebbian Algorithm.
- GHA(int, int, double) - Constructor for class smile.projection.GHA
-
Constructor.
- GHA(double[][], double) - Constructor for class smile.projection.GHA
-
Constructor.
- GMeans - Class in smile.clustering
-
G-Means clustering algorithm, an extended K-Means which tries to
automatically determine the number of clusters by normality test.
- GMeans(double[][], int) - Constructor for class smile.clustering.GMeans
-
Constructor.
- GradientTreeBoost - Class in smile.classification
-
Gradient boosting for classification.
- GradientTreeBoost(double[][], int[], int) - Constructor for class smile.classification.GradientTreeBoost
-
Constructor.
- GradientTreeBoost(double[][], int[], int, int, double, double) - Constructor for class smile.classification.GradientTreeBoost
-
Constructor.
- GradientTreeBoost(Attribute[], double[][], int[], int) - Constructor for class smile.classification.GradientTreeBoost
-
Constructor.
- GradientTreeBoost(Attribute[], double[][], int[], int, int, double, double) - Constructor for class smile.classification.GradientTreeBoost
-
Constructor.
- GradientTreeBoost - Class in smile.regression
-
Gradient boosting for regression.
- GradientTreeBoost(double[][], double[], int) - Constructor for class smile.regression.GradientTreeBoost
-
Constructor.
- GradientTreeBoost(double[][], double[], GradientTreeBoost.Loss, int, int, double, double) - Constructor for class smile.regression.GradientTreeBoost
-
Constructor.
- GradientTreeBoost(Attribute[], double[][], double[], int) - Constructor for class smile.regression.GradientTreeBoost
-
Constructor.
- GradientTreeBoost(Attribute[], double[][], double[], GradientTreeBoost.Loss, int, int, double, double) - Constructor for class smile.regression.GradientTreeBoost
-
Constructor.
- GradientTreeBoost.Loss - Enum in smile.regression
-
Regression loss function.
- GradientTreeBoost.Trainer - Class in smile.classification
-
Trainer for GradientTreeBoost classifiers.
- GradientTreeBoost.Trainer(int) - Constructor for class smile.classification.GradientTreeBoost.Trainer
-
Constructor.
- GradientTreeBoost.Trainer(Attribute[], int) - Constructor for class smile.classification.GradientTreeBoost.Trainer
-
Constructor.
- GradientTreeBoost.Trainer - Class in smile.regression
-
Trainer for GradientTreeBoost regression.
- GradientTreeBoost.Trainer(int) - Constructor for class smile.regression.GradientTreeBoost.Trainer
-
Constructor.
- GradientTreeBoost.Trainer(Attribute[], int) - Constructor for class smile.regression.GradientTreeBoost.Trainer
-
Constructor.
- GrowingNeuralGas - Class in smile.clustering
-
Growing Neural Gas.
- GrowingNeuralGas(int) - Constructor for class smile.clustering.GrowingNeuralGas
-
Constructor.
- GrowingNeuralGas(int, double, double, int, int, double, double) - Constructor for class smile.clustering.GrowingNeuralGas
-
Constructor.
- GrowingNeuralGas.Neuron - Class in smile.clustering
-
The neuron vertex in the growing neural gas network.
- GrowingNeuralGas.Neuron(double[], GrowingNeuralGas.Neuron[]) - Constructor for class smile.clustering.GrowingNeuralGas.Neuron
-
Constructor.
- LamarckianChromosome - Interface in smile.gap
-
Artificial chromosomes used in Lamarckian algorithm that is a hybrid of
of evolutionary computation and a local improver such as hill-climbing.
- LaplacianEigenmap - Class in smile.manifold
-
Laplacian Eigenmap.
- LaplacianEigenmap(double[][], int, int) - Constructor for class smile.manifold.LaplacianEigenmap
-
Constructor.
- LaplacianEigenmap(double[][], int, int, double) - Constructor for class smile.manifold.LaplacianEigenmap
-
Constructor.
- LASSO - Class in smile.regression
-
Least absolute shrinkage and selection operator.
- LASSO(double[][], double[], double) - Constructor for class smile.regression.LASSO
-
Constructor.
- LASSO(double[][], double[], double, double, int) - Constructor for class smile.regression.LASSO
-
Constructor.
- LASSO.Trainer - Class in smile.regression
-
Trainer for LASSO regression.
- LASSO.Trainer(double) - Constructor for class smile.regression.LASSO.Trainer
-
Constructor.
- LDA - Class in smile.classification
-
Linear discriminant analysis.
- LDA(double[][], int[]) - Constructor for class smile.classification.LDA
-
Constructor.
- LDA(double[][], int[], double[]) - Constructor for class smile.classification.LDA
-
Constructor.
- LDA(double[][], int[], double) - Constructor for class smile.classification.LDA
-
Constructor.
- LDA(double[][], int[], double[], double) - Constructor for class smile.classification.LDA
-
Constructor.
- LDA.Trainer - Class in smile.classification
-
Trainer for linear discriminant analysis.
- LDA.Trainer() - Constructor for class smile.classification.LDA.Trainer
-
Constructor.
- learn(double, PrintStream) - Method in class smile.association.ARM
-
Mines the association rules.
- learn(double) - Method in class smile.association.ARM
-
Mines the association rules.
- learn() - Method in class smile.association.FPGrowth
-
Mines the frequent item sets.
- learn(PrintStream) - Method in class smile.association.FPGrowth
-
Mines the frequent item sets.
- learn(double[][], int[]) - Static method in class smile.classification.KNN
-
Learn the 1-NN classifier from data of type double[].
- learn(double[][], int[], int) - Static method in class smile.classification.KNN
-
Learn the K-NN classifier from data of type double[].
- learn(double[], int) - Method in class smile.classification.NaiveBayes
-
Online learning of naive Bayes classifier on a sequence,
which is modeled as a bag of words.
- learn(double[][], int[]) - Method in class smile.classification.NaiveBayes
-
Online learning of naive Bayes classifier on sequences,
which are modeled as a bag of words.
- learn(double[], double[], double) - Method in class smile.classification.NeuralNetwork
-
Update the neural network with given instance and associated target value.
- learn(double[], int) - Method in class smile.classification.NeuralNetwork
-
- learn(double[], int, double) - Method in class smile.classification.NeuralNetwork
-
Online update the neural network with a new training instance.
- learn(double[][], int[]) - Method in class smile.classification.NeuralNetwork
-
Trains the neural network with the given dataset for one epoch by
stochastic gradient descent.
- learn(T, int) - Method in interface smile.classification.OnlineClassifier
-
Online update the classifier with a new training instance.
- learn(T, int) - Method in class smile.classification.SVM
-
- learn(T, int, double) - Method in class smile.classification.SVM
-
Online update the classifier with a new training instance.
- learn(T[], int[]) - Method in class smile.classification.SVM
-
Trains the SVM with the given dataset for one epoch.
- learn(T[], int[], double[]) - Method in class smile.classification.SVM
-
Trains the SVM with the given dataset for one epoch.
- learn(int, int, ClassifierTrainer<double[]>, ClassificationMeasure, double[][], int[], int) - Method in class smile.feature.GAFeatureSelection
-
Genetic algorithm based feature selection for classification.
- learn(int, int, ClassifierTrainer<double[]>, ClassificationMeasure, double[][], int[], double[][], int[]) - Method in class smile.feature.GAFeatureSelection
-
Genetic algorithm based feature selection for classification.
- learn(int, int, RegressionTrainer<double[]>, RegressionMeasure, double[][], double[], int) - Method in class smile.feature.GAFeatureSelection
-
Genetic algorithm based feature selection for regression.
- learn(int, int, RegressionTrainer<double[]>, RegressionMeasure, double[][], double[], double[][], double[]) - Method in class smile.feature.GAFeatureSelection
-
Genetic algorithm based feature selection for regression.
- learn(RNNSearch<double[], double[]>, double[][], double) - Method in class smile.neighbor.MPLSH
-
Train the posteriori multiple probe algorithm.
- learn(RNNSearch<double[], double[]>, double[][], double, int) - Method in class smile.neighbor.MPLSH
-
Train the posteriori multiple probe algorithm.
- learn(RNNSearch<double[], double[]>, double[][], double, int, double) - Method in class smile.neighbor.MPLSH
-
Train the posteriori multiple probe algorithm.
- learn(double[]) - Method in class smile.projection.GHA
-
Update the model with a new sample.
- learn(T, double) - Method in interface smile.regression.OnlineRegression
-
Online update the regression model with a new training instance.
- learn(O[][], int) - Method in class smile.sequence.HMM
-
With this HMM as the initial model, learn an HMM by the Baum-Welch
algorithm.
- learn(int[][], int) - Method in class smile.sequence.HMM
-
With this HMM as the initial model, learn an HMM by the Baum-Welch
algorithm.
- learnGaussianRadialBasis(double[][], double[][]) - Static method in class smile.util.SmileUtils
-
Learns Gaussian RBF function and centers from data.
- learnGaussianRadialBasis(double[][], double[][], int) - Static method in class smile.util.SmileUtils
-
Learns Gaussian RBF function and centers from data.
- learnGaussianRadialBasis(double[][], double[][], double) - Static method in class smile.util.SmileUtils
-
Learns Gaussian RBF function and centers from data.
- learnGaussianRadialBasis(T[], T[], Metric<T>) - Static method in class smile.util.SmileUtils
-
Learns Gaussian RBF function and centers from data.
- learnGaussianRadialBasis(T[], T[], Metric<T>, int) - Static method in class smile.util.SmileUtils
-
Learns Gaussian RBF function and centers from data.
- learnGaussianRadialBasis(T[], T[], Metric<T>, double) - Static method in class smile.util.SmileUtils
-
Learns Gaussian RBF function and centers from data.
- length - Variable in class smile.gap.BitString
-
The length of chromosome.
- line - Variable in class smile.neighbor.SNLSH.AbstractSentence
-
- LinearSearch<T> - Class in smile.neighbor
-
Brute force linear nearest neighbor search.
- LinearSearch(T[], Distance<T>) - Constructor for class smile.neighbor.LinearSearch
-
Constructor.
- Linkage - Class in smile.clustering.linkage
-
A measure of dissimilarity between clusters (i.e.
- Linkage() - Constructor for class smile.clustering.linkage.Linkage
-
- LLE - Class in smile.manifold
-
Locally Linear Embedding.
- LLE(double[][], int, int) - Constructor for class smile.manifold.LLE
-
Constructor.
- lloyd(double[][], int) - Static method in class smile.clustering.KMeans
-
The implementation of Lloyd algorithm as a benchmark.
- lloyd(double[][], int, int) - Static method in class smile.clustering.KMeans
-
The implementation of Lloyd algorithm as a benchmark.
- lloyd(double[][], int, int, int) - Static method in class smile.clustering.KMeans
-
The implementation of Lloyd algorithm as a benchmark.
- LLSImputation - Class in smile.imputation
-
Local least squares missing value imputation.
- LLSImputation(int) - Constructor for class smile.imputation.LLSImputation
-
Constructor.
- LogisticRegression - Class in smile.classification
-
Logistic regression.
- LogisticRegression(double[][], int[]) - Constructor for class smile.classification.LogisticRegression
-
Constructor.
- LogisticRegression(double[][], int[], double) - Constructor for class smile.classification.LogisticRegression
-
Constructor.
- LogisticRegression(double[][], int[], double, double, int) - Constructor for class smile.classification.LogisticRegression
-
Constructor.
- LogisticRegression.Trainer - Class in smile.classification
-
Trainer for logistic regression.
- LogisticRegression.Trainer() - Constructor for class smile.classification.LogisticRegression.Trainer
-
Constructor.
- loglikelihood() - Method in class smile.classification.LogisticRegression
-
Returns the log-likelihood of model.
- loglikelihood() - Method in class smile.classification.Maxent
-
Returns the log-likelihood of model.
- logp(int[], int[]) - Method in class smile.sequence.HMM
-
Returns the log joint probability of an observation sequence along a
state sequence given this HMM.
- logp(int[]) - Method in class smile.sequence.HMM
-
Returns the logarithm probability of an observation sequence given this
HMM.
- logp(O[], int[]) - Method in class smile.sequence.HMM
-
Returns the log joint probability of an observation sequence along a
state sequence given this HMM.
- logp(O[]) - Method in class smile.sequence.HMM
-
Returns the logarithm probability of an observation sequence given this
HMM.
- LOOCV - Class in smile.validation
-
Leave-one-out cross validation.
- LOOCV(int) - Constructor for class smile.validation.LOOCV
-
Constructor.
- loocv(ClassifierTrainer<T>, T[], int[]) - Static method in class smile.validation.Validation
-
Leave-one-out cross validation of a classification model.
- loocv(RegressionTrainer<T>, T[], double[]) - Static method in class smile.validation.Validation
-
Leave-one-out cross validation of a regression model.
- loocv(ClassifierTrainer<T>, T[], int[], ClassificationMeasure) - Static method in class smile.validation.Validation
-
Leave-one-out cross validation of a classification model.
- loocv(ClassifierTrainer<T>, T[], int[], ClassificationMeasure[]) - Static method in class smile.validation.Validation
-
Leave-one-out cross validation of a classification model.
- loocv(RegressionTrainer<T>, T[], double[], RegressionMeasure) - Static method in class smile.validation.Validation
-
Leave-one-out cross validation of a regression model.
- loocv(RegressionTrainer<T>, T[], double[], RegressionMeasure[]) - Static method in class smile.validation.Validation
-
Leave-one-out cross validation of a regression model.
- lowestCommonAncestor(String, String) - Method in class smile.taxonomy.Taxonomy
-
Returns the lowest common ancestor (LCA) of concepts v and w.
- lowestCommonAncestor(Concept, Concept) - Method in class smile.taxonomy.Taxonomy
-
Returns the lowest common ancestor (LCA) of concepts v and w.
- LSH<E> - Class in smile.neighbor
-
Locality-Sensitive Hashing.
- LSH(double[][], E[]) - Constructor for class smile.neighbor.LSH
-
Constructor.
- LSH(double[][], E[], double) - Constructor for class smile.neighbor.LSH
-
Constructor.
- LSH(double[][], E[], double, int) - Constructor for class smile.neighbor.LSH
-
Constructor.
- LSH(int, int, int) - Constructor for class smile.neighbor.LSH
-
Constructor.
- LSH(int, int, int, double) - Constructor for class smile.neighbor.LSH
-
Constructor.
- LSH(int, int, int, double, int) - Constructor for class smile.neighbor.LSH
-
Constructor.
- n - Variable in class smile.clustering.NeuralMap.Neuron
-
The number of samples associated with this neuron.
- NaiveBayes - Class in smile.classification
-
Naive Bayes classifier.
- NaiveBayes(double[], Distribution[][]) - Constructor for class smile.classification.NaiveBayes
-
Constructor of general naive Bayes classifier.
- NaiveBayes(NaiveBayes.Model, int, int) - Constructor for class smile.classification.NaiveBayes
-
Constructor of naive Bayes classifier for document classification.
- NaiveBayes(NaiveBayes.Model, int, int, double) - Constructor for class smile.classification.NaiveBayes
-
Constructor of naive Bayes classifier for document classification.
- NaiveBayes(NaiveBayes.Model, double[], int) - Constructor for class smile.classification.NaiveBayes
-
Constructor of naive Bayes classifier for document classification.
- NaiveBayes(NaiveBayes.Model, double[], int, double) - Constructor for class smile.classification.NaiveBayes
-
Constructor of naive Bayes classifier for document classification.
- NaiveBayes.Model - Enum in smile.classification
-
The generation models of naive Bayes classifier.
- NaiveBayes.Trainer - Class in smile.classification
-
Trainer for naive Bayes classifier for document classification.
- NaiveBayes.Trainer(NaiveBayes.Model, int, int) - Constructor for class smile.classification.NaiveBayes.Trainer
-
Constructor.
- NaiveBayes.Trainer(NaiveBayes.Model, double[], int) - Constructor for class smile.classification.NaiveBayes.Trainer
-
Constructor.
- nearest(E) - Method in class smile.neighbor.CoverTree
-
- nearest(double[]) - Method in class smile.neighbor.KDTree
-
- nearest(T) - Method in class smile.neighbor.LinearSearch
-
- nearest(double[]) - Method in class smile.neighbor.LSH
-
- nearest(double[]) - Method in class smile.neighbor.MPLSH
-
- nearest(double[], double, int) - Method in class smile.neighbor.MPLSH
-
Returns the approximate nearest neighbor.
- nearest(K) - Method in interface smile.neighbor.NearestNeighborSearch
-
Search the nearest neighbor to the given sample.
- nearest(SNLSH.AbstractSentence) - Method in class smile.neighbor.SNLSH
-
- NearestNeighborSearch<K,V> - Interface in smile.neighbor
-
Nearest neighbor search, also known as proximity search, similarity search
or closest point search, is an optimization problem for finding closest
points in metric spaces.
- Neighbor<K,V> - Class in smile.neighbor
-
The object encapsulates the results of nearest neighbor search.
- Neighbor(K, V, int, double) - Constructor for class smile.neighbor.Neighbor
-
Constructor.
- neighbors - Variable in class smile.clustering.GrowingNeuralGas.Neuron
-
Direct connected neighbors.
- neighbors - Variable in class smile.clustering.NeuralMap.Neuron
-
Connected neighbors.
- NeuralGas - Class in smile.clustering
-
Neural Gas soft competitive learning algorithm.
- NeuralGas(double[][], int) - Constructor for class smile.clustering.NeuralGas
-
Constructor.
- NeuralGas(double[][], int, double, double, double, double, int) - Constructor for class smile.clustering.NeuralGas
-
Constructor.
- NeuralMap - Class in smile.clustering
-
NeuralMap is an efficient competitive learning algorithm inspired by growing
neural gas and BIRCH.
- NeuralMap(int, double, double, double, int, int) - Constructor for class smile.clustering.NeuralMap
-
Constructor.
- NeuralMap.Neuron - Class in smile.clustering
-
The neurons in the network.
- NeuralMap.Neuron(double[]) - Constructor for class smile.clustering.NeuralMap.Neuron
-
Constructor.
- NeuralNetwork - Class in smile.classification
-
Multilayer perceptron neural network.
- NeuralNetwork(NeuralNetwork.ErrorFunction, int...) - Constructor for class smile.classification.NeuralNetwork
-
Constructor.
- NeuralNetwork(NeuralNetwork.ErrorFunction, NeuralNetwork.ActivationFunction, int...) - Constructor for class smile.classification.NeuralNetwork
-
Constructor.
- NeuralNetwork.ActivationFunction - Enum in smile.classification
-
The types of activation functions in output layer.
- NeuralNetwork.ErrorFunction - Enum in smile.classification
-
The types of error functions.
- NeuralNetwork.Trainer - Class in smile.classification
-
Trainer for neural networks.
- NeuralNetwork.Trainer(NeuralNetwork.ErrorFunction, int...) - Constructor for class smile.classification.NeuralNetwork.Trainer
-
Constructor.
- NeuralNetwork.Trainer(NeuralNetwork.ErrorFunction, NeuralNetwork.ActivationFunction, int...) - Constructor for class smile.classification.NeuralNetwork.Trainer
-
Constructor.
- neurons() - Method in class smile.clustering.GrowingNeuralGas
-
Returns the neurons in the network.
- neurons() - Method in class smile.clustering.NeuralMap
-
Returns the set of neurons.
- newInstance() - Method in class smile.gap.BitString
-
- newInstance() - Method in interface smile.gap.Chromosome
-
Returns a new random instance.
- ni - Variable in class smile.clustering.SOM.Neuron
-
The count of each class that best matched samples belong to.
- Nominal2Binary - Class in smile.feature
-
Nominal variable to binary dummy variables feature generator.
- Nominal2Binary(Attribute[]) - Constructor for class smile.feature.Nominal2Binary
-
Constructor.
- Nominal2SparseBinary - Class in smile.feature
-
Nominal variables to sparse binary representation convertor.
- Nominal2SparseBinary(Attribute[]) - Constructor for class smile.feature.Nominal2SparseBinary
-
Constructor.
- NumericAttributeFeature - Class in smile.feature
-
Numeric attribute normalization/standardization feature generator.
- NumericAttributeFeature(Attribute[], NumericAttributeFeature.Scaling) - Constructor for class smile.feature.NumericAttributeFeature
-
Constructor.
- NumericAttributeFeature(Attribute[], NumericAttributeFeature.Scaling, double[][]) - Constructor for class smile.feature.NumericAttributeFeature
-
Constructor.
- NumericAttributeFeature(Attribute[], double, double, double[][]) - Constructor for class smile.feature.NumericAttributeFeature
-
Constructor.
- NumericAttributeFeature(Attribute[], double[][]) - Constructor for class smile.feature.NumericAttributeFeature
-
Constructor.
- NumericAttributeFeature.Scaling - Enum in smile.feature
-
The types of data scaling.
- numStates() - Method in class smile.sequence.HMM
-
Returns the number of states.
- numSymbols() - Method in class smile.sequence.HMM
-
Returns the number of emission symbols.
- p(int[], int[]) - Method in class smile.sequence.HMM
-
Returns the joint probability of an observation sequence along a state
sequence given this HMM.
- p(int[]) - Method in class smile.sequence.HMM
-
Returns the probability of an observation sequence given this HMM.
- p(O[], int[]) - Method in class smile.sequence.HMM
-
Returns the joint probability of an observation sequence along a state
sequence given this HMM.
- p(O[]) - Method in class smile.sequence.HMM
-
Returns the probability of an observation sequence given this HMM.
- partition(int) - Method in class smile.clustering.BIRCH
-
Clustering leaves of CF tree into k clusters.
- partition(int, int) - Method in class smile.clustering.BIRCH
-
Clustering leaves of CF tree into k clusters.
- partition(int) - Method in class smile.clustering.GrowingNeuralGas
-
Clustering neurons into k clusters.
- partition(int) - Method in class smile.clustering.HierarchicalClustering
-
Cuts a tree into several groups by specifying the desired number.
- partition(double) - Method in class smile.clustering.HierarchicalClustering
-
Cuts a tree into several groups by specifying the cut height.
- partition(int) - Method in class smile.clustering.NeuralMap
-
Clustering neurons into k clusters.
- partition(int, int) - Method in class smile.clustering.NeuralMap
-
Clustering neurons into k clusters.
- partition(int) - Method in class smile.clustering.SOM
-
Clustering the neurons into k groups.
- PartitionClustering<T> - Class in smile.clustering
-
Abstract class of partition clustering.
- PCA - Class in smile.projection
-
Principal component analysis.
- PCA(double[][]) - Constructor for class smile.projection.PCA
-
Constructor.
- PCA(double[][], boolean) - Constructor for class smile.projection.PCA
-
Constructor.
- population() - Method in class smile.gap.GeneticAlgorithm
-
Returns the population of current generation.
- PPCA - Class in smile.projection
-
Probabilistic principal component analysis.
- PPCA(double[][], int) - Constructor for class smile.projection.PPCA
-
Constructor.
- Precision - Class in smile.validation
-
The precision or positive predictive value (PPV) is ratio of true positives
to combined true and false positives, which is different from sensitivity.
- Precision() - Constructor for class smile.validation.Precision
-
- predict(double[]) - Method in class smile.classification.AdaBoost
-
- predict(double[], double[]) - Method in class smile.classification.AdaBoost
-
Predicts the class label of an instance and also calculate a posteriori
probabilities.
- predict(T) - Method in interface smile.classification.Classifier
-
Predicts the class label of an instance.
- predict(T, double[]) - Method in interface smile.classification.Classifier
-
Predicts the class label of an instance and also calculate a posteriori
probabilities.
- predict(double[]) - Method in class smile.classification.DecisionTree
-
- predict(double[], double[]) - Method in class smile.classification.DecisionTree
-
Predicts the class label of an instance and also calculate a posteriori
probabilities.
- predict(double[]) - Method in class smile.classification.FLD
-
- predict(double[], double[]) - Method in class smile.classification.FLD
-
Predicts the class label of an instance and also calculate a posteriori
probabilities.
- predict(double[]) - Method in class smile.classification.GradientTreeBoost
-
- predict(double[], double[]) - Method in class smile.classification.GradientTreeBoost
-
- predict(T) - Method in class smile.classification.KNN
-
- predict(T, double[]) - Method in class smile.classification.KNN
-
- predict(double[]) - Method in class smile.classification.LDA
-
- predict(double[], double[]) - Method in class smile.classification.LDA
-
- predict(double[]) - Method in class smile.classification.LogisticRegression
-
- predict(double[], double[]) - Method in class smile.classification.LogisticRegression
-
- predict(int[]) - Method in class smile.classification.Maxent
-
- predict(int[], double[]) - Method in class smile.classification.Maxent
-
- predict(double[]) - Method in class smile.classification.NaiveBayes
-
Predict the class of an instance.
- predict(double[], double[]) - Method in class smile.classification.NaiveBayes
-
Predict the class of an instance.
- predict(double[], double[]) - Method in class smile.classification.NeuralNetwork
-
Predict the target value of a given instance.
- predict(double[]) - Method in class smile.classification.NeuralNetwork
-
Predict the class of a given instance.
- predict(double[]) - Method in class smile.classification.QDA
-
- predict(double[], double[]) - Method in class smile.classification.QDA
-
- predict(double[]) - Method in class smile.classification.RandomForest
-
- predict(double[], double[]) - Method in class smile.classification.RandomForest
-
- predict(T) - Method in class smile.classification.RBFNetwork
-
- predict(T, double[]) - Method in class smile.classification.RBFNetwork
-
Predicts the class label of an instance and also calculate a posteriori
probabilities.
- predict(double[]) - Method in class smile.classification.RDA
-
- predict(double[], double[]) - Method in class smile.classification.RDA
-
- predict(T) - Method in class smile.classification.SVM
-
- predict(T, double[]) - Method in class smile.classification.SVM
-
Predicts the class label of an instance and also calculate a posteriori
probabilities.
- predict(double[]) - Method in class smile.clustering.BIRCH
-
Cluster a new instance to the nearest CF leaf.
- predict(T) - Method in class smile.clustering.CLARANS
-
Cluster a new instance.
- predict(T) - Method in interface smile.clustering.Clustering
-
Cluster a new instance.
- predict(T) - Method in class smile.clustering.DBScan
-
Cluster a new instance.
- predict(double[]) - Method in class smile.clustering.DENCLUE
-
- predict(double[]) - Method in class smile.clustering.GrowingNeuralGas
-
Cluster a new instance to the nearest neuron.
- predict(double[]) - Method in class smile.clustering.KMeans
-
Cluster a new instance.
- predict(T) - Method in class smile.clustering.MEC
-
Cluster a new instance.
- predict(double[]) - Method in class smile.clustering.NeuralMap
-
Cluster a new instance to the nearest neuron.
- predict(double[]) - Method in class smile.clustering.SIB
-
Cluster a new instance.
- predict(SparseArray) - Method in class smile.clustering.SIB
-
Cluster a new instance.
- predict(double[]) - Method in class smile.clustering.SOM
-
Cluster a new instance to the nearest neuron.
- predict(T) - Method in class smile.regression.GaussianProcessRegression
-
- predict(double[]) - Method in class smile.regression.GradientTreeBoost
-
- predict(double[]) - Method in class smile.regression.LASSO
-
- predict(double[]) - Method in class smile.regression.OLS
-
- predict(double[]) - Method in class smile.regression.RandomForest
-
- predict(T) - Method in class smile.regression.RBFNetwork
-
- predict(T) - Method in interface smile.regression.Regression
-
Predicts the dependent variable of an instance.
- predict(double[]) - Method in class smile.regression.RegressionTree
-
- predict(int[]) - Method in class smile.regression.RegressionTree
-
Predicts the dependent variable of an instance with sparse binary features.
- predict(double[]) - Method in class smile.regression.RidgeRegression
-
- predict(T) - Method in class smile.regression.SVR
-
- predict(double[][]) - Method in class smile.sequence.CRF
-
- predict(int[][]) - Method in class smile.sequence.CRF
-
- predict(int[]) - Method in class smile.sequence.HMM
-
Returns the most likely state sequence given the observation sequence by
the Viterbi algorithm, which maximizes the probability of
P(I | O, HMM)
.
- predict(O[]) - Method in class smile.sequence.HMM
-
Returns the most likely state sequence given the observation sequence by
the Viterbi algorithm, which maximizes the probability of
P(I | O, HMM)
.
- predict(T[]) - Method in interface smile.sequence.SequenceLabeler
-
Predicts the sequence labels.
- project(double[]) - Method in class smile.classification.FLD
-
- project(double[][]) - Method in class smile.classification.FLD
-
- project(double[]) - Method in class smile.projection.GHA
-
- project(double[][]) - Method in class smile.projection.GHA
-
- project(T) - Method in class smile.projection.KPCA
-
- project(T[]) - Method in class smile.projection.KPCA
-
- project(double[]) - Method in class smile.projection.PCA
-
- project(double[][]) - Method in class smile.projection.PCA
-
- project(double[]) - Method in class smile.projection.PPCA
-
- project(double[][]) - Method in class smile.projection.PPCA
-
- project(T) - Method in interface smile.projection.Projection
-
Project a data point to the feature space.
- project(T[]) - Method in interface smile.projection.Projection
-
Project a set of data toe the feature space.
- project(double[]) - Method in class smile.projection.RandomProjection
-
- project(double[][]) - Method in class smile.projection.RandomProjection
-
- Projection<T> - Interface in smile.projection
-
A projection is a kind of feature extraction technique that transforms data
from the input space to a feature space, linearly or nonlinearly.
- purge(int) - Method in class smile.clustering.NeuralMap
-
Removes neurons with the number of samples less than a given threshold.
- put(double[], E) - Method in class smile.neighbor.LSH
-
Insert an item into the hash table.
- put(double[], E) - Method in class smile.neighbor.MPLSH
-
Insert an item into the hash table.
- put(SNLSH.AbstractSentence, E) - Method in class smile.neighbor.SNLSH
-
- pvalue() - Method in class smile.regression.OLS
-
Returns the p-value of goodness-of-fit test.
- RandIndex - Class in smile.validation
-
Rand Index.
- RandIndex() - Constructor for class smile.validation.RandIndex
-
- RandomForest - Class in smile.classification
-
Random forest for classification.
- RandomForest(double[][], int[], int) - Constructor for class smile.classification.RandomForest
-
Constructor.
- RandomForest(double[][], int[], int, int) - Constructor for class smile.classification.RandomForest
-
Constructor.
- RandomForest(Attribute[], double[][], int[], int) - Constructor for class smile.classification.RandomForest
-
Constructor.
- RandomForest(Attribute[], double[][], int[], int, int) - Constructor for class smile.classification.RandomForest
-
Constructor.
- RandomForest - Class in smile.regression
-
Random forest for regression.
- RandomForest(double[][], double[], int) - Constructor for class smile.regression.RandomForest
-
Constructor.
- RandomForest(double[][], double[], int, int, int) - Constructor for class smile.regression.RandomForest
-
Constructor.
- RandomForest(Attribute[], double[][], double[], int) - Constructor for class smile.regression.RandomForest
-
Constructor.
- RandomForest(Attribute[], double[][], double[], int, int, int) - Constructor for class smile.regression.RandomForest
-
Constructor.
- RandomForest.Trainer - Class in smile.classification
-
Trainer for random forest classifiers.
- RandomForest.Trainer(int) - Constructor for class smile.classification.RandomForest.Trainer
-
Constructor.
- RandomForest.Trainer(Attribute[], int) - Constructor for class smile.classification.RandomForest.Trainer
-
Constructor.
- RandomForest.Trainer - Class in smile.regression
-
Trainer for random forest.
- RandomForest.Trainer(int) - Constructor for class smile.regression.RandomForest.Trainer
-
Constructor.
- RandomForest.Trainer(Attribute[], int) - Constructor for class smile.regression.RandomForest.Trainer
-
Constructor.
- RandomProjection - Class in smile.projection
-
Random projection is a promising dimensionality reduction technique for
learning mixtures of Gaussians.
- RandomProjection(int, int) - Constructor for class smile.projection.RandomProjection
-
Constructor.
- RandomProjection(int, int, boolean) - Constructor for class smile.projection.RandomProjection
-
Constructor.
- range(E, double, List<Neighbor<E, E>>) - Method in class smile.neighbor.BKTree
-
- range(E, int, List<Neighbor<E, E>>) - Method in class smile.neighbor.BKTree
-
Search the neighbors in the given radius of query object, i.e.
- range(E, double, List<Neighbor<E, E>>) - Method in class smile.neighbor.CoverTree
-
- range(double[], double, List<Neighbor<double[], E>>) - Method in class smile.neighbor.KDTree
-
- range(T, double, List<Neighbor<T, T>>) - Method in class smile.neighbor.LinearSearch
-
- range(double[], double, List<Neighbor<double[], E>>) - Method in class smile.neighbor.LSH
-
- range(double[], double, List<Neighbor<double[], E>>) - Method in class smile.neighbor.MPLSH
-
- range(double[], double, List<Neighbor<double[], E>>, double, int) - Method in class smile.neighbor.MPLSH
-
Search the neighbors in the given radius of query object, i.e.
- range(K, double, List<Neighbor<K, V>>) - Method in interface smile.neighbor.RNNSearch
-
Search the neighbors in the given radius of query object, i.e.
- range(SNLSH.AbstractSentence, double, List<Neighbor<SNLSH.AbstractSentence, E>>) - Method in class smile.neighbor.SNLSH
-
- rank(double[][], int[]) - Method in interface smile.feature.FeatureRanking
-
Univariate feature ranking.
- rank(double[][], int[]) - Method in class smile.feature.SignalNoiseRatio
-
- rank(double[][], int[]) - Method in class smile.feature.SumSquaresRatio
-
- RBFNetwork<T> - Class in smile.classification
-
Radial basis function networks.
- RBFNetwork(T[], int[], Metric<T>, RadialBasisFunction, T[]) - Constructor for class smile.classification.RBFNetwork
-
Constructor.
- RBFNetwork(T[], int[], Metric<T>, RadialBasisFunction[], T[]) - Constructor for class smile.classification.RBFNetwork
-
Constructor.
- RBFNetwork(T[], int[], Metric<T>, RadialBasisFunction, T[], boolean) - Constructor for class smile.classification.RBFNetwork
-
Constructor.
- RBFNetwork(T[], int[], Metric<T>, RadialBasisFunction[], T[], boolean) - Constructor for class smile.classification.RBFNetwork
-
Constructor.
- RBFNetwork<T> - Class in smile.regression
-
Radial basis function network.
- RBFNetwork(T[], double[], Metric<T>, RadialBasisFunction, T[]) - Constructor for class smile.regression.RBFNetwork
-
Constructor.
- RBFNetwork(T[], double[], Metric<T>, RadialBasisFunction[], T[]) - Constructor for class smile.regression.RBFNetwork
-
Constructor.
- RBFNetwork(T[], double[], Metric<T>, RadialBasisFunction, T[], boolean) - Constructor for class smile.regression.RBFNetwork
-
Constructor.
- RBFNetwork(T[], double[], Metric<T>, RadialBasisFunction[], T[], boolean) - Constructor for class smile.regression.RBFNetwork
-
Constructor.
- RBFNetwork.Trainer<T> - Class in smile.classification
-
Trainer for RBF networks.
- RBFNetwork.Trainer(Metric<T>) - Constructor for class smile.classification.RBFNetwork.Trainer
-
Constructor.
- RBFNetwork.Trainer<T> - Class in smile.regression
-
Trainer for RBF networks.
- RBFNetwork.Trainer(Metric<T>) - Constructor for class smile.regression.RBFNetwork.Trainer
-
Constructor.
- RDA - Class in smile.classification
-
Regularized discriminant analysis.
- RDA(double[][], int[], double) - Constructor for class smile.classification.RDA
-
Constructor.
- RDA(double[][], int[], double[], double) - Constructor for class smile.classification.RDA
-
Constructor.
- RDA(double[][], int[], double[], double, double) - Constructor for class smile.classification.RDA
-
Constructor.
- RDA.Trainer - Class in smile.classification
-
Trainer for regularized discriminant analysis.
- RDA.Trainer(double) - Constructor for class smile.classification.RDA.Trainer
-
Constructor.
- Recall - Class in smile.validation
-
In information retrieval area, sensitivity is called recall.
- Recall() - Constructor for class smile.validation.Recall
-
- Regression<T> - Interface in smile.regression
-
Regression analysis includes any techniques for modeling and analyzing
the relationship between a dependent variable and one or more independent
variables.
- RegressionMeasure - Interface in smile.validation
-
An abstract interface to measure the regression performance.
- RegressionTrainer<T> - Class in smile.regression
-
Abstract regression model trainer.
- RegressionTrainer() - Constructor for class smile.regression.RegressionTrainer
-
Constructor.
- RegressionTrainer(Attribute[]) - Constructor for class smile.regression.RegressionTrainer
-
Constructor.
- RegressionTree - Class in smile.regression
-
Decision tree for regression.
- RegressionTree(double[][], double[], int) - Constructor for class smile.regression.RegressionTree
-
Constructor.
- RegressionTree(Attribute[], double[][], double[], int) - Constructor for class smile.regression.RegressionTree
-
Constructor.
- RegressionTree(Attribute[], double[][], double[], int, int[][], int[], RegressionTree.NodeOutput) - Constructor for class smile.regression.RegressionTree
-
Constructor.
- RegressionTree(int, int[][], double[], int) - Constructor for class smile.regression.RegressionTree
-
Constructor.
- RegressionTree(int, int[][], double[], int, int[], RegressionTree.NodeOutput) - Constructor for class smile.regression.RegressionTree
-
Constructor.
- RegressionTree.NodeOutput - Interface in smile.regression
-
An interface to calculate node output.
- RegressionTree.Trainer - Class in smile.regression
-
Trainer for regression tree.
- RegressionTree.Trainer(int) - Constructor for class smile.regression.RegressionTree.Trainer
-
Constructor.
- RegressionTree.Trainer(Attribute[], int) - Constructor for class smile.regression.RegressionTree.Trainer
-
Constructor.
- RegressionTree.Trainer(int, int) - Constructor for class smile.regression.RegressionTree.Trainer
-
Constructor.
- remove(Feature<T>) - Method in class smile.feature.FeatureSet
-
Removes a feature generator.
- removeChild(Concept) - Method in class smile.taxonomy.Concept
-
Remove a child to this node
- removeKeyword(String) - Method in class smile.taxonomy.Concept
-
Remove a keyword from the concept synset.
- residuals() - Method in class smile.regression.OLS
-
Returns the residuals, that is response minus fitted values.
- RidgeRegression - Class in smile.regression
-
Ridge Regression.
- RidgeRegression(double[][], double[], double) - Constructor for class smile.regression.RidgeRegression
-
Constructor.
- RidgeRegression.Trainer - Class in smile.regression
-
Trainer for ridge regression.
- RidgeRegression.Trainer(double) - Constructor for class smile.regression.RidgeRegression.Trainer
-
Constructor.
- RMSE - Class in smile.validation
-
Root mean squared error.
- RMSE() - Constructor for class smile.validation.RMSE
-
- RNNSearch<K,V> - Interface in smile.neighbor
-
A range nearest neighbor search retrieves the nearest neighbors to a query
in a range.
- RSquared() - Method in class smile.regression.OLS
-
Returns R2 statistic.
- RSS() - Method in class smile.regression.OLS
-
Returns the residual sum of squares.
- RSS - Class in smile.validation
-
Residual sum of squares.
- RSS() - Constructor for class smile.validation.RSS
-
- run(Collection<? extends Callable<T>>) - Static method in class smile.util.MulticoreExecutor
-
Executes the given tasks serially or parallel depending on the number
of cores of the system.
- SammonMapping - Class in smile.mds
-
The Sammon's mapping is an iterative technique for making interpoint
distances in the low-dimensional projection as close as possible to the
interpoint distances in the high-dimensional object.
- SammonMapping(double[][]) - Constructor for class smile.mds.SammonMapping
-
Constructor.
- SammonMapping(double[][], int) - Constructor for class smile.mds.SammonMapping
-
Constructor.
- SammonMapping(double[][], double[][]) - Constructor for class smile.mds.SammonMapping
-
Constructor.
- SammonMapping(double[][], int, double, double, int) - Constructor for class smile.mds.SammonMapping
-
Constructor.
- SammonMapping(double[][], double[][], double, double, int) - Constructor for class smile.mds.SammonMapping
-
Constructor.
- samples - Variable in class smile.clustering.SOM.Neuron
-
The samples that are best matched.
- Sensitivity - Class in smile.validation
-
Sensitivity or true positive rate (TPR) (also called hit rate, recall) is a
statistical measures of the performance of a binary classification test.
- Sensitivity() - Constructor for class smile.validation.Sensitivity
-
- SequenceFeature<T> - Interface in smile.feature
-
Sequence feature generator.
- SequenceLabeler<T> - Interface in smile.sequence
-
A sequence labeler assigns a class label to each position of the sequence.
- setAttributes(Attribute[]) - Method in class smile.classification.ClassifierTrainer
-
Sets feature attributes.
- setAttributes(Attribute[]) - Method in class smile.regression.RegressionTrainer
-
Sets feature attributes.
- setDimension(int) - Method in class smile.classification.FLD.Trainer
-
Sets the dimensionality of mapped space.
- setElitism(int) - Method in class smile.gap.GeneticAlgorithm
-
Sets the number of best chromosomes to copy to new population.
- setIdenticalExcluded(boolean) - Method in class smile.neighbor.BKTree
-
Set if exclude query object self from the neighborhood.
- setIdenticalExcluded(boolean) - Method in class smile.neighbor.CoverTree
-
Set if exclude query object self from the neighborhood.
- setIdenticalExcluded(boolean) - Method in class smile.neighbor.KDTree
-
Set if exclude query object self from the neighborhood.
- setIdenticalExcluded(boolean) - Method in class smile.neighbor.LinearSearch
-
Set if exclude query object self from the neighborhood.
- setIdenticalExcluded(boolean) - Method in class smile.neighbor.LSH
-
Set if exclude query object self from the neighborhood.
- setIdenticalExcluded(boolean) - Method in class smile.neighbor.MPLSH
-
Set if exclude query object self from the neighborhood.
- setLearningRate(double) - Method in class smile.classification.NeuralNetwork
-
Sets the learning rate.
- setLearningRate(double) - Method in class smile.classification.NeuralNetwork.Trainer
-
Sets the learning rate.
- setLearningRate(double) - Method in class smile.projection.GHA
-
Set the learning rate.
- setLearningRate(double) - Method in class smile.sequence.CRF.Trainer
-
- setLocalSearchSteps(int) - Method in class smile.gap.GeneticAlgorithm
-
Sets the number of iterations of local search for Lamarckian algorithm.
- setLoss(GradientTreeBoost.Loss) - Method in class smile.regression.GradientTreeBoost.Trainer
-
Sets the loss function.
- setMaximumLeafNodes(int) - Method in class smile.classification.AdaBoost.Trainer
-
Sets the maximum number of leaf nodes in the tree.
- setMaximumLeafNodes(int) - Method in class smile.classification.DecisionTree.Trainer
-
Sets the maximum number of leaf nodes in the tree.
- setMaximumLeafNodes(int) - Method in class smile.classification.GradientTreeBoost.Trainer
-
Sets the maximum number of leaf nodes in the tree.
- setMaximumLeafNodes(int) - Method in class smile.regression.GradientTreeBoost.Trainer
-
Sets the maximum number of leaf nodes in the tree.
- setMaximumLeafNodes(int) - Method in class smile.regression.RegressionTree.Trainer
-
Sets the maximum number of leaf nodes in the tree.
- setMaximumLeafNodes(int) - Method in class smile.sequence.CRF.Trainer
-
Sets the maximum number of leaf nodes in the tree.
- setMaxNumIteration(int) - Method in class smile.classification.LogisticRegression.Trainer
-
Sets the maximum number of iterations.
- setMaxNumIteration(int) - Method in class smile.classification.Maxent.Trainer
-
Sets the maximum number of BFGS stopping iterations.
- setMaxNumIteration(int) - Method in class smile.regression.LASSO.Trainer
-
Sets the maximum number of iterations.
- setMinimumNodeSize(int) - Method in class smile.regression.RandomForest.Trainer
-
Sets the minimum size of leaf nodes.
- setMomentum(double) - Method in class smile.classification.NeuralNetwork
-
Sets the momentum factor.
- setMomentum(double) - Method in class smile.classification.NeuralNetwork.Trainer
-
Sets the momentum factor.
- setNormalized(boolean) - Method in class smile.classification.RBFNetwork.Trainer
-
Sets true to learn normalized RBF network.
- setNormalized(boolean) - Method in class smile.regression.RBFNetwork.Trainer
-
Sets true to learn normalized RBF network.
- setNumCenters(int) - Method in class smile.regression.RBFNetwork.Trainer
-
Sets the number of centers.
- setNumEpochs(int) - Method in class smile.classification.NeuralNetwork.Trainer
-
Sets the number of epochs of stochastic learning.
- setNumEpochs(int) - Method in class smile.classification.SVM.Trainer
-
Sets the number of epochs of stochastic learning.
- setNumIterations(int) - Method in class smile.sequence.CRF.Trainer
-
- setNumRandomFeatures(int) - Method in class smile.classification.RandomForest.Trainer
-
Sets the number of random selected features for splitting.
- setNumRandomFeatures(int) - Method in class smile.regression.RandomForest.Trainer
-
Sets the number of random selected features for splitting.
- setNumTrees(int) - Method in class smile.classification.AdaBoost.Trainer
-
Sets the number of trees in the random forest.
- setNumTrees(int) - Method in class smile.classification.GradientTreeBoost.Trainer
-
Sets the number of trees in the random forest.
- setNumTrees(int) - Method in class smile.classification.RandomForest.Trainer
-
Sets the number of trees in the random forest.
- setNumTrees(int) - Method in class smile.regression.GradientTreeBoost.Trainer
-
Sets the number of trees in the random forest.
- setNumTrees(int) - Method in class smile.regression.RandomForest.Trainer
-
Sets the number of trees in the random forest.
- setPriori(double[]) - Method in class smile.classification.LDA.Trainer
-
Sets a priori probabilities of each class.
- setPriori(double[]) - Method in class smile.classification.NaiveBayes.Trainer
-
Sets a priori probabilities of each class.
- setPriori(double[]) - Method in class smile.classification.QDA.Trainer
-
Sets a priori probabilities of each class.
- setPriori(double[]) - Method in class smile.classification.RDA.Trainer
-
Sets a priori probabilities of each class.
- setProjection(int) - Method in class smile.projection.PCA
-
Set the projection matrix with given number of principal components.
- setProjection(double) - Method in class smile.projection.PCA
-
Set the projection matrix with top principal components that contain
(more than) the given percentage of variance.
- setRBF(RadialBasisFunction, int) - Method in class smile.classification.RBFNetwork.Trainer
-
Sets the radial basis function.
- setRBF(RadialBasisFunction[]) - Method in class smile.classification.RBFNetwork.Trainer
-
Sets the radial basis functions.
- setRBF(RadialBasisFunction, int) - Method in class smile.regression.RBFNetwork.Trainer
-
Sets the radial basis function.
- setRBF(RadialBasisFunction[]) - Method in class smile.regression.RBFNetwork.Trainer
-
Sets the radial basis functions.
- setRegularizationFactor(double) - Method in class smile.classification.LogisticRegression.Trainer
-
Sets the regularization factor.
- setRegularizationFactor(double) - Method in class smile.classification.Maxent.Trainer
-
Sets the regularization factor.
- setSamplingRates(double) - Method in class smile.classification.GradientTreeBoost.Trainer
-
Sets the sampling rate for stochastic tree boosting.
- setSamplingRates(double) - Method in class smile.regression.GradientTreeBoost.Trainer
-
Sets the sampling rate for stochastic tree boosting.
- setShrinkage(double) - Method in class smile.classification.GradientTreeBoost.Trainer
-
Sets the shrinkage parameter in (0, 1] controls the learning rate of procedure.
- setShrinkage(double) - Method in class smile.regression.GradientTreeBoost.Trainer
-
Sets the shrinkage parameter in (0, 1] controls the learning rate of procedure.
- setSmooth(double) - Method in class smile.classification.NaiveBayes.Trainer
-
Sets add-k prior count of terms for smoothing.
- setSplitRule(DecisionTree.SplitRule) - Method in class smile.classification.DecisionTree.Trainer
-
Sets the splitting rule.
- setTolerance(double) - Method in class smile.classification.FLD.Trainer
-
Sets covariance matrix singular tolerance.
- setTolerance(double) - Method in class smile.classification.LDA.Trainer
-
Sets covariance matrix singularity tolerance.
- setTolerance(double) - Method in class smile.classification.LogisticRegression.Trainer
-
Sets the tolerance for BFGS stopping iterations.
- setTolerance(double) - Method in class smile.classification.Maxent.Trainer
-
Sets the tolerance for BFGS stopping iterations.
- setTolerance(double) - Method in class smile.classification.QDA.Trainer
-
Sets covariance matrix singularity tolerance.
- setTolerance(double) - Method in class smile.classification.RDA.Trainer
-
Sets covariance matrix singular tolerance.
- setTolerance(double) - Method in class smile.classification.SVM
-
Sets the tolerance of convergence test.
- setTolerance(double) - Method in class smile.classification.SVM.Trainer
-
Sets the tolerance of convergence test.
- setTolerance(double) - Method in class smile.regression.LASSO.Trainer
-
Sets the tolerance for stopping iterations (relative target duality gap).
- setTolerance(double) - Method in class smile.regression.SVR.Trainer
-
Sets the tolerance of convergence test.
- setTournament(int, double) - Method in class smile.gap.GeneticAlgorithm
-
Set the tournament size and the best-player-wins probability in
tournament selection.
- setViterbi(boolean) - Method in class smile.sequence.CRF
-
Sets if using Viterbi algorithm for sequence labeling.
- setWeightDecay(double) - Method in class smile.classification.NeuralNetwork
-
Sets the weight decay factor.
- setWeightDecay(double) - Method in class smile.classification.NeuralNetwork.Trainer
-
Sets the weight decay factor.
- shrinkage() - Method in class smile.regression.GaussianProcessRegression
-
Returns the shrinkage parameter.
- shrinkage() - Method in class smile.regression.LASSO
-
Returns the shrinkage parameter.
- shrinkage() - Method in class smile.regression.RidgeRegression
-
Returns the shrinkage parameter.
- shutdown() - Static method in class smile.util.MulticoreExecutor
-
Shutdown the thread pool.
- SIB - Class in smile.clustering
-
The Sequential Information Bottleneck algorithm.
- SIB(double[][], int) - Constructor for class smile.clustering.SIB
-
Constructor.
- SIB(double[][], int, int) - Constructor for class smile.clustering.SIB
-
Constructor.
- SIB(double[][], int, int, int) - Constructor for class smile.clustering.SIB
-
Constructor.
- SIB(SparseDataset, int) - Constructor for class smile.clustering.SIB
-
Constructor.
- SIB(SparseDataset, int, int) - Constructor for class smile.clustering.SIB
-
Constructor.
- SIB(SparseDataset, int, int, int) - Constructor for class smile.clustering.SIB
-
Constructor.
- SignalNoiseRatio - Class in smile.feature
-
The signal-to-noise (S2N) metric ratio is a univariate feature ranking metric,
which can be used as a feature selection criterion for binary classification
problems.
- SignalNoiseRatio() - Constructor for class smile.feature.SignalNoiseRatio
-
- simhash64(List<String>) - Static method in class smile.neighbor.SNLSH.SimHash
-
- SimpleNeighbor<T> - Class in smile.neighbor
-
The simple neighbor object, in which key and object are the same.
- SimpleNeighbor(T, int, double) - Constructor for class smile.neighbor.SimpleNeighbor
-
Constructor.
- SingleLinkage - Class in smile.clustering.linkage
-
Single linkage.
- SingleLinkage(double[][]) - Constructor for class smile.clustering.linkage.SingleLinkage
-
Constructor.
- size() - Method in class smile.association.FPGrowth
-
Returns the number transactions in the database.
- size() - Method in class smile.classification.AdaBoost
-
Returns the number of trees in the model.
- size() - Method in class smile.classification.GradientTreeBoost
-
Returns the number of trees in the model.
- size() - Method in class smile.classification.RandomForest
-
Returns the number of trees in the model.
- size() - Method in class smile.clustering.SOM
-
Returns the number of samples in each unit.
- size() - Method in class smile.regression.GradientTreeBoost
-
Returns the number of trees in the model.
- size() - Method in class smile.regression.RandomForest
-
Returns the number of trees in the model.
- smile.association - package smile.association
-
Frequent item set mining and association rule mining.
- smile.classification - package smile.classification
-
Classification algorithms.
- smile.clustering - package smile.clustering
-
Clustering analysis.
- smile.clustering.linkage - package smile.clustering.linkage
-
Cluster dissimilarity measures.
- smile.feature - package smile.feature
-
Feature generation, normalization and selection.
- smile.gap - package smile.gap
-
Genetic algorithm and programming.
- smile.imputation - package smile.imputation
-
Missing value imputation.
- smile.manifold - package smile.manifold
-
Manifold learning finds a low-dimensional basis for describing
high-dimensional data.
- smile.mds - package smile.mds
-
Multidimensional scaling.
- smile.neighbor - package smile.neighbor
-
Nearest neighbor search.
- smile.projection - package smile.projection
-
Feature extraction.
- smile.regression - package smile.regression
-
Regression analysis.
- smile.sequence - package smile.sequence
-
Learning algorithms for sequence data.
- smile.taxonomy - package smile.taxonomy
-
A taxonomy is a tree of terms (concepts) where leaves
must be named but intermediary nodes can be anonymous.
- smile.util - package smile.util
-
Utilitiy functions used in many places and multicore executor.
- smile.validation - package smile.validation
-
Model validation.
- smile.wavelet - package smile.wavelet
-
Discrete wavelet transform (DWT).
- SmileUtils - Class in smile.util
-
Some useful functions.
- SmileUtils() - Constructor for class smile.util.SmileUtils
-
- SNLSH<E> - Class in smile.neighbor
-
Locality-Sensitive Hashing for Signatures.
- SNLSH(int) - Constructor for class smile.neighbor.SNLSH
-
- SNLSH.AbstractSentence - Class in smile.neighbor
-
- SNLSH.AbstractSentence() - Constructor for class smile.neighbor.SNLSH.AbstractSentence
-
- SNLSH.SimHash - Class in smile.neighbor
-
- SNLSH.SimHash() - Constructor for class smile.neighbor.SNLSH.SimHash
-
- SOM - Class in smile.clustering
-
Self-Organizing Map.
- SOM(double[][], int) - Constructor for class smile.clustering.SOM
-
Constructor.
- SOM(double[][], int, int) - Constructor for class smile.clustering.SOM
-
Constructor.
- SOM.Neuron - Class in smile.clustering
-
Self-Organizing Map Neuron.
- SOM.Neuron() - Constructor for class smile.clustering.SOM.Neuron
-
- sort(Attribute[], double[][]) - Static method in class smile.util.SmileUtils
-
Sorts each variable and returns the index of values in ascending order.
- Specificity - Class in smile.validation
-
Specificity (SPC) or True Negative Rate is a statistical measures of the
performance of a binary classification test.
- Specificity() - Constructor for class smile.validation.Specificity
-
- SpectralClustering - Class in smile.clustering
-
Spectral Clustering.
- SpectralClustering(double[][], int) - Constructor for class smile.clustering.SpectralClustering
-
Constructor.
- SpectralClustering(double[][], int, double) - Constructor for class smile.clustering.SpectralClustering
-
Constructor.
- SpectralClustering(double[][], int, int, double) - Constructor for class smile.clustering.SpectralClustering
-
Constructor.
- SumSquaresRatio - Class in smile.feature
-
The ratio of between-groups to within-groups sum of squares is a univariate
feature ranking metric, which can be used as a feature selection criterion
for multi-class classification problems.
- SumSquaresRatio() - Constructor for class smile.feature.SumSquaresRatio
-
- support - Variable in class smile.association.AssociationRule
-
The support value.
- support - Variable in class smile.association.ItemSet
-
The associated support of item set.
- SVDImputation - Class in smile.imputation
-
Missing value imputation with singular value decomposition.
- SVDImputation(int) - Constructor for class smile.imputation.SVDImputation
-
Constructor.
- SVM<T> - Class in smile.classification
-
Support vector machines for classification.
- SVM(MercerKernel<T>, double) - Constructor for class smile.classification.SVM
-
Constructor of binary SVM.
- SVM(MercerKernel<T>, double, double) - Constructor for class smile.classification.SVM
-
Constructor of binary SVM.
- SVM(MercerKernel<T>, double, int, SVM.Multiclass) - Constructor for class smile.classification.SVM
-
Constructor of multi-class SVM.
- SVM(MercerKernel<T>, double, double[], SVM.Multiclass) - Constructor for class smile.classification.SVM
-
Constructor of multi-class SVM.
- SVM.Multiclass - Enum in smile.classification
-
The type of multi-class SVMs.
- SVM.Trainer<T> - Class in smile.classification
-
Trainer for support vector machines.
- SVM.Trainer(MercerKernel<T>, double) - Constructor for class smile.classification.SVM.Trainer
-
Constructor of trainer for binary SVMs.
- SVM.Trainer(MercerKernel<T>, double, double) - Constructor for class smile.classification.SVM.Trainer
-
Constructor of trainer for binary SVMs.
- SVM.Trainer(MercerKernel<T>, double, int, SVM.Multiclass) - Constructor for class smile.classification.SVM.Trainer
-
Constructor of trainer for multi-class SVMs.
- SVM.Trainer(MercerKernel<T>, double, double[], SVM.Multiclass) - Constructor for class smile.classification.SVM.Trainer
-
Constructor of trainer for multi-class SVMs.
- SVR<T> - Class in smile.regression
-
Support vector regression.
- SVR(T[], double[], MercerKernel<T>, double, double) - Constructor for class smile.regression.SVR
-
Constructor.
- SVR(T[], double[], double[], MercerKernel<T>, double, double) - Constructor for class smile.regression.SVR
-
Constructor.
- SVR(T[], double[], MercerKernel<T>, double, double, double) - Constructor for class smile.regression.SVR
-
Constructor.
- SVR(T[], double[], double[], MercerKernel<T>, double, double, double) - Constructor for class smile.regression.SVR
-
Constructor.
- SVR.Trainer<T> - Class in smile.regression
-
Trainer for support vector regression.
- SVR.Trainer(MercerKernel<T>, double, double) - Constructor for class smile.regression.SVR.Trainer
-
Constructor of trainer for binary SVMs.
- SymmletWavelet - Class in smile.wavelet
-
Symmlet wavelets.
- SymmletWavelet(int) - Constructor for class smile.wavelet.SymmletWavelet
-
Constructor.
- TaxonomicDistance - Class in smile.taxonomy
-
The distance between concepts in a taxonomy.
- TaxonomicDistance(Taxonomy) - Constructor for class smile.taxonomy.TaxonomicDistance
-
Constructor.
- Taxonomy - Class in smile.taxonomy
-
A taxonomy is a tree of terms (aka concept) where leaves
must be named but intermediary nodes can be anonymous.
- Taxonomy() - Constructor for class smile.taxonomy.Taxonomy
-
Constructor.
- Taxonomy(String) - Constructor for class smile.taxonomy.Taxonomy
-
Constructor.
- test(double[][], int[]) - Method in class smile.classification.AdaBoost
-
Test the model on a validation dataset.
- test(double[][], int[], ClassificationMeasure[]) - Method in class smile.classification.AdaBoost
-
Test the model on a validation dataset.
- test(double[][], int[]) - Method in class smile.classification.GradientTreeBoost
-
Test the model on a validation dataset.
- test(double[][], int[], ClassificationMeasure[]) - Method in class smile.classification.GradientTreeBoost
-
Test the model on a validation dataset.
- test(double[][], int[]) - Method in class smile.classification.RandomForest
-
Test the model on a validation dataset.
- test(double[][], int[], ClassificationMeasure[]) - Method in class smile.classification.RandomForest
-
Test the model on a validation dataset.
- test(double[][], double[]) - Method in class smile.regression.GradientTreeBoost
-
Test the model on a validation dataset.
- test(double[][], double[], RegressionMeasure[]) - Method in class smile.regression.GradientTreeBoost
-
Test the model on a validation dataset.
- test(double[][], double[]) - Method in class smile.regression.RandomForest
-
Test the model on a validation dataset.
- test(double[][], double[], RegressionMeasure[]) - Method in class smile.regression.RandomForest
-
Test the model on a validation dataset.
- test - Variable in class smile.validation.Bootstrap
-
The index of testing instances.
- test - Variable in class smile.validation.CrossValidation
-
The index of testing instances.
- test - Variable in class smile.validation.LOOCV
-
The index of testing instances.
- test(Classifier<T>, T[], int[]) - Static method in class smile.validation.Validation
-
Tests a classifier on a validation set.
- test(Regression<T>, T[], double[]) - Static method in class smile.validation.Validation
-
Tests a regression model on a validation set.
- test(Classifier<T>, T[], int[], ClassificationMeasure) - Static method in class smile.validation.Validation
-
Tests a classifier on a validation set.
- test(Classifier<T>, T[], int[], ClassificationMeasure[]) - Static method in class smile.validation.Validation
-
Tests a classifier on a validation set.
- test(Regression<T>, T[], double[], RegressionMeasure) - Static method in class smile.validation.Validation
-
Tests a regression model on a validation set.
- test(Regression<T>, T[], double[], RegressionMeasure[]) - Static method in class smile.validation.Validation
-
Tests a regression model on a validation set.
- tokens - Variable in class smile.neighbor.SNLSH.AbstractSentence
-
- toString() - Method in class smile.association.AssociationRule
-
- toString() - Method in class smile.association.ItemSet
-
- toString() - Method in class smile.clustering.CLARANS
-
- toString() - Method in class smile.clustering.DBScan
-
- toString() - Method in class smile.clustering.DENCLUE
-
- toString() - Method in class smile.clustering.DeterministicAnnealing
-
- toString() - Method in class smile.clustering.GMeans
-
- toString() - Method in class smile.clustering.KMeans
-
- toString() - Method in class smile.clustering.linkage.CompleteLinkage
-
- toString() - Method in class smile.clustering.linkage.SingleLinkage
-
- toString() - Method in class smile.clustering.linkage.UPGMALinkage
-
- toString() - Method in class smile.clustering.linkage.UPGMCLinkage
-
- toString() - Method in class smile.clustering.linkage.WardLinkage
-
- toString() - Method in class smile.clustering.linkage.WPGMALinkage
-
- toString() - Method in class smile.clustering.linkage.WPGMCLinkage
-
- toString() - Method in class smile.clustering.MEC
-
- toString() - Method in class smile.clustering.NeuralGas
-
- toString() - Method in class smile.clustering.SIB
-
- toString() - Method in class smile.clustering.SpectralClustering
-
- toString() - Method in class smile.clustering.XMeans
-
- toString() - Method in class smile.neighbor.BKTree
-
- toString() - Method in class smile.neighbor.CoverTree
-
- toString() - Method in class smile.neighbor.KDTree
-
- toString() - Method in class smile.neighbor.LinearSearch
-
- toString() - Method in class smile.neighbor.LSH
-
- toString() - Method in class smile.neighbor.MPLSH
-
- toString() - Method in class smile.regression.OLS
-
- toString() - Method in class smile.sequence.HMM
-
- toString() - Method in class smile.taxonomy.Concept
-
- toString() - Method in class smile.taxonomy.TaxonomicDistance
-
- toString() - Method in class smile.validation.AbsoluteDeviation
-
- toString() - Method in class smile.validation.Accuracy
-
- toString() - Method in class smile.validation.AdjustedRandIndex
-
- toString() - Method in class smile.validation.ConfusionMatrix
-
- toString() - Method in class smile.validation.Fallout
-
- toString() - Method in class smile.validation.FDR
-
- toString() - Method in class smile.validation.FMeasure
-
- toString() - Method in class smile.validation.MSE
-
- toString() - Method in class smile.validation.Precision
-
- toString() - Method in class smile.validation.RandIndex
-
- toString() - Method in class smile.validation.Recall
-
- toString() - Method in class smile.validation.RMSE
-
- toString() - Method in class smile.validation.RSS
-
- toString() - Method in class smile.validation.Sensitivity
-
- toString() - Method in class smile.validation.Specificity
-
- train(double[][], int[]) - Method in class smile.classification.AdaBoost.Trainer
-
- train(T[], int[]) - Method in class smile.classification.ClassifierTrainer
-
Learns a classifier with given training data.
- train(double[][], int[]) - Method in class smile.classification.DecisionTree.Trainer
-
- train(double[][], int[]) - Method in class smile.classification.FLD.Trainer
-
- train(double[][], int[]) - Method in class smile.classification.GradientTreeBoost.Trainer
-
- train(T[], int[]) - Method in class smile.classification.KNN.Trainer
-
- train(double[][], int[]) - Method in class smile.classification.LDA.Trainer
-
- train(double[][], int[]) - Method in class smile.classification.LogisticRegression.Trainer
-
- train(int[][], int[]) - Method in class smile.classification.Maxent.Trainer
-
- train(double[][], int[]) - Method in class smile.classification.NaiveBayes.Trainer
-
- train(double[][], int[]) - Method in class smile.classification.NeuralNetwork.Trainer
-
- train(double[][], int[]) - Method in class smile.classification.QDA.Trainer
-
- train(double[][], int[]) - Method in class smile.classification.RandomForest.Trainer
-
- train(T[], int[]) - Method in class smile.classification.RBFNetwork.Trainer
-
- train(T[], int[], T[]) - Method in class smile.classification.RBFNetwork.Trainer
-
Learns a RBF network with given centers.
- train(double[][], int[]) - Method in class smile.classification.RDA.Trainer
-
- train(T[], int[]) - Method in class smile.classification.SVM.Trainer
-
- train(T[], int[], double[]) - Method in class smile.classification.SVM.Trainer
-
Learns a SVM classifier with given training data.
- train(T[], double[]) - Method in class smile.regression.GaussianProcessRegression.Trainer
-
- train(T[], double[], T[]) - Method in class smile.regression.GaussianProcessRegression.Trainer
-
Learns a Gaussian Process with given subset of regressors.
- train(double[][], double[]) - Method in class smile.regression.GradientTreeBoost.Trainer
-
- train(double[][], double[]) - Method in class smile.regression.LASSO.Trainer
-
- train(double[][], double[]) - Method in class smile.regression.OLS.Trainer
-
- train(double[][], double[]) - Method in class smile.regression.RandomForest.Trainer
-
- train(T[], double[]) - Method in class smile.regression.RBFNetwork.Trainer
-
- train(T[], double[], T[]) - Method in class smile.regression.RBFNetwork.Trainer
-
Learns a RBF network with given centers.
- train(T[], double[]) - Method in class smile.regression.RegressionTrainer
-
Learns a regression model with given training data.
- train(double[][], double[]) - Method in class smile.regression.RegressionTree.Trainer
-
- train(int[][], double[]) - Method in class smile.regression.RegressionTree.Trainer
-
- train(double[][], double[]) - Method in class smile.regression.RidgeRegression.Trainer
-
- train(T[], double[]) - Method in class smile.regression.SVR.Trainer
-
- train(double[][][], int[][]) - Method in class smile.sequence.CRF.Trainer
-
- train(int[][][], int[][]) - Method in class smile.sequence.CRF.Trainer
-
- train - Variable in class smile.validation.Bootstrap
-
The index of training instances.
- train - Variable in class smile.validation.CrossValidation
-
The index of training instances.
- train - Variable in class smile.validation.LOOCV
-
The index of training instances.
- transform(double[]) - Method in class smile.wavelet.Wavelet
-
Discrete wavelet transform.
- trim(int) - Method in class smile.classification.AdaBoost
-
Trims the tree model set to a smaller size in case of over-fitting.
- trim(int) - Method in class smile.classification.GradientTreeBoost
-
Trims the tree model set to a smaller size in case of over-fitting.
- trim(int) - Method in class smile.classification.RandomForest
-
Trims the tree model set to a smaller size in case of over-fitting.
- trim(int) - Method in class smile.regression.GradientTreeBoost
-
Trims the tree model set to a smaller size in case of over-fitting.
- trim(int) - Method in class smile.regression.RandomForest
-
Trims the tree model set to a smaller size in case of over-fitting.
- ttest() - Method in class smile.regression.OLS
-
Returns the t-test of the coefficients (including intercept).
- Validation - Class in smile.validation
-
A utility class for validating predictive models on test data.
- Validation() - Constructor for class smile.validation.Validation
-
- value - Variable in class smile.neighbor.Neighbor
-
The data object of neighbor.
- valueOf(String) - Static method in enum smile.classification.DecisionTree.SplitRule
-
Returns the enum constant of this type with the specified name.
- valueOf(String) - Static method in enum smile.classification.NaiveBayes.Model
-
Returns the enum constant of this type with the specified name.
- valueOf(String) - Static method in enum smile.classification.NeuralNetwork.ActivationFunction
-
Returns the enum constant of this type with the specified name.
- valueOf(String) - Static method in enum smile.classification.NeuralNetwork.ErrorFunction
-
Returns the enum constant of this type with the specified name.
- valueOf(String) - Static method in enum smile.classification.SVM.Multiclass
-
Returns the enum constant of this type with the specified name.
- valueOf(String) - Static method in enum smile.feature.DateFeature.Type
-
Returns the enum constant of this type with the specified name.
- valueOf(String) - Static method in enum smile.feature.NumericAttributeFeature.Scaling
-
Returns the enum constant of this type with the specified name.
- valueOf(String) - Static method in enum smile.gap.BitString.Crossover
-
Returns the enum constant of this type with the specified name.
- valueOf(String) - Static method in enum smile.gap.GeneticAlgorithm.Selection
-
Returns the enum constant of this type with the specified name.
- valueOf(String) - Static method in enum smile.regression.GradientTreeBoost.Loss
-
Returns the enum constant of this type with the specified name.
- values() - Static method in enum smile.classification.DecisionTree.SplitRule
-
Returns an array containing the constants of this enum type, in
the order they are declared.
- values() - Static method in enum smile.classification.NaiveBayes.Model
-
Returns an array containing the constants of this enum type, in
the order they are declared.
- values() - Static method in enum smile.classification.NeuralNetwork.ActivationFunction
-
Returns an array containing the constants of this enum type, in
the order they are declared.
- values() - Static method in enum smile.classification.NeuralNetwork.ErrorFunction
-
Returns an array containing the constants of this enum type, in
the order they are declared.
- values() - Static method in enum smile.classification.SVM.Multiclass
-
Returns an array containing the constants of this enum type, in
the order they are declared.
- values() - Static method in enum smile.feature.DateFeature.Type
-
Returns an array containing the constants of this enum type, in
the order they are declared.
- values() - Static method in enum smile.feature.NumericAttributeFeature.Scaling
-
Returns an array containing the constants of this enum type, in
the order they are declared.
- values() - Static method in enum smile.gap.BitString.Crossover
-
Returns an array containing the constants of this enum type, in
the order they are declared.
- values() - Static method in enum smile.gap.GeneticAlgorithm.Selection
-
Returns an array containing the constants of this enum type, in
the order they are declared.
- values() - Static method in enum smile.regression.GradientTreeBoost.Loss
-
Returns an array containing the constants of this enum type, in
the order they are declared.