Package | Description |
---|---|
smile.feature |
Feature generation, normalization and selection.
|
smile.regression |
Regression analysis.
|
smile.validation |
Model validation.
|
Modifier and Type | Method and Description |
---|---|
BitString[] |
GAFeatureSelection.learn(int size,
int generation,
RegressionTrainer<double[]> trainer,
RegressionMeasure measure,
double[][] x,
double[] y,
double[][] testx,
double[] testy)
Genetic algorithm based feature selection for regression.
|
BitString[] |
GAFeatureSelection.learn(int size,
int generation,
RegressionTrainer<double[]> trainer,
RegressionMeasure measure,
double[][] x,
double[] y,
int k)
Genetic algorithm based feature selection for regression.
|
Modifier and Type | Method and Description |
---|---|
double[][] |
RandomForest.test(double[][] x,
double[] y,
RegressionMeasure[] measures)
Test the model on a validation dataset.
|
double[][] |
GradientTreeBoost.test(double[][] x,
double[] y,
RegressionMeasure[] measures)
Test the model on a validation dataset.
|
Modifier and Type | Class and Description |
---|---|
class |
AbsoluteDeviation
Absolute deviation error.
|
class |
MSE
Mean squared error.
|
class |
RMSE
Root mean squared error.
|
class |
RSS
Residual sum of squares.
|
Modifier and Type | Method and Description |
---|---|
static <T> double[] |
Validation.bootstrap(int k,
RegressionTrainer<T> trainer,
T[] x,
double[] y,
RegressionMeasure measure)
Bootstrap performance estimation of a regression model.
|
static <T> double[][] |
Validation.bootstrap(int k,
RegressionTrainer<T> trainer,
T[] x,
double[] y,
RegressionMeasure[] measures)
Bootstrap performance estimation of a regression model.
|
static <T> double |
Validation.cv(int k,
RegressionTrainer<T> trainer,
T[] x,
double[] y,
RegressionMeasure measure)
Cross validation of a regression model.
|
static <T> double[] |
Validation.cv(int k,
RegressionTrainer<T> trainer,
T[] x,
double[] y,
RegressionMeasure[] measures)
Cross validation of a regression model.
|
static <T> double |
Validation.loocv(RegressionTrainer<T> trainer,
T[] x,
double[] y,
RegressionMeasure measure)
Leave-one-out cross validation of a regression model.
|
static <T> double[] |
Validation.loocv(RegressionTrainer<T> trainer,
T[] x,
double[] y,
RegressionMeasure[] measures)
Leave-one-out cross validation of a regression model.
|
static <T> double |
Validation.test(Regression<T> regression,
T[] x,
double[] y,
RegressionMeasure measure)
Tests a regression model on a validation set.
|
static <T> double[] |
Validation.test(Regression<T> regression,
T[] x,
double[] y,
RegressionMeasure[] measures)
Tests a regression model on a validation set.
|
Copyright © 2015. All rights reserved.