public class LaplacianEigenmap
extends java.lang.Object
The locality preserving character of the Laplacian Eigenmap algorithm makes it relatively insensitive to outliers and noise. It is also not prone to "short circuiting" as only the local distances are used.
Constructor and Description |
---|
LaplacianEigenmap(double[][] data,
int d,
int k)
Constructor.
|
LaplacianEigenmap(double[][] data,
int d,
int k,
double t)
Constructor.
|
Modifier and Type | Method and Description |
---|---|
double[][] |
getCoordinates()
Returns the coordinates of projected data.
|
double |
getHeatKernelWidth()
Returns the width of heat kernel.
|
int[] |
getIndex()
Returns the original sample index.
|
smile.graph.Graph |
getNearestNeighborGraph()
Returns the nearest neighbor graph.
|
public LaplacianEigenmap(double[][] data, int d, int k)
data
- the dataset.d
- the dimension of the manifold.k
- k-nearest neighbor.public LaplacianEigenmap(double[][] data, int d, int k, double t)
data
- the dataset.d
- the dimension of the manifold.k
- k-nearest neighbor.t
- the smooth/width parameter of heat kernel e-||x-y||2 / t.
Non-positive value means discrete weights.public int[] getIndex()
public double[][] getCoordinates()
public smile.graph.Graph getNearestNeighborGraph()
public double getHeatKernelWidth()