public static class RDA.Trainer extends ClassifierTrainer<double[]>
Constructor and Description |
---|
Trainer(double alpha)
Constructor.
|
Modifier and Type | Method and Description |
---|---|
RDA.Trainer |
setPriori(double[] priori)
Sets a priori probabilities of each class.
|
RDA.Trainer |
setTolerance(double tol)
Sets covariance matrix singular tolerance.
|
RDA |
train(double[][] x,
int[] y)
Learns a classifier with given training data.
|
setAttributes
public Trainer(double alpha)
alpha
- regularization factor in [0, 1] allows a continuum of
models between LDA and QDA.public RDA.Trainer setPriori(double[] priori)
priori
- a priori probabilities of each class.public RDA.Trainer setTolerance(double tol)
tol
- a tolerance to decide if a covariance matrix is singular.
The trainer will reject variables whose variance is less than tol2.public RDA train(double[][] x, int[] y)
ClassifierTrainer
train
in class ClassifierTrainer<double[]>
x
- the training instances.y
- the training labels.